Highly Elastic and Conductive Lamellar Wood Sponge via Cell Wall Reconfiguration Toward Smart Multifunctional Applications
Corresponding Author: Xiao‑qing Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 171
Abstract
Three-dimensional porous foams and aerogels with high compressibility and elasticity hold great promise for applications in pressure sensing, electromagnetic interference (EMI) shielding, and thermal insulation. However, their widespread application is often hindered by compromised structural stability and inadequate fatigue resistance under repeated compression. Herein, a sustainable “top-down” cell wall reconfiguration strategy is proposed to fabricate highly elastic, fatigue-resistant, and electrically conductive lamellar wood sponge from natural balsa wood. This strategy involves the conversion of the intrinsic cellular structure of wood into an arch-shaped lamellar architecture reinforced by chemical cross-linking, followed by coating the lamellar scaffold with conductive polypyrrole (PPy) via in situ polymerization. The resulting PPy-coated cross-linked wood sponge (CWS@PPy) demonstrates reversible compressibility, excellent fatigue resistance (∼3.5% plastic deformation after 10,000 cycles at 40% strain). The strain-induced conductivity changes in CWS@PPy enable tunable EMI shielding effectiveness under cyclic compression and also facilities high-sensitivity pressure sensing (0.72 kPa−1). Additionally, CWS@PPy exhibits a low through-plane thermal conductivity of 0.037 W m−1 K−1, which can be dynamically tuned for adaptive thermal management. The proposed mechanically robust and conductive wood sponge provides a versatile and sustainable platform for next-generation smart devices.
Highlights:
1 Highly elastic, fatigue-resistant, and conductive lamellar wood sponges are developed via a cell wall reconfiguration strategy.
2 The strain-induced conductivity changes in lamellar wood sponge enable tunable electromagnetic interference shielding effectiveness and high-sensitivity pressure sensing (0.72 kPa−1).
3 The wood sponge exhibits a low through-plane thermal conductivity of 0.037 W m−1 K−1, which is compression-tunable for smart thermal management.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Pang, Y. Xia, X. Liu, W. Tong, X. Li et al., Dome-celled aerogels with ultrahigh-temperature superelasticity over 2273 K. Science 389(6757), 290–294 (2025). https://doi.org/10.1126/science.adw5777
- J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
- J. Feng, Z. Ma, J. Wu, Z. Zhou, Z. Liu et al., Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. 37(3), 2411856 (2025). https://doi.org/10.1002/adma.202411856
- J. Ge, L.-A. Shi, Y.-C. Wang, H.-Y. Zhao, H.-B. Yao et al., Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 12(5), 434–440 (2017). https://doi.org/10.1038/nnano.2017.33
- H. Guan, Z. Cheng, X. Wang, Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12(10), 10365–10373 (2018). https://doi.org/10.1021/acsnano.8b05763
- J. Ge, H.-Y. Zhao, H.-W. Zhu, J. Huang, L.-A. Shi et al., Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv. Mater. 28(47), 10459–10490 (2016). https://doi.org/10.1002/adma.201601812
- K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
- Y. Zhang, A. Liu, Y. Tian, Y. Tian, X. Qi et al., Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable electromagnetic interference shielding. Adv. Mater. 37(35), 2505521 (2025). https://doi.org/10.1002/adma.202505521
- Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
- L. Chen, X. Yu, M. Gao, C. Xu, J. Zhang et al., Renewable biomass-based aerogels: from structural design to functional regulation. Chem. Soc. Rev. 53(14), 7489–7530 (2024). https://doi.org/10.1039/D3CS01014G
- Y. Hu, Z. Chen, H. Zhuo, L. Zhong, X. Peng et al., Advanced compressible and elastic 3D monoliths beyond hydrogels. Adv. Funct. Mater. 29(44), 1904472 (2019). https://doi.org/10.1002/adfm.201904472
- H.-L. Gao, Y.-B. Zhu, L.-B. Mao, F.-C. Wang, X.-S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
- H.-L. Gao, Z.-Y. Wang, C. Cui, J.-Z. Bao, Y.-B. Zhu et al., A highly compressible and stretchable carbon spring for smart vibration and magnetism sensors. Adv. Mater. 33(39), 2102724 (2021). https://doi.org/10.1002/adma.202102724
- H. Wang, S. Li, Q. Zhou, H. Peng, X. Liu et al., A review of recent research on bionic structural characteristics and performance mechanisms of biomimetic materials. Compos. Part B Eng. 304, 112681 (2025). https://doi.org/10.1016/j.compositesb.2025.112681
- S. Nardecchia, M.C. Serrano, M.C. Gutiérrez, M.T. Portolés, M.L. Ferrer et al., Osteoconductive performance of carbon nanotube scaffolds homogeneously mineralized by flow-through electrodeposition. Adv. Funct. Mater. 22(21), 4411–4420 (2012). https://doi.org/10.1002/adfm.201200684
- C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
- Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4(4), eaas8925 (2018). https://doi.org/10.1126/sciadv.aas8925
- X. Zhang, W. Huang, J. Yu, C. Zhao, Y. Si, Nacre-mimetic multi-mechanical synergistic ceramic aerogels with interfacial bridging and stress delocalization. Adv. Funct. Mater. 35(10), 2416857 (2025). https://doi.org/10.1002/adfm.202416857
- P. Min, X. Li, P. Liu, J. Liu, X.-Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31(34), 2103703 (2021). https://doi.org/10.1002/adfm.202103703
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- Y. Wu, C. An, Y. Guo, Y. Zong, N. Jiang et al., Highly aligned graphene aerogels for multifunctional composites. Nano-Micro Lett. 16(1), 118 (2024). https://doi.org/10.1007/s40820-024-01357-w
- J. Ren, X. Huang, R. Han, G. Chen, Q. Li et al., Avian bone-inspired super fatigue resistant MXene-based aerogels with human-like tactile perception for multilevel information encryption assisted by machine learning. Adv. Funct. Mater. 34(39), 2403091 (2024). https://doi.org/10.1002/adfm.202403091
- B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28(8), 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
- Z. Lin, C. Shen, Y. Xia, R. Ma, J. He et al., Multifunctional layered structure graphene aerogel with customizable shape by ion diffusion-directed assembly. Carbon 238, 120265 (2025). https://doi.org/10.1016/j.carbon.2025.120265
- C. Yang, P. He, W. Wang, R. Han, H. Zhang et al., Layer-by-layer assembled aramid nanofiber/MXene aerogel: exceptional resistance to extreme temperatures and robust anisotropy for advanced applications. Compos. Sci. Technol. 257, 110833 (2024). https://doi.org/10.1016/j.compscitech.2024.110833
- M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
- L. Tian, F.-L. Gao, Y.-X. Li, Z.-Y. Yang, X. Xu et al., High-performance bimodal temperature/pressure tactile sensor based on lamellar CNT/MXene/cellulose nanofibers aerogel with enhanced multifunctionality. Adv. Funct. Mater. 35(17), 2418988 (2025). https://doi.org/10.1002/adfm.202418988
- H. Tetik, J. Orangi, G. Yang, K. Zhao, S.B. Mujib et al., 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 34(2), e2104980 (2022). https://doi.org/10.1002/adma.202104980
- H. Guo, T. Hua, J. Qin, Q. Wu, R. Wang et al., A new strategy of 3D printing lightweight lamellar graphene aerogels for electromagnetic interference shielding and piezoresistive sensor applications. Adv. Mater. Technol. 7(9), 2101699 (2022). https://doi.org/10.1002/admt.202101699
- G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures: a review of novel materials, methods, and applications. Adv. Mater. 32(17), 1907176 (2020). https://doi.org/10.1002/adma.201907176
- M. Li, X. Dai, W. Gao, H. Bai, Ice-templated fabrication of porous materials with bioinspired architecture and functionality. Acc. Mater. Res. 3(11), 1173–1185 (2022). https://doi.org/10.1021/accountsmr.2c00169
- Y. Xia, C. Gao, W. Gao, A review on elastic graphene aerogels: design, preparation, and applications. J. Polym. Sci. 60(15), 2239–2261 (2022). https://doi.org/10.1002/pol.20220179
- H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30(18), e1706705 (2018). https://doi.org/10.1002/adma.201706705
- H. Guan, C. Zhang, K. Tu, X. Dai, X. Wang et al., Wet-stable lamellar wood sponge with high elasticity and fatigue resistance enabled by chemical cross-linking. ACS Appl. Mater. Interfaces 16(14), 18173–18183 (2024). https://doi.org/10.1021/acsami.4c01173
- W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32(12), 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
- J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 61(3), 646–687 (2021). https://doi.org/10.1080/15583724.2020.1870490
- Z. Qin, Y. Lv, X. Fang, B. Zhao, F. Niu et al., Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor. Chem. Eng. J. 427, 131650 (2022). https://doi.org/10.1016/j.cej.2021.131650
- A. Kaur, S.K. Dhawan, Tuning of EMI shielding properties of polypyrrole nanops with surfactant concentration. Synth. Met. 162(15–16), 1471–1477 (2012). https://doi.org/10.1016/j.synthmet.2012.05.012
- C. Li, J. Mu, Y. Song, S. Chen, F. Xu, Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS Appl. Mater. Interfaces 15(7), 9820–9829 (2023). https://doi.org/10.1021/acsami.2c20464
- H. Guan, X. Dai, L. Ni, J. Hu, X. Wang, Highly elastic and fatigue-resistant graphene-wrapped lamellar wood sponges for high-performance piezoresistive sensors. ACS Sustainable Chem. Eng. 9(45), 15267–15277 (2021). https://doi.org/10.1021/acssuschemeng.1c05401
- Z.-L. Yu, B. Qin, Z.-Y. Ma, J. Huang, S.-C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
- X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- Z. Dai, C. Hu, Y. Wei, W. Zhang, J. Xu et al., Highly anisotropic carbonized wood as electronic materials for electromagnetic interference shielding and thermal management. Adv. Electron. Mater. 9(7), 2300162 (2023). https://doi.org/10.1002/aelm.202300162
- Y.-L. Liu, T.-Y. Zhu, Q. Wang, Z.-J. Huang, D.-X. Sun et al., Hierarchically porous polypyrrole foams contained ordered polypyrrole nanowire arrays for multifunctional electromagnetic interference shielding and dynamic infrared stealth. Nano-Micro Lett. 17(1), 97 (2024). https://doi.org/10.1007/s40820-024-01588-x
- M. Chen, J. Zhu, K. Zhang, H. Zhou, Y. Gao et al., Carbon nanofiber/polyaniline composite aerogel with excellent electromagnetic interference shielding, low thermal conductivity, and extremely low heat release. Nano-Micro Lett. 17(1), 80 (2024). https://doi.org/10.1007/s40820-024-01583-2
- Z. Wu, X. Tan, J. Wang, Y. Xing, P. Huang et al., MXene hollow spheres supported by a C-co exoskeleton grow MWCNTs for efficient microwave absorption. Nano-Micro Lett. 16(1), 107 (2024). https://doi.org/10.1007/s40820-024-01326-3
- X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 405, 126927 (2021). https://doi.org/10.1016/j.cej.2020.126927
- J. Song, C. Chen, Z. Yang, Y. Kuang, T. Li et al., Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12(1), 140–147 (2018). https://doi.org/10.1021/acsnano.7b04246
- X. Chang, X. Cheng, X. Yin, R. Che, J. Yu et al., Multimode thermal gating based on elastic ceramic-carbon nanowhisker/nanofiber aerogels by strain engineering strategy. ACS Nano 19(10), 10421–10432 (2025). https://doi.org/10.1021/acsnano.5c00125
- P. Hu, J. Wang, P. Zhang, F. Wu, Y. Cheng et al., Hyperelastic kevlar nanofiber aerogels as robust thermal switches for smart thermal management. Adv. Mater. 35(3), 2207638 (2023). https://doi.org/10.1002/adma.202207638
- S. Cao, H. Fu, P. Chen, H. Feng, Z. Zhang et al., Weldable graphene foams for wide-range thermal switches. Cell Rep. Phys. Sci. 6(5), 102599 (2025). https://doi.org/10.1016/j.xcrp.2025.102599
- F. Zhang, Y. Feng, M. Qin, L. Gao, Z. Li et al., Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 29(25), 1901383 (2019). https://doi.org/10.1002/adfm.201901383
- T. Du, Z. Xiong, L. Delgado, W. Liao, J. Peoples et al., Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams. Nat. Commun. 12, 4915 (2021). https://doi.org/10.1038/s41467-021-25083-8
- C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
- W. Yin, M. Qin, H. Yu, J. Sun, W. Feng, Hyperelastic graphene aerogels reinforced by in-suit welding polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing. Adv. Fiber Mater. 5(3), 1037–1049 (2023). https://doi.org/10.1007/s42765-023-00268-6
References
K. Pang, Y. Xia, X. Liu, W. Tong, X. Li et al., Dome-celled aerogels with ultrahigh-temperature superelasticity over 2273 K. Science 389(6757), 290–294 (2025). https://doi.org/10.1126/science.adw5777
J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
J. Feng, Z. Ma, J. Wu, Z. Zhou, Z. Liu et al., Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. 37(3), 2411856 (2025). https://doi.org/10.1002/adma.202411856
J. Ge, L.-A. Shi, Y.-C. Wang, H.-Y. Zhao, H.-B. Yao et al., Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 12(5), 434–440 (2017). https://doi.org/10.1038/nnano.2017.33
H. Guan, Z. Cheng, X. Wang, Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12(10), 10365–10373 (2018). https://doi.org/10.1021/acsnano.8b05763
J. Ge, H.-Y. Zhao, H.-W. Zhu, J. Huang, L.-A. Shi et al., Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv. Mater. 28(47), 10459–10490 (2016). https://doi.org/10.1002/adma.201601812
K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
Y. Zhang, A. Liu, Y. Tian, Y. Tian, X. Qi et al., Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable electromagnetic interference shielding. Adv. Mater. 37(35), 2505521 (2025). https://doi.org/10.1002/adma.202505521
Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
L. Chen, X. Yu, M. Gao, C. Xu, J. Zhang et al., Renewable biomass-based aerogels: from structural design to functional regulation. Chem. Soc. Rev. 53(14), 7489–7530 (2024). https://doi.org/10.1039/D3CS01014G
Y. Hu, Z. Chen, H. Zhuo, L. Zhong, X. Peng et al., Advanced compressible and elastic 3D monoliths beyond hydrogels. Adv. Funct. Mater. 29(44), 1904472 (2019). https://doi.org/10.1002/adfm.201904472
H.-L. Gao, Y.-B. Zhu, L.-B. Mao, F.-C. Wang, X.-S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016). https://doi.org/10.1038/ncomms12920
H.-L. Gao, Z.-Y. Wang, C. Cui, J.-Z. Bao, Y.-B. Zhu et al., A highly compressible and stretchable carbon spring for smart vibration and magnetism sensors. Adv. Mater. 33(39), 2102724 (2021). https://doi.org/10.1002/adma.202102724
H. Wang, S. Li, Q. Zhou, H. Peng, X. Liu et al., A review of recent research on bionic structural characteristics and performance mechanisms of biomimetic materials. Compos. Part B Eng. 304, 112681 (2025). https://doi.org/10.1016/j.compositesb.2025.112681
S. Nardecchia, M.C. Serrano, M.C. Gutiérrez, M.T. Portolés, M.L. Ferrer et al., Osteoconductive performance of carbon nanotube scaffolds homogeneously mineralized by flow-through electrodeposition. Adv. Funct. Mater. 22(21), 4411–4420 (2012). https://doi.org/10.1002/adfm.201200684
C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4(4), eaas8925 (2018). https://doi.org/10.1126/sciadv.aas8925
X. Zhang, W. Huang, J. Yu, C. Zhao, Y. Si, Nacre-mimetic multi-mechanical synergistic ceramic aerogels with interfacial bridging and stress delocalization. Adv. Funct. Mater. 35(10), 2416857 (2025). https://doi.org/10.1002/adfm.202416857
P. Min, X. Li, P. Liu, J. Liu, X.-Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31(34), 2103703 (2021). https://doi.org/10.1002/adfm.202103703
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
Y. Wu, C. An, Y. Guo, Y. Zong, N. Jiang et al., Highly aligned graphene aerogels for multifunctional composites. Nano-Micro Lett. 16(1), 118 (2024). https://doi.org/10.1007/s40820-024-01357-w
J. Ren, X. Huang, R. Han, G. Chen, Q. Li et al., Avian bone-inspired super fatigue resistant MXene-based aerogels with human-like tactile perception for multilevel information encryption assisted by machine learning. Adv. Funct. Mater. 34(39), 2403091 (2024). https://doi.org/10.1002/adfm.202403091
B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28(8), 1623–1629 (2016). https://doi.org/10.1002/adma.201504594
Z. Lin, C. Shen, Y. Xia, R. Ma, J. He et al., Multifunctional layered structure graphene aerogel with customizable shape by ion diffusion-directed assembly. Carbon 238, 120265 (2025). https://doi.org/10.1016/j.carbon.2025.120265
C. Yang, P. He, W. Wang, R. Han, H. Zhang et al., Layer-by-layer assembled aramid nanofiber/MXene aerogel: exceptional resistance to extreme temperatures and robust anisotropy for advanced applications. Compos. Sci. Technol. 257, 110833 (2024). https://doi.org/10.1016/j.compscitech.2024.110833
M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
L. Tian, F.-L. Gao, Y.-X. Li, Z.-Y. Yang, X. Xu et al., High-performance bimodal temperature/pressure tactile sensor based on lamellar CNT/MXene/cellulose nanofibers aerogel with enhanced multifunctionality. Adv. Funct. Mater. 35(17), 2418988 (2025). https://doi.org/10.1002/adfm.202418988
H. Tetik, J. Orangi, G. Yang, K. Zhao, S.B. Mujib et al., 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 34(2), e2104980 (2022). https://doi.org/10.1002/adma.202104980
H. Guo, T. Hua, J. Qin, Q. Wu, R. Wang et al., A new strategy of 3D printing lightweight lamellar graphene aerogels for electromagnetic interference shielding and piezoresistive sensor applications. Adv. Mater. Technol. 7(9), 2101699 (2022). https://doi.org/10.1002/admt.202101699
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures: a review of novel materials, methods, and applications. Adv. Mater. 32(17), 1907176 (2020). https://doi.org/10.1002/adma.201907176
M. Li, X. Dai, W. Gao, H. Bai, Ice-templated fabrication of porous materials with bioinspired architecture and functionality. Acc. Mater. Res. 3(11), 1173–1185 (2022). https://doi.org/10.1021/accountsmr.2c00169
Y. Xia, C. Gao, W. Gao, A review on elastic graphene aerogels: design, preparation, and applications. J. Polym. Sci. 60(15), 2239–2261 (2022). https://doi.org/10.1002/pol.20220179
H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30(18), e1706705 (2018). https://doi.org/10.1002/adma.201706705
H. Guan, C. Zhang, K. Tu, X. Dai, X. Wang et al., Wet-stable lamellar wood sponge with high elasticity and fatigue resistance enabled by chemical cross-linking. ACS Appl. Mater. Interfaces 16(14), 18173–18183 (2024). https://doi.org/10.1021/acsami.4c01173
W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32(12), 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 61(3), 646–687 (2021). https://doi.org/10.1080/15583724.2020.1870490
Z. Qin, Y. Lv, X. Fang, B. Zhao, F. Niu et al., Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor. Chem. Eng. J. 427, 131650 (2022). https://doi.org/10.1016/j.cej.2021.131650
A. Kaur, S.K. Dhawan, Tuning of EMI shielding properties of polypyrrole nanops with surfactant concentration. Synth. Met. 162(15–16), 1471–1477 (2012). https://doi.org/10.1016/j.synthmet.2012.05.012
C. Li, J. Mu, Y. Song, S. Chen, F. Xu, Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS Appl. Mater. Interfaces 15(7), 9820–9829 (2023). https://doi.org/10.1021/acsami.2c20464
H. Guan, X. Dai, L. Ni, J. Hu, X. Wang, Highly elastic and fatigue-resistant graphene-wrapped lamellar wood sponges for high-performance piezoresistive sensors. ACS Sustainable Chem. Eng. 9(45), 15267–15277 (2021). https://doi.org/10.1021/acssuschemeng.1c05401
Z.-L. Yu, B. Qin, Z.-Y. Ma, J. Huang, S.-C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019). https://doi.org/10.1002/adma.201900651
X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
Z. Dai, C. Hu, Y. Wei, W. Zhang, J. Xu et al., Highly anisotropic carbonized wood as electronic materials for electromagnetic interference shielding and thermal management. Adv. Electron. Mater. 9(7), 2300162 (2023). https://doi.org/10.1002/aelm.202300162
Y.-L. Liu, T.-Y. Zhu, Q. Wang, Z.-J. Huang, D.-X. Sun et al., Hierarchically porous polypyrrole foams contained ordered polypyrrole nanowire arrays for multifunctional electromagnetic interference shielding and dynamic infrared stealth. Nano-Micro Lett. 17(1), 97 (2024). https://doi.org/10.1007/s40820-024-01588-x
M. Chen, J. Zhu, K. Zhang, H. Zhou, Y. Gao et al., Carbon nanofiber/polyaniline composite aerogel with excellent electromagnetic interference shielding, low thermal conductivity, and extremely low heat release. Nano-Micro Lett. 17(1), 80 (2024). https://doi.org/10.1007/s40820-024-01583-2
Z. Wu, X. Tan, J. Wang, Y. Xing, P. Huang et al., MXene hollow spheres supported by a C-co exoskeleton grow MWCNTs for efficient microwave absorption. Nano-Micro Lett. 16(1), 107 (2024). https://doi.org/10.1007/s40820-024-01326-3
X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 405, 126927 (2021). https://doi.org/10.1016/j.cej.2020.126927
J. Song, C. Chen, Z. Yang, Y. Kuang, T. Li et al., Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12(1), 140–147 (2018). https://doi.org/10.1021/acsnano.7b04246
X. Chang, X. Cheng, X. Yin, R. Che, J. Yu et al., Multimode thermal gating based on elastic ceramic-carbon nanowhisker/nanofiber aerogels by strain engineering strategy. ACS Nano 19(10), 10421–10432 (2025). https://doi.org/10.1021/acsnano.5c00125
P. Hu, J. Wang, P. Zhang, F. Wu, Y. Cheng et al., Hyperelastic kevlar nanofiber aerogels as robust thermal switches for smart thermal management. Adv. Mater. 35(3), 2207638 (2023). https://doi.org/10.1002/adma.202207638
S. Cao, H. Fu, P. Chen, H. Feng, Z. Zhang et al., Weldable graphene foams for wide-range thermal switches. Cell Rep. Phys. Sci. 6(5), 102599 (2025). https://doi.org/10.1016/j.xcrp.2025.102599
F. Zhang, Y. Feng, M. Qin, L. Gao, Z. Li et al., Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 29(25), 1901383 (2019). https://doi.org/10.1002/adfm.201901383
T. Du, Z. Xiong, L. Delgado, W. Liao, J. Peoples et al., Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams. Nat. Commun. 12, 4915 (2021). https://doi.org/10.1038/s41467-021-25083-8
C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
W. Yin, M. Qin, H. Yu, J. Sun, W. Feng, Hyperelastic graphene aerogels reinforced by in-suit welding polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing. Adv. Fiber Mater. 5(3), 1037–1049 (2023). https://doi.org/10.1007/s42765-023-00268-6