Achieving Ah-Level Zn–MnO2 Pouch Cells via Interfacial Solvation Structure Engineering
Corresponding Author: Zhongwei Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 124
Abstract
Aqueous zinc-ion batteries (AZIBs) offer a safe, cost-effective, and high-capacity energy storage solution, yet their performance is hindered by interfacial challenges at the Zn anode, including hydrogen evolution, corrosion, and dendritic Zn growth. While most studies focus on regulating Zn2+ solvation structures in bulk electrolytes, the evolution of interfacial solvation—where Zn2+ undergoes desolvation and deposition—remains insufficiently explored. Here, we introduce sulfated nanocellulose (SNC), an anion-rich biopolymer, to tailor the interfacial solvation structure without altering the bulk electrolyte composition. Using in situ attenuated total reflection Fourier transform infrared spectroscopy and fluorescence interface-extended X-ray absorption fine structure, we reveal that SNC facilitates the formation of a low-coordinated Zn2+ solvation shell at the interface by weakening H2O coordination. This transformation is driven by electrostatic interactions between Zn2+ and anchored sulfate groups, thereby reducing water activity, improving interfacial stability during charge/discharge, and suppressing parasitic reactions. Consequently, a high average coulombic efficiency of 99.6% over 500 cycles in Zn|Ti asymmetric cells and 1.5 Ah pouch cells (13.4 mg cm−2 loading, remained stable over 250 cycles) were achieved in SNC-induced AZIBs. This work underscores the importance of interfacial solvation structure engineering—beyond traditional bulk electrolyte design—in enabling practical, high-performance AZIBs.
Highlights:
1 This work introduces sulfated nanocellulose as an anion-rich additive to tailor the Zn anode interfacial solvation structure, reducing interfacial H2O activity and suppressing hydrogen evolution.
2 In-situ attenuated total reflection Fourier transform infrared and fluorescence interface-extended X-ray absorption fine structure reveal the formation of a low-coordination Zn2+ solvation shell at the interface, facilitating rapid desolvation kinetics, enhancing interfacial stability during cycling.
3 Practical aqueous Zn–MnO2 pouch cells (1.5 Ah), underscoring the potential of interfacial solvation engineering for high-performance aqueous zinc-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
- D. Kong, W. Lv, R. Liu, Y.-B. He, D. Wu et al., Superstructured carbon materials: design and energy applications. Energy Mater. Devices 1(2), 9370017 (2023). https://doi.org/10.26599/emd.2023.9370017
- W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
- T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
- J. Wei, Q. Ma, Y. Teng, T. Yang, K.H. Wong et al., Advanced cellulosic materials toward high-performance metal ion batteries. Adv. Energy Mater. 14(23), 2400208 (2024). https://doi.org/10.1002/aenm.202400208
- J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/D0EE02162H
- M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui et al., Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nano-Micro Lett. 14(1), 31 (2021). https://doi.org/10.1007/s40820-021-00777-2
- S.-J. Zhang, J. Hao, Y. Zhu, H. Li, Z. Lin et al., Ph-triggered molecular switch toward texture-regulated Zn anode. Angew. Chem. Int. Ed. 62(17), e202301570 (2023). https://doi.org/10.1002/anie.202301570
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- F. Li, W. Luo, H. Fu, W. Zhou, C. Gao et al., Construct a quasi-high-entropy interphase for advanced low-temperature aqueous zinc-ion battery. Adv. Funct. Mater. 35(10), 2416668 (2025). https://doi.org/10.1002/adfm.202416668
- J. Chen, M. Chen, H. Ma, W. Zhou, X. Xu, Advances and perspectives on separators of aqueous zinc ion batteries. Energy Rev. 1(1), 100005 (2022). https://doi.org/10.1016/j.enrev.2022.100005
- Y. Meng, L. Wang, J. Zeng, B. Hu, J. Kang et al., Ultrathin zinc-carbon composite anode enabled with unique three-dimensional interpenetrating structure for high-performance aqueous zinc ion batteries. Chem. Eng. J. 474, 145987 (2023). https://doi.org/10.1016/j.cej.2023.145987
- H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
- Y. Li, Z. Yu, J. Huang, Y. Wang, Y. Xia, Constructing solid electrolyte interphase for aqueous zinc batteries. Angew. Chem. 135(47), e202309957 (2023). https://doi.org/10.1002/ange.202309957
- L. Yang, Q. Ma, Y. Yin, D. Luo, Y. Shen et al., Construction of desolvated ionic COF artificial SEI layer stabilized Zn metal anode by in situ electrophoretic deposition. Nano Energy 117, 108799 (2023). https://doi.org/10.1016/j.nanoen.2023.108799
- J. Zhang, P. Li, Y. Wang, Z. Zhao, Z. Peng, Linking interfacial hydrogen-bond network to electrochemical performance of zinc anode in aqueous solution. Adv. Funct. Mater. 33(41), 2305804 (2023). https://doi.org/10.1002/adfm.202305804
- R. Zhang, Z. Liao, Y. Fan, L. Song, J. Li et al., Multifunctional hydroxyurea additive enhances high stability and reversibility of zinc anodes. J. Mater. Chem. A 13(8), 5987–5999 (2025). https://doi.org/10.1039/D4TA09186H
- K. Yan, Y. Fan, F. Hu, G. Li, X. Yang et al., A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries. Adv. Funct. Mater. 34(2), 2307740 (2024). https://doi.org/10.1002/adfm.202307740
- Q. Li, D. Luo, Q. Ma, Z. Zheng, S. Li et al., Designing a bridging solvation structure using recessive solvents for high energy density aqueous zinc-ion batteries with 88% depth of discharge zinc rechargeability. Energy Environ. Sci. 18(3), 1489–1501 (2025). https://doi.org/10.1039/D4EE04847D
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), 2207344 (2022). https://doi.org/10.1002/adma.202207344
- X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15, 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
- Z. Yan, W. Xin, Z. Zhu, Artificial interphase engineering to stabilize aqueous zinc metal anodes. Nanoscale 13(47), 19828–19839 (2021). https://doi.org/10.1039/d1nr06058a
- T. Su, W. Ren, M. Xu, P. Xu, J. Le et al., In situ construction of bionic self-recognition layer for high-performance zinc–iodine batteries. Adv. Energy Mater. 14(37), 2401737 (2024). https://doi.org/10.1002/aenm.202401737
- F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan et al., Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 34(45), 2206754 (2022). https://doi.org/10.1002/adma.202206754
- B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32(23), 2112693 (2022). https://doi.org/10.1002/adfm.202112693
- Z. Guo, F. Wang, X. Zhang, S. Chen, X. Wang et al., Construction of lithium sulfide layer on lithium metal by a facile strategy for improving the cyclic stability of lithium metal batteries. J. Solid State Electrochem. 28(10), 3615–3621 (2024). https://doi.org/10.1007/s10008-024-05949-9
- S. Lander, J. Erlandsson, M. Vagin, V. Gueskine, L. Korhonen et al., Sulfonated cellulose membranes: physicochemical properties and ionic transport versus degree of sulfonation. Adv. Sustain. Syst. 6(11), 2200275 (2022). https://doi.org/10.1002/adsu.202200275
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- C. Cárdenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo et al., Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J. Phys. Chem. A 113(30), 8660–8667 (2009). https://doi.org/10.1021/jp902792n
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- X.-X. Zeng, S. Zhang, T. Long, Q.-Y. Zhao, H.-R. Wang et al., An amphipathic ionic sieve membrane for durable and dendrite-free zinc-ion batteries. Renewables 2(1), 52–60 (2024). https://doi.org/10.31635/renewables.024.202300045
- D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen et al., Constructing multifunctional solid electrolyte interface via in situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12(1), 186 (2021). https://doi.org/10.1038/s41467-020-20339-1
- W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
- Y. Yin, X. Li, Review and perspectives on anodes in rechargeable aqueous zinc-based batteries. Renewables 1(6), 622–637 (2023). https://doi.org/10.31635/renewables.023.202300036
- J. Li, S. Zhou, Y. Chen, X. Meng, A. Azizi et al., Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes. Adv. Funct. Mater. 33(52), 2307201 (2023). https://doi.org/10.1002/adfm.202307201
- G.D. Wilcox, P.J. Mitchell, Electrolyte additives for zinc-anoded secondary cells i. Brighteners, levellers and complexants. J. Power. Sources 28(4), 345–359 (1989). https://doi.org/10.1016/0378-7753(89)80064-3
- V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
- Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn(2+) solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/D0EE03898A
- M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun et al., Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ. Sci. 15(5), 1872–1881 (2022). https://doi.org/10.1039/D2EE00209D
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- Z. Zheng, X. Zhong, Q. Zhang, M. Zhang, L. Dai et al., An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 15, 753 (2024). https://doi.org/10.1038/s41467-024-44893-0
- H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
- D. Xu, B. Li, C. Wei, Y.-B. He, H. Du et al., Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochim. Acta 133, 254–261 (2014). https://doi.org/10.1016/j.electacta.2014.04.001
- Q. Duan, Y. Zheng, Y. Zhou, S. Dong, C. Ku et al., Suppressing formation of Zn─Mn─O phases by in situ Ti decoration of MnO2 for long lifespan MnO2-Zn battery. Small 20(45), 2404368 (2024). https://doi.org/10.1002/smll.202404368
- C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen et al., Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 6(2), 675–683 (2021). https://doi.org/10.1021/acsenergylett.0c02569
- Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2020). https://doi.org/10.1002/aenm.202001050
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- R. Yao, L. Qian, Y. Sui, G. Zhao, R. Guo et al., A versatile cation additive enabled highly reversible zinc metal anode. Adv. Energy Mater. 12(2), 2102780 (2022). https://doi.org/10.1002/aenm.202102780
- M. Yang, J. Zhu, S. Bi, R. Wang, Z. Niu, A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes. Adv. Mater. 34(18), 2201744 (2022). https://doi.org/10.1002/adma.202201744
References
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
D. Kong, W. Lv, R. Liu, Y.-B. He, D. Wu et al., Superstructured carbon materials: design and energy applications. Energy Mater. Devices 1(2), 9370017 (2023). https://doi.org/10.26599/emd.2023.9370017
W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
J. Wei, Q. Ma, Y. Teng, T. Yang, K.H. Wong et al., Advanced cellulosic materials toward high-performance metal ion batteries. Adv. Energy Mater. 14(23), 2400208 (2024). https://doi.org/10.1002/aenm.202400208
J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/D0EE02162H
M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui et al., Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nano-Micro Lett. 14(1), 31 (2021). https://doi.org/10.1007/s40820-021-00777-2
S.-J. Zhang, J. Hao, Y. Zhu, H. Li, Z. Lin et al., Ph-triggered molecular switch toward texture-regulated Zn anode. Angew. Chem. Int. Ed. 62(17), e202301570 (2023). https://doi.org/10.1002/anie.202301570
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
F. Li, W. Luo, H. Fu, W. Zhou, C. Gao et al., Construct a quasi-high-entropy interphase for advanced low-temperature aqueous zinc-ion battery. Adv. Funct. Mater. 35(10), 2416668 (2025). https://doi.org/10.1002/adfm.202416668
J. Chen, M. Chen, H. Ma, W. Zhou, X. Xu, Advances and perspectives on separators of aqueous zinc ion batteries. Energy Rev. 1(1), 100005 (2022). https://doi.org/10.1016/j.enrev.2022.100005
Y. Meng, L. Wang, J. Zeng, B. Hu, J. Kang et al., Ultrathin zinc-carbon composite anode enabled with unique three-dimensional interpenetrating structure for high-performance aqueous zinc ion batteries. Chem. Eng. J. 474, 145987 (2023). https://doi.org/10.1016/j.cej.2023.145987
H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
Y. Li, Z. Yu, J. Huang, Y. Wang, Y. Xia, Constructing solid electrolyte interphase for aqueous zinc batteries. Angew. Chem. 135(47), e202309957 (2023). https://doi.org/10.1002/ange.202309957
L. Yang, Q. Ma, Y. Yin, D. Luo, Y. Shen et al., Construction of desolvated ionic COF artificial SEI layer stabilized Zn metal anode by in situ electrophoretic deposition. Nano Energy 117, 108799 (2023). https://doi.org/10.1016/j.nanoen.2023.108799
J. Zhang, P. Li, Y. Wang, Z. Zhao, Z. Peng, Linking interfacial hydrogen-bond network to electrochemical performance of zinc anode in aqueous solution. Adv. Funct. Mater. 33(41), 2305804 (2023). https://doi.org/10.1002/adfm.202305804
R. Zhang, Z. Liao, Y. Fan, L. Song, J. Li et al., Multifunctional hydroxyurea additive enhances high stability and reversibility of zinc anodes. J. Mater. Chem. A 13(8), 5987–5999 (2025). https://doi.org/10.1039/D4TA09186H
K. Yan, Y. Fan, F. Hu, G. Li, X. Yang et al., A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries. Adv. Funct. Mater. 34(2), 2307740 (2024). https://doi.org/10.1002/adfm.202307740
Q. Li, D. Luo, Q. Ma, Z. Zheng, S. Li et al., Designing a bridging solvation structure using recessive solvents for high energy density aqueous zinc-ion batteries with 88% depth of discharge zinc rechargeability. Energy Environ. Sci. 18(3), 1489–1501 (2025). https://doi.org/10.1039/D4EE04847D
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), 2207344 (2022). https://doi.org/10.1002/adma.202207344
X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15, 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
Z. Yan, W. Xin, Z. Zhu, Artificial interphase engineering to stabilize aqueous zinc metal anodes. Nanoscale 13(47), 19828–19839 (2021). https://doi.org/10.1039/d1nr06058a
T. Su, W. Ren, M. Xu, P. Xu, J. Le et al., In situ construction of bionic self-recognition layer for high-performance zinc–iodine batteries. Adv. Energy Mater. 14(37), 2401737 (2024). https://doi.org/10.1002/aenm.202401737
F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan et al., Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 34(45), 2206754 (2022). https://doi.org/10.1002/adma.202206754
B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32(23), 2112693 (2022). https://doi.org/10.1002/adfm.202112693
Z. Guo, F. Wang, X. Zhang, S. Chen, X. Wang et al., Construction of lithium sulfide layer on lithium metal by a facile strategy for improving the cyclic stability of lithium metal batteries. J. Solid State Electrochem. 28(10), 3615–3621 (2024). https://doi.org/10.1007/s10008-024-05949-9
S. Lander, J. Erlandsson, M. Vagin, V. Gueskine, L. Korhonen et al., Sulfonated cellulose membranes: physicochemical properties and ionic transport versus degree of sulfonation. Adv. Sustain. Syst. 6(11), 2200275 (2022). https://doi.org/10.1002/adsu.202200275
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
C. Cárdenas, N. Rabi, P.W. Ayers, C. Morell, P. Jaramillo et al., Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J. Phys. Chem. A 113(30), 8660–8667 (2009). https://doi.org/10.1021/jp902792n
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
X.-X. Zeng, S. Zhang, T. Long, Q.-Y. Zhao, H.-R. Wang et al., An amphipathic ionic sieve membrane for durable and dendrite-free zinc-ion batteries. Renewables 2(1), 52–60 (2024). https://doi.org/10.31635/renewables.024.202300045
D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen et al., Constructing multifunctional solid electrolyte interface via in situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12(1), 186 (2021). https://doi.org/10.1038/s41467-020-20339-1
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
Y. Yin, X. Li, Review and perspectives on anodes in rechargeable aqueous zinc-based batteries. Renewables 1(6), 622–637 (2023). https://doi.org/10.31635/renewables.023.202300036
J. Li, S. Zhou, Y. Chen, X. Meng, A. Azizi et al., Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes. Adv. Funct. Mater. 33(52), 2307201 (2023). https://doi.org/10.1002/adfm.202307201
G.D. Wilcox, P.J. Mitchell, Electrolyte additives for zinc-anoded secondary cells i. Brighteners, levellers and complexants. J. Power. Sources 28(4), 345–359 (1989). https://doi.org/10.1016/0378-7753(89)80064-3
V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn(2+) solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/D0EE03898A
M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun et al., Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ. Sci. 15(5), 1872–1881 (2022). https://doi.org/10.1039/D2EE00209D
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
Z. Zheng, X. Zhong, Q. Zhang, M. Zhang, L. Dai et al., An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 15, 753 (2024). https://doi.org/10.1038/s41467-024-44893-0
H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
D. Xu, B. Li, C. Wei, Y.-B. He, H. Du et al., Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochim. Acta 133, 254–261 (2014). https://doi.org/10.1016/j.electacta.2014.04.001
Q. Duan, Y. Zheng, Y. Zhou, S. Dong, C. Ku et al., Suppressing formation of Zn─Mn─O phases by in situ Ti decoration of MnO2 for long lifespan MnO2-Zn battery. Small 20(45), 2404368 (2024). https://doi.org/10.1002/smll.202404368
C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen et al., Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 6(2), 675–683 (2021). https://doi.org/10.1021/acsenergylett.0c02569
Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2020). https://doi.org/10.1002/aenm.202001050
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
R. Yao, L. Qian, Y. Sui, G. Zhao, R. Guo et al., A versatile cation additive enabled highly reversible zinc metal anode. Adv. Energy Mater. 12(2), 2102780 (2022). https://doi.org/10.1002/aenm.202102780
M. Yang, J. Zhu, S. Bi, R. Wang, Z. Niu, A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes. Adv. Mater. 34(18), 2201744 (2022). https://doi.org/10.1002/adma.202201744