A Rigid–Soft Graded Organic–Inorganic Interlayer for Durable and Corrosion-Resistant Zinc Anodes
Corresponding Author: Weiwei Lei
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 175
Abstract
Aqueous zinc (Zn)-ion batteries hold great promise as renewable energy storage system for carbon–neutral energy transition. However, Zn anodes suffer from poor Zn plating/stripping reversibility due to Zn dendrite growth and side reactions. Existing Zn interfacial modification strategies based on single-component or homogeneous structure are insufficient to address these issues comprehensively. Herein, we rationally designed an organic–inorganic hybrid interfacial layer with rigid-to-soft graded structure for dendrite-free and stable Zn anodes. A liquid plasma-assisted oxidation technology is developed to rapidly construct a porous ZnO inner framework in situ. This ZnO layer offers high interfacial energy, mechanical robustness, and an open structure that facilitates ion transport while firmly anchoring a subsequently coated soft polymer layer. The resulting architecture presents a structurally graded and functionally complementary interface, enabling effective dendrite suppression, continuous Zn ion transport, and enhanced corrosion resistance. As a result, a long cycling stability of more than 6000 h can be achieved at 1 mA cm−2 for 1 mAh cm–2 in symmetric cells. When used as anodes for zinc-iodine full battery, the hybrid interlayer can effectively prevent the Zn anodes from the corrosion by polyiodine, enabling stable cycling and negligible capacity decay (~ 0.02‰ per cycle) for over 10,000 cycles at 2.0 A g−1. This work demonstrates a promising interfacial design strategy and introduces a novel liquid plasma-assisted oxidation route for fabricating high-performance Zn anodes towards next-generation aqueous batteries.
Highlights:
1 A hybrid interfacial layer with a rigid-to-soft graded structure and functionally complementary composition.
2 A facile and scalable liquid plasma-assisted oxidation process for preparing the porous ZnO inner layer.
3 Good cycling stability of zinc anodes for more than 6,000 h at a current density of 1 mA cm−2 for 1 mAh cm−2 and ultra-low capacity decay (~0.02‰ per cycle) for over 10,000 cycles for zinc-iodine battery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- L. Ma, T.P. Pollard, M.A. Schroeder, C. Luo, Y. Zhang et al., Engineering a zinc anode interphasial chemistry for acidic, alkaline and non-aqueous electrolytes. Energy Environ. Sci. 17(7), 2468–2479 (2024). https://doi.org/10.1039/D4EE00062E
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- Y. Liang, M. Qiu, P. Sun, W. Mai, Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes. Adv. Funct. Mater. 33(51), 2304878 (2023). https://doi.org/10.1002/adfm.202304878
- Z. Yang, Z. Wang, J. Cao, S. Wang, W. Lei et al., Stabilizing zinc powder anodes via bifunctional MXene towards flexible zinc-ion batteries. J. Colloid Interface Sci. 680, 657–664 (2025). https://doi.org/10.1016/j.jcis.2024.10.145
- X. Wang, M. Yang, Z. Ren, L. Zhou, Z. Wang et al., Mussel-inspired, hydrophobic association-regulated hydrogel electrolytes with super-adhesive and self-healing properties for durable and flexible zinc-ion batteries. Energy Storage Mater. 70, 103523 (2024). https://doi.org/10.1016/j.ensm.2024.103523
- D. Chen, J. Fu, Y. Ming, W. Cai, Y. Wang et al., High-performance wide-temperature zinc-ion batteries with K+/C3N4 co-intercalated ammonium vanadate cathodes. Nano-Micro Lett. 18(1), 48 (2025). https://doi.org/10.1007/s40820-025-01892-0
- L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/D1EE02021H
- J. Cao, Z. Wang, Z. Yang, K. Tang, S. Wang et al., High-performance zinc anodes enabled by atmospheric plasma enhanced cellulose protective layer for zinc ion batteries. J. Power. Sources 627, 235699 (2025). https://doi.org/10.1016/j.jpowsour.2024.235699
- Z. Wang, P. Zhang, J. Zhang, K. Tang, J. Cao et al., Dendrite-free zinc deposition enabled by MXene/nylon scaffold and polydopamine solid-electrolyte interphase for flexible zinc-ion batteries. Energy Storage Mater. 67, 103298 (2024). https://doi.org/10.1016/j.ensm.2024.103298
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/D1EE00308A
- P. Sintipditsakul, C. Yang, Z. Dai, N. Kiatwisarnkij, K. Lolupiman et al., Construction of artificial interface layer in the fly ash suspension for durable Zn anode. ACS Appl. Energy Mater. 8(3), 1766–1775 (2025). https://doi.org/10.1021/acsaem.4c02966
- P. Woottapanit, C. Yang, S. Geng, K. Lolupiman, W. Limphirat et al., Electron donation effect of α-boron nanosheet enables highly stable zinc metal anode. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202507725
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
- Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
- S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Regulation of ionic distribution and desolvation activation energy enabled by in situ zinc phosphate protective layer toward highly reversible zinc metal anodes. Adv. Funct. Mater. 33(22), 2208230 (2023). https://doi.org/10.1002/adfm.202208230
- X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
- Q. Ren, X. Tang, K. He, C. Zhang, W. Wang et al., Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer. Adv. Funct. Mater. 34(13), 2312220 (2024). https://doi.org/10.1002/adfm.202312220
- C. Zhou, L. Shan, Q. Nan, J. Zhang, Z. Fan et al., Construction of robust organic–inorganic interface layer for dendrite-free and durable zinc metal anode. Adv. Funct. Mater. 34(19), 2312696 (2024). https://doi.org/10.1002/adfm.202312696
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- Z. Dai, X. Zhang, C. Yang, K. Lolupiman, N. Kiatwisarnkij et al., Enhancing zinc anode stability via self-assembled organic/inorganic hybrid electrolyte interfaces. Adv. Energy Mater. 15(38), e03193 (2025). https://doi.org/10.1002/aenm.202503193
- Y. Zhou, S. Xie, Y. Li, Z. Zheng, L. Dong, Sieve-like interface built by ZnO porous sheets towards stable zinc anodes. J. Colloid Interface Sci. 630, 676–684 (2023). https://doi.org/10.1016/j.jcis.2022.10.141
- Z. Zheng, D. Ren, Y. Li, F. Kang, X. Li et al., Self-assembled robust interfacial layer for dendrite-free and flexible zinc-based energy storage. Adv. Funct. Mater. 34(17), 2312855 (2024). https://doi.org/10.1002/adfm.202312855
- C. Yang, P. Woottapanit, S. Geng, K. Lolupiman, X. Zhang et al., Highly reversible Zn anode design through oriented ZnO(002) facets. Adv. Mater. 36(49), 2408908 (2024). https://doi.org/10.1002/adma.202408908
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- C. Blawert, S.A. Karpushenkov, M. Serdechnova, L.S. Karpushenkava, M.L. Zheludkevich, Plasma electrolytic oxidation of zinc alloy in a phosphate-aluminate electrolyte. Appl. Surf. Sci. 505, 144552 (2020). https://doi.org/10.1016/j.apsusc.2019.144552
- C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8(2), 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
- K. Engelkemeier, A. Sun, D. Voswinkel, O. Grydin, M. Schaper et al., Zinc anodizing: structural diversity of anodic zinc oxide controlled by the type of electrolyte. ChemElectroChem 8(12), 2155–2168 (2021). https://doi.org/10.1002/celc.202100216
- H.F. McMurdie, M.C. Morris, E.H. Evans, B. Paretzkin, W. Wong-Ng et al., Standard X-ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. 1(2), 64–77 (1986). https://doi.org/10.1017/s0885715600011593
- L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
- D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- G.S. Huang, X.L. Wu, Y.C. Cheng, J.C. Shen, A.P. Huang et al., Fabrication and characterization of anodic ZnO nanops. Appl. Phys. A 86(4), 463–467 (2007). https://doi.org/10.1007/s00339-006-3778-7
- E. Rocca, D. Veys-Renaux, K. Guessoum, Electrochemical behavior of zinc in KOH media at high voltage: micro-arc oxidation of zinc. J. Electroanal. Chem. 754, 125–132 (2015). https://doi.org/10.1016/j.jelechem.2015.06.021
- S.-C. Kim, Y.-K. Park, S.-C. Jung, Recent applications of the liquid phase plasma process. Korean J. Chem. Eng. 38(5), 885–898 (2021). https://doi.org/10.1007/s11814-020-0739-3
- C.Y. Kuan, J.M. Chou, I.C. Leu, M.H. Hon, Formation and field emission property of single-crystalline Zn microtip arrays by anodization. Electrochem. Commun. 9(8), 2093–2097 (2007). https://doi.org/10.1016/j.elecom.2007.06.004
- Z. Wang, S. Qin, F. Chen, S. Chen, D. Liu et al., Interfacial modification of lithium metal anode by boron nitride nanosheets. ACS Nano 18(4), 3531–3541 (2024). https://doi.org/10.1021/acsnano.3c11135
- S. Zhao, Y. Zhang, J. Li, L. Qi, Y. Tang et al., A heteroanionic zinc ion conductor for dendrite-free Zn metal anodes. Adv. Mater. 35(18), e2300195 (2023). https://doi.org/10.1002/adma.202300195
- Y. Li, X. Li, X. Peng, X. Yang, F. Kang et al., Electrolyte additive-assembled interconnecting molecules-zinc anode interface for zinc-ion hybrid supercapacitors. Nano-Micro Lett. 17(1), 268 (2025). https://doi.org/10.1007/s40820-025-01794-1
- G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
- A.R. Pati, S.K. Mohanty, S.C. Reddy, C. Lakshman, S.-H. Jin et al., Dual-anion Zn2+ electrolytes having sulfate and triflate for highly reversible and stable operation of zinc metal anode. Batter. Supercaps (2025). https://doi.org/10.1002/batt.202500371
- L. Zhang, H. Guo, W. Zong, Y. Huang, J. Huang et al., Metal–iodine batteries: achievements, challenges, and future. Energy Environ. Sci. 16(11), 4872–4925 (2023). https://doi.org/10.1039/d3ee01677c
- W. Liu, H. Ma, L. Zhao, W. Qian, B. Liu et al., Anionically-reinforced nanocellulose separator enables dual suppression of zinc dendrites and polyiodide shuttle for long-cycle Zn-I2 batteries. Nano-Micro Lett. 18(1), 59 (2025). https://doi.org/10.1007/s40820-025-01921-y
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- L. Hong, X. Wu, L.-Y. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
- J.-L. Yang, H.-H. Liu, X.-X. Zhao, X.-Y. Zhang, K.-Y. Zhang et al., Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn–I2 batteries. J. Am. Chem. Soc. 146(10), 6628–6637 (2024). https://doi.org/10.1021/jacs.3c12638
References
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
L. Ma, T.P. Pollard, M.A. Schroeder, C. Luo, Y. Zhang et al., Engineering a zinc anode interphasial chemistry for acidic, alkaline and non-aqueous electrolytes. Energy Environ. Sci. 17(7), 2468–2479 (2024). https://doi.org/10.1039/D4EE00062E
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
Y. Liang, M. Qiu, P. Sun, W. Mai, Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes. Adv. Funct. Mater. 33(51), 2304878 (2023). https://doi.org/10.1002/adfm.202304878
Z. Yang, Z. Wang, J. Cao, S. Wang, W. Lei et al., Stabilizing zinc powder anodes via bifunctional MXene towards flexible zinc-ion batteries. J. Colloid Interface Sci. 680, 657–664 (2025). https://doi.org/10.1016/j.jcis.2024.10.145
X. Wang, M. Yang, Z. Ren, L. Zhou, Z. Wang et al., Mussel-inspired, hydrophobic association-regulated hydrogel electrolytes with super-adhesive and self-healing properties for durable and flexible zinc-ion batteries. Energy Storage Mater. 70, 103523 (2024). https://doi.org/10.1016/j.ensm.2024.103523
D. Chen, J. Fu, Y. Ming, W. Cai, Y. Wang et al., High-performance wide-temperature zinc-ion batteries with K+/C3N4 co-intercalated ammonium vanadate cathodes. Nano-Micro Lett. 18(1), 48 (2025). https://doi.org/10.1007/s40820-025-01892-0
L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/D1EE02021H
J. Cao, Z. Wang, Z. Yang, K. Tang, S. Wang et al., High-performance zinc anodes enabled by atmospheric plasma enhanced cellulose protective layer for zinc ion batteries. J. Power. Sources 627, 235699 (2025). https://doi.org/10.1016/j.jpowsour.2024.235699
Z. Wang, P. Zhang, J. Zhang, K. Tang, J. Cao et al., Dendrite-free zinc deposition enabled by MXene/nylon scaffold and polydopamine solid-electrolyte interphase for flexible zinc-ion batteries. Energy Storage Mater. 67, 103298 (2024). https://doi.org/10.1016/j.ensm.2024.103298
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/D1EE00308A
P. Sintipditsakul, C. Yang, Z. Dai, N. Kiatwisarnkij, K. Lolupiman et al., Construction of artificial interface layer in the fly ash suspension for durable Zn anode. ACS Appl. Energy Mater. 8(3), 1766–1775 (2025). https://doi.org/10.1021/acsaem.4c02966
P. Woottapanit, C. Yang, S. Geng, K. Lolupiman, W. Limphirat et al., Electron donation effect of α-boron nanosheet enables highly stable zinc metal anode. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202507725
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Regulation of ionic distribution and desolvation activation energy enabled by in situ zinc phosphate protective layer toward highly reversible zinc metal anodes. Adv. Funct. Mater. 33(22), 2208230 (2023). https://doi.org/10.1002/adfm.202208230
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
Q. Ren, X. Tang, K. He, C. Zhang, W. Wang et al., Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer. Adv. Funct. Mater. 34(13), 2312220 (2024). https://doi.org/10.1002/adfm.202312220
C. Zhou, L. Shan, Q. Nan, J. Zhang, Z. Fan et al., Construction of robust organic–inorganic interface layer for dendrite-free and durable zinc metal anode. Adv. Funct. Mater. 34(19), 2312696 (2024). https://doi.org/10.1002/adfm.202312696
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
Z. Dai, X. Zhang, C. Yang, K. Lolupiman, N. Kiatwisarnkij et al., Enhancing zinc anode stability via self-assembled organic/inorganic hybrid electrolyte interfaces. Adv. Energy Mater. 15(38), e03193 (2025). https://doi.org/10.1002/aenm.202503193
Y. Zhou, S. Xie, Y. Li, Z. Zheng, L. Dong, Sieve-like interface built by ZnO porous sheets towards stable zinc anodes. J. Colloid Interface Sci. 630, 676–684 (2023). https://doi.org/10.1016/j.jcis.2022.10.141
Z. Zheng, D. Ren, Y. Li, F. Kang, X. Li et al., Self-assembled robust interfacial layer for dendrite-free and flexible zinc-based energy storage. Adv. Funct. Mater. 34(17), 2312855 (2024). https://doi.org/10.1002/adfm.202312855
C. Yang, P. Woottapanit, S. Geng, K. Lolupiman, X. Zhang et al., Highly reversible Zn anode design through oriented ZnO(002) facets. Adv. Mater. 36(49), 2408908 (2024). https://doi.org/10.1002/adma.202408908
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
C. Blawert, S.A. Karpushenkov, M. Serdechnova, L.S. Karpushenkava, M.L. Zheludkevich, Plasma electrolytic oxidation of zinc alloy in a phosphate-aluminate electrolyte. Appl. Surf. Sci. 505, 144552 (2020). https://doi.org/10.1016/j.apsusc.2019.144552
C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8(2), 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
K. Engelkemeier, A. Sun, D. Voswinkel, O. Grydin, M. Schaper et al., Zinc anodizing: structural diversity of anodic zinc oxide controlled by the type of electrolyte. ChemElectroChem 8(12), 2155–2168 (2021). https://doi.org/10.1002/celc.202100216
H.F. McMurdie, M.C. Morris, E.H. Evans, B. Paretzkin, W. Wong-Ng et al., Standard X-ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. 1(2), 64–77 (1986). https://doi.org/10.1017/s0885715600011593
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
G.S. Huang, X.L. Wu, Y.C. Cheng, J.C. Shen, A.P. Huang et al., Fabrication and characterization of anodic ZnO nanops. Appl. Phys. A 86(4), 463–467 (2007). https://doi.org/10.1007/s00339-006-3778-7
E. Rocca, D. Veys-Renaux, K. Guessoum, Electrochemical behavior of zinc in KOH media at high voltage: micro-arc oxidation of zinc. J. Electroanal. Chem. 754, 125–132 (2015). https://doi.org/10.1016/j.jelechem.2015.06.021
S.-C. Kim, Y.-K. Park, S.-C. Jung, Recent applications of the liquid phase plasma process. Korean J. Chem. Eng. 38(5), 885–898 (2021). https://doi.org/10.1007/s11814-020-0739-3
C.Y. Kuan, J.M. Chou, I.C. Leu, M.H. Hon, Formation and field emission property of single-crystalline Zn microtip arrays by anodization. Electrochem. Commun. 9(8), 2093–2097 (2007). https://doi.org/10.1016/j.elecom.2007.06.004
Z. Wang, S. Qin, F. Chen, S. Chen, D. Liu et al., Interfacial modification of lithium metal anode by boron nitride nanosheets. ACS Nano 18(4), 3531–3541 (2024). https://doi.org/10.1021/acsnano.3c11135
S. Zhao, Y. Zhang, J. Li, L. Qi, Y. Tang et al., A heteroanionic zinc ion conductor for dendrite-free Zn metal anodes. Adv. Mater. 35(18), e2300195 (2023). https://doi.org/10.1002/adma.202300195
Y. Li, X. Li, X. Peng, X. Yang, F. Kang et al., Electrolyte additive-assembled interconnecting molecules-zinc anode interface for zinc-ion hybrid supercapacitors. Nano-Micro Lett. 17(1), 268 (2025). https://doi.org/10.1007/s40820-025-01794-1
G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
A.R. Pati, S.K. Mohanty, S.C. Reddy, C. Lakshman, S.-H. Jin et al., Dual-anion Zn2+ electrolytes having sulfate and triflate for highly reversible and stable operation of zinc metal anode. Batter. Supercaps (2025). https://doi.org/10.1002/batt.202500371
L. Zhang, H. Guo, W. Zong, Y. Huang, J. Huang et al., Metal–iodine batteries: achievements, challenges, and future. Energy Environ. Sci. 16(11), 4872–4925 (2023). https://doi.org/10.1039/d3ee01677c
W. Liu, H. Ma, L. Zhao, W. Qian, B. Liu et al., Anionically-reinforced nanocellulose separator enables dual suppression of zinc dendrites and polyiodide shuttle for long-cycle Zn-I2 batteries. Nano-Micro Lett. 18(1), 59 (2025). https://doi.org/10.1007/s40820-025-01921-y
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
L. Hong, X. Wu, L.-Y. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
J.-L. Yang, H.-H. Liu, X.-X. Zhao, X.-Y. Zhang, K.-Y. Zhang et al., Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn–I2 batteries. J. Am. Chem. Soc. 146(10), 6628–6637 (2024). https://doi.org/10.1021/jacs.3c12638