Enhancing Ultraviolet Stability and Operational Durability of Perovskite Photodetectors by Incorporating Chlorine into Thermally-Switchable Tautomeric Passivators
Corresponding Author: Chong Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 178
Abstract
UV-absorbing additives have recently been demonstrated to be effective interfacial modifiers that simultaneously enhance the UV stability and crystallization of halide perovskite. However, the underlying mechanisms concerning UV absorption, defect passivation, and efficacy optimization of these additives remain unresolved. Herein, two UV tautomeric absorbers (UV320 and UV327) are selected as defect-passivators for perovskites. The keto–enol tautomeric evolution processes and corresponding defect passivation performance/mechanism of both the original molecules and their tautomers are thoroughly compared and elucidated through experimental characterizations and density functional theory calculations. The additional carbonyl (–C=O) groups generated through the keto–enol tautomeric process triggered by the Cl atom in UV327 ultimately provide superior chemical coordination and enhanced defect-passivation capability compared to the original counterparts. Moreover, the versatility of K-UV327 is further demonstrated by its optimization of SnO2 film quality, interfacial energy band alignment, charge extraction efficiency, and defect state suppression. The photodetector optimized by UV327’s tautomer achieves an ultralow dark current density of 3.22 × 10−10 A cm−2, an enhanced linear dynamic range of 94.14 dB, and a fast response time of 23.35/26.19 μs. Notably, unencapsulated devices maintain a stable response at 3900 Hz following 300 h exposure to 40% ± 5% relative humidity and 30 h UV irradiation.
Highlights:
1 The tautomeric UV absorbers (UV320/UV327) in perovskites reveal keto–enol tautomerism, generating extra –C=O groups to enhance defect passivation.
2 The Cl atom in UV327 drives tautomerism, providing superior –C=O coordination, which optimizes SnO2 energy bands/charge extraction, resulting in a dark current of 3.22 × 10−10 A cm−2 and a response time of 23.35/26.19 μs.
3 Unencapsulated devices maintained 3900 Hz response after 300 h humidity (40 ± 5% RH) and 30 h UV stress, with 94.14 dB linear dynamic range.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Liu, J. Duan, C. Zhang, J. Zhang, Y. Bi et al., SN2−reaction− bonding-heterointerface strengthens buried adhesion and orientation for advanced perovskite solar cells. Angew. Chem. Int. Ed. 64(15), e202424046 (2025). https://doi.org/10.1002/anie.202424046
- J. Ma, M. Qin, P. Li, L. Han, Y. Zhang et al., Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX3 perovskite films. Energy Environ. Sci. 15(2), 413–438 (2022). https://doi.org/10.1039/D1EE03192A
- J. Huang, H. Wang, C. Jia, Y. Tang, H. Yang et al., Advances in crystallization regulation and defect suppression strategies for all-inorganic CsPbX3 perovskite solar sells. Prog. Mater. Sci. 141, 101223 (2024). https://doi.org/10.1016/j.pmatsci.2023.101223
- Y. Che, Z. Liu, Y. Duan, J. Wang, S. Yang et al., Hydrazide derivatives for defect passivation in pure CsPbI3 perovskite solar cells. Angew. Chem. Int. Ed. 61(33), e202205012 (2022). https://doi.org/10.1002/anie.202205012
- W. Chai, W. Zhu, H. Xi, D. Chen, H. Dong et al., Buried interface regulation with TbCl(3) for highly-efficient all-inorganic perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 244 (2025). https://doi.org/10.1007/s40820-025-01763-8
- J. Shi, B. Cohen-Kleinstein, X. Zhang, C. Zhao, Y. Zhang et al., In situ iodide passivation toward efficient CsPbI(3) perovskite quantum dot solar cells. Nano-Micro Lett. 15(1), 163 (2023). https://doi.org/10.1007/s40820-023-01134-1
- L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
- C. Peng, H. Yao, O. Ali, W. Chen, Y. Yang et al., Weakly space-confined all-inorganic perovskites for light-emitting diodes. Nature 643(8070), 96–103 (2025). https://doi.org/10.1038/s41586-025-09137-1
- Z. Liu, G. Wang, L. Kong, J. Wang, Y. Wang et al., Simultaneous regulation of crystallization and suppression of oxidation in CsSnI3 perovskite enables efficient and stable near-infrared light-emitting diodes. Nano Lett. 25(17), 7061–7068 (2025). https://doi.org/10.1021/acs.nanolett.5c00965
- S. Chi, Y. Chen, X. Li, J. Wang, Z. Zhao et al., Functional molecule surface infiltration treatment for efficient all-inorganic perovskite light-emitting diodes. Chem. Eng. J. 514, 162787 (2025). https://doi.org/10.1016/j.cej.2025.162787
- Y. Wang, G. Liu, F. Lin, J. Lv, S. Ye et al., Functional analysis and instructive selection of a green additive achieve dual-interface modification for fabricating self-powered, high-performance perovskite photodetectors. ACS Photonics 12(1), 128–139 (2025). https://doi.org/10.1021/acsphotonics.4c01281
- Y. Wang, S. Ye, Z. Sun, J. Zhu, Y. Liu et al., Multifunctional regioisomeric passivation strategy for fabricating self-driving, high detectivity all-inorganic perovskite photodetectors. ACS Appl. Mater. Interfaces 15(50), 59005–59015 (2023). https://doi.org/10.1021/acsami.3c12714
- Z. Zhang, W. Zhang, Q. Jiang, Z. Wei, M. Deng et al., Toward high-performance electron/hole-transporting-layer-free, self-powered CsPbIBr2 photodetectors via interfacial engineering. ACS Appl. Mater. Interfaces 12(5), 6607–6614 (2020). https://doi.org/10.1021/acsami.9b19075
- J. Du, J. Duan, X. Yang, Q. Zhou, Y. Duan et al., Reducing defect of inorganic perovskite film by sulphur-containing Lewis base for robust photodetectors. J. Energy Chem. 61, 163–169 (2021). https://doi.org/10.1016/j.jechem.2021.02.004
- Y. Zhao, S. Jiao, S. Liu, Y. Jin, S. Yang et al., Surface passivation of CsPbBr3 films by interface engineering in efficient and stable self-powered perovskite photodetector. J. Alloys Compd. 965, 171434 (2023). https://doi.org/10.1016/j.jallcom.2023.171434
- Y. Zhao, S. Jiao, S. Yang, D. Wang, S. Gao et al., Achieving low cost and high performance flexible CsPbIBr2 perovskite photodetectors arrays with imaging system via dual interfacial optimization and structural design. Adv. Opt. Mater. 12(17), 2400019 (2024). https://doi.org/10.1002/adom.202400019
- G. Luo, Y. Wang, M. Mao, B. Cen, T. Wang et al., Surface engineering and Nb2CTx-modulated CsPbCl3 perovskite for self-powered UV photodetectors with ultrahigh responsivity. Adv. Opt. Mater. 13(3), 2402183 (2025). https://doi.org/10.1002/adom.202402183
- H. Zhou, R. Wang, X. Zhang, B.-A. Xiao, Z. Shuang et al., Ionic liquid enables high-performance, self-powered CsPbBr3 perovskite nanonet photodetector. Chem. Commun. 59(55), 8544–8547 (2023). https://doi.org/10.1039/d3cc02094k
- Y. Zhao, S. Jiao, S. Liu, Y. Jin, S. Yang et al., Effective passivation via additive engineering based on CsPbBr3 films photodetectors and image sensor application. Appl. Surf. Sci. 637, 157928 (2023). https://doi.org/10.1016/j.apsusc.2023.157928
- Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li et al., Low-temperature fabrication of stable black-phase CsPbI3 perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett. 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
- C. Wang, Y. Wang, X. Su, V.G. Hadjiev, S. Dai et al., Extrinsic green photoluminescence from the edges of 2D cesium lead halides. Adv. Mater. 31(33), 1902492 (2019). https://doi.org/10.1002/adma.201902492
- T. Chen, X. Li, Y. Wang, F. Lin, R. Liu et al., Centimeter-sized Cs3Cu2I5 single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high-quality X-ray imaging. J. Energy Chem. 79, 382–389 (2023). https://doi.org/10.1016/j.jechem.2022.12.016
- F. Cao, E. Hong, Z. Li, S. Han, X. Fang, Real-time UVC imaging and high safety communication based on dual-detectable lead-free perovskite heterostructure. Adv. Funct. Mater. 35(24), 2422161 (2025). https://doi.org/10.1002/adfm.202422161
- Y. Yang, S. Wan, H. Wei, L. Yang, Z. Dai et al., Sustainable protection of natural liquid enables ultra-stable inverted perovskite solar cells via allylic disulfide rearrangement. Energy Environ. Sci. 18(10), 4962–4970 (2025). https://doi.org/10.1039/D5EE00458F
- J. Wu, J. Lan, R. Wang, C. Cheng, W. Wang et al., Low-temperature encapsulation with silicone grease enhances efficiency and stability of perovskite solar cells via Pb0 defect passivation. Adv. Funct. Mater. 35(40), 2425979 (2025). https://doi.org/10.1002/adfm.202425979
- J. Liu, B. Shi, Q. Xu, Y. Li, Y. Li et al., Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nano-Micro Lett. 16(1), 189 (2024). https://doi.org/10.1007/s40820-024-01406-4
- S. Ullah, F. Khan, J.F. Rasheed, Prospects for commercialization of CsPbIBr2-based all-inorganic perovskite solar cells: fabrication, stability, and engineering strategies. Adv. Funct. Mater. 35(36), 2503508 (2025). https://doi.org/10.1002/adfm.202503508
- H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
- Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
- M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
- C. Zheng, Y. He, Y. Li, A. Gao, Z. Liu et al., Oxidation stability of perovskite solar cells reinforced by punicalagin to resist UV damage. Adv. Funct. Mater. 35(40), 2502232 (2025). https://doi.org/10.1002/adfm.202502232
- J. You, H. Zhu, J. Ye, C. Xu, G. Xu et al., Optimizing UV resistance and defect passivation in perovskite solar cells with tailored tin oxide. Small 21(16), 2500695 (2025). https://doi.org/10.1002/smll.202500695
- C. Fei, A. Kuvayskaya, X. Shi, M. Wang, Z. Shi et al., Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384(6700), 1126–1134 (2024). https://doi.org/10.1126/science.adi4531
- J. Li, W. Qi, Y. Li, S. Jiao, H. Ling et al., UV light absorbers executing synergistic effects of passivating defects and improving photostability for efficient perovskite photovoltaics. J. Energy Chem. 67, 138–146 (2022). https://doi.org/10.1016/j.jechem.2021.09.027
- C. Zhao, Y. Li, X. Yang, L. Fan, M. Wei et al., Building a UV filter and interfacial bridge with a multifunctional molecule for enhancing the performance and stability of MAPbI3 solar cells. J. Mater. Chem. C 11(41), 14167–14176 (2023). https://doi.org/10.1039/D3TC02440G
- Y. Dai, X. Ge, B. Shi, P. Wang, Y. Zhao et al., Enhancing ultraviolet stability and performance of wide bandgap perovskite solar cells through ultraviolet light-absorbing passivator. Small Methods 9(1), 2301793 (2025). https://doi.org/10.1002/smtd.202301793
- L. Liu, C. Zheng, Z. Xu, Y. Li, Y. Cao et al., Manipulating electron density distribution of nicotinamide derivatives toward defect passivation in perovskite solar cells. Adv. Energy Mater. 13(30), 2300610 (2023). https://doi.org/10.1002/aenm.202300610
- J. Wang, L. Zheng, H.-B. Kim, H. He, S. Wang et al., Dipolar carbazole ammonium for broadened electric field distribution in high-performance perovskite solar cells. J. Am. Chem. Soc. 147(10), 8663–8671 (2025). https://doi.org/10.1021/jacs.4c18074
- G. Yang, X. Liu, L. Wang, K. Dong, B. Zhang et al., Tailored supramolecular interactions in host–guest complexation for efficient and stable perovskite solar cells and modules. Angew. Chem. Int. Ed. 63(40), e202410454 (2024). https://doi.org/10.1002/anie.202410454
- Y. Peng, Y. Chen, J. Zhou, C. Luo, W. Tang et al., Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells. Nat. Commun. 16(1), 1252 (2025). https://doi.org/10.1038/s41467-024-55653-5
- J. Wu, M.-H. Li, J.-T. Fan, Z. Li, X.-H. Fan et al., Regioselective multisite atomic-chlorine passivation enables efficient and stable perovskite solar cells. J. Am. Chem. Soc. 145(10), 5872–5879 (2023). https://doi.org/10.1021/jacs.2c13307
- L. Xie, S. Du, J. Li, C. Liu, Z. Pu et al., Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci. 16(11), 5423–5433 (2023). https://doi.org/10.1039/D3EE02569A
- Y. Zhang, T. Kong, Y. Liu, X. Liu, W. Liu et al., The effect of self-assembled bridging layer on the performance of pure FAPbI3-based perovskite solar cells. Adv. Funct. Mater. 34(30), 2401391 (2024). https://doi.org/10.1002/adfm.202401391
- Y. Xie, W. Liang, P. Li, Z. Miao, F. Yuan et al., Unraveling the impact of a cyclized phenylethylamine-derived spacer cation on the structural, electrical, and photovoltaic performance of quasi-2D ruddlesden-popper perovskites. Small 21(23), 2501863 (2025). https://doi.org/10.1002/smll.202501863
- G. Gao, Q. Zhang, K. Deng, L. Li, Residual stress mitigation in perovskite solar cells via butterfly-inspired hierarchical PbI2 scaffold. ACS Nano 18(23), 15003–15012 (2024). https://doi.org/10.1021/acsnano.4c01281
- J. Su, T. Hu, X. Chen, X. Zhang, N. Fang et al., Multi-functional interface passivation via guanidinium iodide enables efficient perovskite solar cells. Adv. Funct. Mater. 34(45), 2406324 (2024). https://doi.org/10.1002/adfm.202406324
- Z. Huang, Z. Du, Z. Ma, Y. Zheng, Q. Zhang et al., Lead iodide secondary growth and π-π stack regulation for sequential perovskite solar cells with 23.62% efficiency. Chem. Eng. J. 499, 156684 (2024). https://doi.org/10.1016/j.cej.2024.156684
- Q. Liu, Z. Wang, Z. Wang, X. Cao, K. Liu et al., Heterogeneous nucleation-induced upward crystallization for perovskite solar cells. ACS Energy Lett. 10(6), 2972–2977 (2025). https://doi.org/10.1021/acsenergylett.5c00758
- Z. He, M. Li, H. Jia, R. Yu, Y. Zhang et al., Managing interfacial charged defects with multiple active sited macrocyclic valinomycin for efficient and stable inverted perovskite solar cells. Adv. Mater. 35(51), 2304918 (2023). https://doi.org/10.1002/adma.202304918
- J. Shen, X. Ge, Q. Ge, N. Li, Y. Wang et al., Improvement of photovoltaic performance of perovskite solar cells by synergistic modulation of SnO2 and perovskite via interfacial modification. ACS Appl. Mater. Interfaces 16(19), 24748–24759 (2024). https://doi.org/10.1021/acsami.4c03595
- M. Lyu, S. Shan, J. Ma, W. Xing, Y. Zhang et al., Glutamine bridge-connecting at SnO2/Perovskite interface for energy levels alignment and carrier transfer enhancement in perovskite solar cells. Appl. Surf. Sci. 703, 163420 (2025). https://doi.org/10.1016/j.apsusc.2025.163420
- H. Zhou, L. Yang, Y. Duan, M. Wu, Y. Li et al., 24.96%-efficiency FACsPbI3 perovskite solar cells enabled by an asymmetric 1, 3-thiazole-2, 4-diammonium. Adv. Energy Mater. 13(15), 2204372 (2023). https://doi.org/10.1002/aenm.202204372
- H. Kim, C.A. Figueroa Morales, S. Seong, Z. Hu, N. Muyanja et al., Molecular design of defect passivators for thermally stable metal-halide perovskite films. Matter 7(2), 539–549 (2024). https://doi.org/10.1016/j.matt.2023.12.003
- Y. Zhang, B. Yu, Y. Sun, J. Zhang, Z. Su et al., An MBene modulating the buried SnO2/perovskite interface in perovskite solar cells. Angew. Chem. Int. Ed. 63(27), e202404385 (2024). https://doi.org/10.1002/anie.202404385
- J. Zeng, Z. Liu, D. Wang, J. Wu, P. Zhu et al., Small-molecule hole transport materials for >26% efficient inverted perovskite solar cells. J. Am. Chem. Soc. 147(1), 725–733 (2025). https://doi.org/10.1021/jacs.4c13356
- L. Wang, H. Bi, J. Liu, Y. Wei, Z. Zhang et al., Exceeding 15% performance with energy level tuning in tin-based perovskite solar cells. ACS Energy Lett. 9(12), 6238–6244 (2024). https://doi.org/10.1021/acsenergylett.4c03172
- S. Jiang, Z. Hou, X. Zheng, Q. Wu, X. Yang et al., Ultrafast self-powered CsPbCl3 ultraviolet photodetectors with choline chloride for surface passivation and charge transport regulation. J. Mater. Chem. C 11(17), 5667–5679 (2023). https://doi.org/10.1039/D3TC00063J
- S. Wang, M. Li, C. Song, C. Zheng, J. Li et al., Phenethylammonium iodide modulated SnO2 electron selective layer for high performance, self-powered metal halide perovskite photodetector. Appl. Surf. Sci. 623, 156983 (2023). https://doi.org/10.1016/j.apsusc.2023.156983
References
N. Liu, J. Duan, C. Zhang, J. Zhang, Y. Bi et al., SN2−reaction− bonding-heterointerface strengthens buried adhesion and orientation for advanced perovskite solar cells. Angew. Chem. Int. Ed. 64(15), e202424046 (2025). https://doi.org/10.1002/anie.202424046
J. Ma, M. Qin, P. Li, L. Han, Y. Zhang et al., Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX3 perovskite films. Energy Environ. Sci. 15(2), 413–438 (2022). https://doi.org/10.1039/D1EE03192A
J. Huang, H. Wang, C. Jia, Y. Tang, H. Yang et al., Advances in crystallization regulation and defect suppression strategies for all-inorganic CsPbX3 perovskite solar sells. Prog. Mater. Sci. 141, 101223 (2024). https://doi.org/10.1016/j.pmatsci.2023.101223
Y. Che, Z. Liu, Y. Duan, J. Wang, S. Yang et al., Hydrazide derivatives for defect passivation in pure CsPbI3 perovskite solar cells. Angew. Chem. Int. Ed. 61(33), e202205012 (2022). https://doi.org/10.1002/anie.202205012
W. Chai, W. Zhu, H. Xi, D. Chen, H. Dong et al., Buried interface regulation with TbCl(3) for highly-efficient all-inorganic perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 244 (2025). https://doi.org/10.1007/s40820-025-01763-8
J. Shi, B. Cohen-Kleinstein, X. Zhang, C. Zhao, Y. Zhang et al., In situ iodide passivation toward efficient CsPbI(3) perovskite quantum dot solar cells. Nano-Micro Lett. 15(1), 163 (2023). https://doi.org/10.1007/s40820-023-01134-1
L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
C. Peng, H. Yao, O. Ali, W. Chen, Y. Yang et al., Weakly space-confined all-inorganic perovskites for light-emitting diodes. Nature 643(8070), 96–103 (2025). https://doi.org/10.1038/s41586-025-09137-1
Z. Liu, G. Wang, L. Kong, J. Wang, Y. Wang et al., Simultaneous regulation of crystallization and suppression of oxidation in CsSnI3 perovskite enables efficient and stable near-infrared light-emitting diodes. Nano Lett. 25(17), 7061–7068 (2025). https://doi.org/10.1021/acs.nanolett.5c00965
S. Chi, Y. Chen, X. Li, J. Wang, Z. Zhao et al., Functional molecule surface infiltration treatment for efficient all-inorganic perovskite light-emitting diodes. Chem. Eng. J. 514, 162787 (2025). https://doi.org/10.1016/j.cej.2025.162787
Y. Wang, G. Liu, F. Lin, J. Lv, S. Ye et al., Functional analysis and instructive selection of a green additive achieve dual-interface modification for fabricating self-powered, high-performance perovskite photodetectors. ACS Photonics 12(1), 128–139 (2025). https://doi.org/10.1021/acsphotonics.4c01281
Y. Wang, S. Ye, Z. Sun, J. Zhu, Y. Liu et al., Multifunctional regioisomeric passivation strategy for fabricating self-driving, high detectivity all-inorganic perovskite photodetectors. ACS Appl. Mater. Interfaces 15(50), 59005–59015 (2023). https://doi.org/10.1021/acsami.3c12714
Z. Zhang, W. Zhang, Q. Jiang, Z. Wei, M. Deng et al., Toward high-performance electron/hole-transporting-layer-free, self-powered CsPbIBr2 photodetectors via interfacial engineering. ACS Appl. Mater. Interfaces 12(5), 6607–6614 (2020). https://doi.org/10.1021/acsami.9b19075
J. Du, J. Duan, X. Yang, Q. Zhou, Y. Duan et al., Reducing defect of inorganic perovskite film by sulphur-containing Lewis base for robust photodetectors. J. Energy Chem. 61, 163–169 (2021). https://doi.org/10.1016/j.jechem.2021.02.004
Y. Zhao, S. Jiao, S. Liu, Y. Jin, S. Yang et al., Surface passivation of CsPbBr3 films by interface engineering in efficient and stable self-powered perovskite photodetector. J. Alloys Compd. 965, 171434 (2023). https://doi.org/10.1016/j.jallcom.2023.171434
Y. Zhao, S. Jiao, S. Yang, D. Wang, S. Gao et al., Achieving low cost and high performance flexible CsPbIBr2 perovskite photodetectors arrays with imaging system via dual interfacial optimization and structural design. Adv. Opt. Mater. 12(17), 2400019 (2024). https://doi.org/10.1002/adom.202400019
G. Luo, Y. Wang, M. Mao, B. Cen, T. Wang et al., Surface engineering and Nb2CTx-modulated CsPbCl3 perovskite for self-powered UV photodetectors with ultrahigh responsivity. Adv. Opt. Mater. 13(3), 2402183 (2025). https://doi.org/10.1002/adom.202402183
H. Zhou, R. Wang, X. Zhang, B.-A. Xiao, Z. Shuang et al., Ionic liquid enables high-performance, self-powered CsPbBr3 perovskite nanonet photodetector. Chem. Commun. 59(55), 8544–8547 (2023). https://doi.org/10.1039/d3cc02094k
Y. Zhao, S. Jiao, S. Liu, Y. Jin, S. Yang et al., Effective passivation via additive engineering based on CsPbBr3 films photodetectors and image sensor application. Appl. Surf. Sci. 637, 157928 (2023). https://doi.org/10.1016/j.apsusc.2023.157928
Y. Zhao, Y. Sun, C. Pei, X. Yin, X. Li et al., Low-temperature fabrication of stable black-phase CsPbI3 perovskite flexible photodetectors toward wearable health monitoring. Nano-Micro Lett. 17(1), 63 (2024). https://doi.org/10.1007/s40820-024-01565-4
C. Wang, Y. Wang, X. Su, V.G. Hadjiev, S. Dai et al., Extrinsic green photoluminescence from the edges of 2D cesium lead halides. Adv. Mater. 31(33), 1902492 (2019). https://doi.org/10.1002/adma.201902492
T. Chen, X. Li, Y. Wang, F. Lin, R. Liu et al., Centimeter-sized Cs3Cu2I5 single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high-quality X-ray imaging. J. Energy Chem. 79, 382–389 (2023). https://doi.org/10.1016/j.jechem.2022.12.016
F. Cao, E. Hong, Z. Li, S. Han, X. Fang, Real-time UVC imaging and high safety communication based on dual-detectable lead-free perovskite heterostructure. Adv. Funct. Mater. 35(24), 2422161 (2025). https://doi.org/10.1002/adfm.202422161
Y. Yang, S. Wan, H. Wei, L. Yang, Z. Dai et al., Sustainable protection of natural liquid enables ultra-stable inverted perovskite solar cells via allylic disulfide rearrangement. Energy Environ. Sci. 18(10), 4962–4970 (2025). https://doi.org/10.1039/D5EE00458F
J. Wu, J. Lan, R. Wang, C. Cheng, W. Wang et al., Low-temperature encapsulation with silicone grease enhances efficiency and stability of perovskite solar cells via Pb0 defect passivation. Adv. Funct. Mater. 35(40), 2425979 (2025). https://doi.org/10.1002/adfm.202425979
J. Liu, B. Shi, Q. Xu, Y. Li, Y. Li et al., Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nano-Micro Lett. 16(1), 189 (2024). https://doi.org/10.1007/s40820-024-01406-4
S. Ullah, F. Khan, J.F. Rasheed, Prospects for commercialization of CsPbIBr2-based all-inorganic perovskite solar cells: fabrication, stability, and engineering strategies. Adv. Funct. Mater. 35(36), 2503508 (2025). https://doi.org/10.1002/adfm.202503508
H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
C. Zheng, Y. He, Y. Li, A. Gao, Z. Liu et al., Oxidation stability of perovskite solar cells reinforced by punicalagin to resist UV damage. Adv. Funct. Mater. 35(40), 2502232 (2025). https://doi.org/10.1002/adfm.202502232
J. You, H. Zhu, J. Ye, C. Xu, G. Xu et al., Optimizing UV resistance and defect passivation in perovskite solar cells with tailored tin oxide. Small 21(16), 2500695 (2025). https://doi.org/10.1002/smll.202500695
C. Fei, A. Kuvayskaya, X. Shi, M. Wang, Z. Shi et al., Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384(6700), 1126–1134 (2024). https://doi.org/10.1126/science.adi4531
J. Li, W. Qi, Y. Li, S. Jiao, H. Ling et al., UV light absorbers executing synergistic effects of passivating defects and improving photostability for efficient perovskite photovoltaics. J. Energy Chem. 67, 138–146 (2022). https://doi.org/10.1016/j.jechem.2021.09.027
C. Zhao, Y. Li, X. Yang, L. Fan, M. Wei et al., Building a UV filter and interfacial bridge with a multifunctional molecule for enhancing the performance and stability of MAPbI3 solar cells. J. Mater. Chem. C 11(41), 14167–14176 (2023). https://doi.org/10.1039/D3TC02440G
Y. Dai, X. Ge, B. Shi, P. Wang, Y. Zhao et al., Enhancing ultraviolet stability and performance of wide bandgap perovskite solar cells through ultraviolet light-absorbing passivator. Small Methods 9(1), 2301793 (2025). https://doi.org/10.1002/smtd.202301793
L. Liu, C. Zheng, Z. Xu, Y. Li, Y. Cao et al., Manipulating electron density distribution of nicotinamide derivatives toward defect passivation in perovskite solar cells. Adv. Energy Mater. 13(30), 2300610 (2023). https://doi.org/10.1002/aenm.202300610
J. Wang, L. Zheng, H.-B. Kim, H. He, S. Wang et al., Dipolar carbazole ammonium for broadened electric field distribution in high-performance perovskite solar cells. J. Am. Chem. Soc. 147(10), 8663–8671 (2025). https://doi.org/10.1021/jacs.4c18074
G. Yang, X. Liu, L. Wang, K. Dong, B. Zhang et al., Tailored supramolecular interactions in host–guest complexation for efficient and stable perovskite solar cells and modules. Angew. Chem. Int. Ed. 63(40), e202410454 (2024). https://doi.org/10.1002/anie.202410454
Y. Peng, Y. Chen, J. Zhou, C. Luo, W. Tang et al., Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells. Nat. Commun. 16(1), 1252 (2025). https://doi.org/10.1038/s41467-024-55653-5
J. Wu, M.-H. Li, J.-T. Fan, Z. Li, X.-H. Fan et al., Regioselective multisite atomic-chlorine passivation enables efficient and stable perovskite solar cells. J. Am. Chem. Soc. 145(10), 5872–5879 (2023). https://doi.org/10.1021/jacs.2c13307
L. Xie, S. Du, J. Li, C. Liu, Z. Pu et al., Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci. 16(11), 5423–5433 (2023). https://doi.org/10.1039/D3EE02569A
Y. Zhang, T. Kong, Y. Liu, X. Liu, W. Liu et al., The effect of self-assembled bridging layer on the performance of pure FAPbI3-based perovskite solar cells. Adv. Funct. Mater. 34(30), 2401391 (2024). https://doi.org/10.1002/adfm.202401391
Y. Xie, W. Liang, P. Li, Z. Miao, F. Yuan et al., Unraveling the impact of a cyclized phenylethylamine-derived spacer cation on the structural, electrical, and photovoltaic performance of quasi-2D ruddlesden-popper perovskites. Small 21(23), 2501863 (2025). https://doi.org/10.1002/smll.202501863
G. Gao, Q. Zhang, K. Deng, L. Li, Residual stress mitigation in perovskite solar cells via butterfly-inspired hierarchical PbI2 scaffold. ACS Nano 18(23), 15003–15012 (2024). https://doi.org/10.1021/acsnano.4c01281
J. Su, T. Hu, X. Chen, X. Zhang, N. Fang et al., Multi-functional interface passivation via guanidinium iodide enables efficient perovskite solar cells. Adv. Funct. Mater. 34(45), 2406324 (2024). https://doi.org/10.1002/adfm.202406324
Z. Huang, Z. Du, Z. Ma, Y. Zheng, Q. Zhang et al., Lead iodide secondary growth and π-π stack regulation for sequential perovskite solar cells with 23.62% efficiency. Chem. Eng. J. 499, 156684 (2024). https://doi.org/10.1016/j.cej.2024.156684
Q. Liu, Z. Wang, Z. Wang, X. Cao, K. Liu et al., Heterogeneous nucleation-induced upward crystallization for perovskite solar cells. ACS Energy Lett. 10(6), 2972–2977 (2025). https://doi.org/10.1021/acsenergylett.5c00758
Z. He, M. Li, H. Jia, R. Yu, Y. Zhang et al., Managing interfacial charged defects with multiple active sited macrocyclic valinomycin for efficient and stable inverted perovskite solar cells. Adv. Mater. 35(51), 2304918 (2023). https://doi.org/10.1002/adma.202304918
J. Shen, X. Ge, Q. Ge, N. Li, Y. Wang et al., Improvement of photovoltaic performance of perovskite solar cells by synergistic modulation of SnO2 and perovskite via interfacial modification. ACS Appl. Mater. Interfaces 16(19), 24748–24759 (2024). https://doi.org/10.1021/acsami.4c03595
M. Lyu, S. Shan, J. Ma, W. Xing, Y. Zhang et al., Glutamine bridge-connecting at SnO2/Perovskite interface for energy levels alignment and carrier transfer enhancement in perovskite solar cells. Appl. Surf. Sci. 703, 163420 (2025). https://doi.org/10.1016/j.apsusc.2025.163420
H. Zhou, L. Yang, Y. Duan, M. Wu, Y. Li et al., 24.96%-efficiency FACsPbI3 perovskite solar cells enabled by an asymmetric 1, 3-thiazole-2, 4-diammonium. Adv. Energy Mater. 13(15), 2204372 (2023). https://doi.org/10.1002/aenm.202204372
H. Kim, C.A. Figueroa Morales, S. Seong, Z. Hu, N. Muyanja et al., Molecular design of defect passivators for thermally stable metal-halide perovskite films. Matter 7(2), 539–549 (2024). https://doi.org/10.1016/j.matt.2023.12.003
Y. Zhang, B. Yu, Y. Sun, J. Zhang, Z. Su et al., An MBene modulating the buried SnO2/perovskite interface in perovskite solar cells. Angew. Chem. Int. Ed. 63(27), e202404385 (2024). https://doi.org/10.1002/anie.202404385
J. Zeng, Z. Liu, D. Wang, J. Wu, P. Zhu et al., Small-molecule hole transport materials for >26% efficient inverted perovskite solar cells. J. Am. Chem. Soc. 147(1), 725–733 (2025). https://doi.org/10.1021/jacs.4c13356
L. Wang, H. Bi, J. Liu, Y. Wei, Z. Zhang et al., Exceeding 15% performance with energy level tuning in tin-based perovskite solar cells. ACS Energy Lett. 9(12), 6238–6244 (2024). https://doi.org/10.1021/acsenergylett.4c03172
S. Jiang, Z. Hou, X. Zheng, Q. Wu, X. Yang et al., Ultrafast self-powered CsPbCl3 ultraviolet photodetectors with choline chloride for surface passivation and charge transport regulation. J. Mater. Chem. C 11(17), 5667–5679 (2023). https://doi.org/10.1039/D3TC00063J
S. Wang, M. Li, C. Song, C. Zheng, J. Li et al., Phenethylammonium iodide modulated SnO2 electron selective layer for high performance, self-powered metal halide perovskite photodetector. Appl. Surf. Sci. 623, 156983 (2023). https://doi.org/10.1016/j.apsusc.2023.156983