The mRNA-Based Innovative Strategy: Progress and Challenges
Corresponding Author: Yu Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 118
Abstract
As the central template for protein expression, messenger ribonucleic acid (mRNA) holds immense potential for novel therapeutic strategies. Over the past few decades, mRNA-based therapeutics have demonstrated remarkable efficacy in a range of applications, including epidemic vaccine, cancer vaccine, protein replacement therapy, cytokine therapy, cell therapy and gene editing. Due to the inherent instability of mRNA, the rational design of mRNA structure is the prerequisite for therapeutic utility while effective delivery systems are also essential for in vivo applications. This review focuses on the optimization of mRNA structure and highlights key delivery strategies. It also provides a comprehensive overview of the major applications of mRNA-based strategies. In addition, it highlights the persistent challenges in mRNA therapeutics, particularly in terms of stability, immunogenicity, delivery efficiency and safety. By examining recent advances in mRNA design, delivery and application, this review aims to support ongoing research and development in the field of mRNA-based therapeutics.
Highlights:
1 Messenger ribonucleic acid (mRNA) structural optimization and delivery systems were comprehensively summarized.
2 Current mRNA applications were thoroughly introduced.
3 The challenges and future prospects of mRNA-based therapeutics were critically analyzed and discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Brenner, F. Jacob, M. Meselson, An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961). https://doi.org/10.1038/190576a0
- A. Isaacs, R.A. Cox, Z. Rotem, Foreign nucleic acids as the stimulus to make interferon. Lancet 282(7299), 113–116 (1963). https://doi.org/10.1016/S0140-6736(63)92585-6
- A.D. Bangham, M.M. Standish, J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13(1), 238–IN27 (1965). https://doi.org/10.1016/S0022-2836(65)80093-6
- S. Muthukrishnan, G.W. Both, Y. Furuichi, A.J. Shatkin, 5’-terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 255(5503), 33–37 (1975). https://doi.org/10.1038/255033a0
- M.J. Ostro, D. Giacomoni, D. Lavelle, W. Paxton, S. Dray, Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature 274(5674), 921–923 (1978). https://doi.org/10.1038/274921a0
- G.J. Dimitriadis, Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature 274(5674), 923–924 (1978). https://doi.org/10.1038/274923a0
- P.A. Krieg, D.A. Melton, Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12(18), 7057–7070 (1984). https://doi.org/10.1093/nar/12.18.7057
- R.W. Malone, P.L. Felgner, I.M. Verma, Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. U.S.A. 86(16), 6077–6081 (1989). https://doi.org/10.1073/pnas.86.16.6077
- J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi et al., Direct gene transfer into mouse muscle in vivo. Science 247(4949), 1465–1468 (1990). https://doi.org/10.1126/science.1690918
- F. Martinon, S. Krishnan, G. Lenzen, R. Magné, E. Gomard et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 23(7), 1719–1722 (1993). https://doi.org/10.1002/eji.1830230749
- R.M. Conry, A.F. LoBuglio, M. Wright, L. Sumerel, M.J. Pike et al., Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55(7), 1397–1400 (1995)
- A. Heiser, D. Coleman, J. Dannull, D. Yancey, M.A. Maurice et al., Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109(3), 409–417 (2002). https://doi.org/10.1172/JCI14364
- K. Karikó, M. Buckstein, H. Ni, D. Weissman, Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2), 165–175 (2005). https://doi.org/10.1016/j.immuni.2005.06.008
- K. Karikó, H. Muramatsu, F.A. Welsh, J. Ludwig, H. Kato et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16(11), 1833–1840 (2008). https://doi.org/10.1038/mt.2008.200
- B. Weide, S. Pascolo, B. Scheel, E. Derhovanessian, A. Pflugfelder et al., Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 32(5), 498–507 (2009). https://doi.org/10.1097/CJI.0b013e3181a00068
- S. Kreiter, A. Selmi, M. Diken, M. Koslowski, C.M. Britten et al., Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70(22), 9031–9040 (2010). https://doi.org/10.1158/0008-5472.CAN-10-0699
- W.Y. Hwang, Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31(3), 227–229 (2013). https://doi.org/10.1038/nbt.2501
- U. Sahin, E. Derhovanessian, M. Miller, B.-P. Kloke, P. Simon et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662), 222–226 (2017). https://doi.org/10.1038/nature23003
- K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586(7830), 567–571 (2020). https://doi.org/10.1038/s41586-020-2622-0
- F.P. Polack, S.J. Thomas, N. Kitchin, J. Absalon, A. Gurtman et al., Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 383(27), 2603–2615 (2020). https://doi.org/10.1056/NEJMoa2034577
- J.D. Gillmore, E. Gane, J. Taubel, J. Kao, M. Fontana et al., CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385(6), 493–502 (2021). https://doi.org/10.1056/NEJMoa2107454
- mRNA vaccine slows melanoma recurrence, Cancer Discov. 13(6), 1278 (2023). https://doi.org/10.1158/2159-8290.CD-NB2023-0028
- First self-amplifying mRNA vaccine approved (News in Brief). Nat. Biotechnol. 42(1), 4 (2024). https://doi.org/10.1038/s41587-023-02101-2
- D. Koeberl, A. Schulze, N. Sondheimer, G.S. Lipshutz, T. Geberhiwot et al., Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature 628(8009), 872–877 (2024). https://doi.org/10.1038/s41586-024-07266-7
- J. Goswami, J.F. Cardona, D.C. Hsu, A.K. Simorellis, L. Wilson et al., Safety and immunogenicity of mRNA-1345 RSV vaccine coadministered with an influenza or COVID-19 vaccine in adults aged 50 years or older: an observer-blinded, placebo-controlled, randomised, phase 3 trial. Lancet Infect. Dis. 25(4), 411–423 (2025). https://doi.org/10.1016/S1473-3099(24)00589-9
- M.-G. Alameh, A. Semon, N.U. Bayard, Y.-G. Pan, G. Dwivedi et al., A multivalent mRNA-LNP vaccine protects against Clostridioides difficile infection. Science 386(6717), 69–75 (2024). https://doi.org/10.1126/science.adn4955
- L.R. Baden, H.M. El Sahly, B. Essink, K. Kotloff, S. Frey et al., Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384(5), 403–416 (2021). https://doi.org/10.1056/NEJMoa2035389
- U. Sahin, P. Oehm, E. Derhovanessian, R.A. Jabulowsky, M. Vormehr et al., An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585(7823), 107–112 (2020). https://doi.org/10.1038/s41586-020-2537-9
- J.S. Weber, M.S. Carlino, A. Khattak, T. Meniawy, G. Ansstas et al., Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403(10427), 632–644 (2024). https://doi.org/10.1016/S0140-6736(23)02268-7
- L.A. Rojas, Z. Sethna, K.C. Soares, C. Olcese, N. Pang et al., Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618(7963), 144–150 (2023). https://doi.org/10.1038/s41586-023-06063-y
- S.L. Hewitt, D. Bailey, J. Zielinski, A. Apte, F. Musenge et al., Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26(23), 6284–6298 (2020). https://doi.org/10.1158/1078-0432.CCR-20-0472
- I. Liric Rajlic, B. Guglieri-Lopez, N. Rangoonwala, V. Ivaturi, L. Van et al., Translational kinetic-pharmacodynamics of mRNA-6231, an investigational mRNA therapeutic encoding mutein interleukin-2. CPT Pharmacometrics Syst. Pharmacol. 13(6), 1067–1078 (2024). https://doi.org/10.1002/psp4.13142
- US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02277522
- US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02624258
- H.J. Longhurst, K. Lindsay, R.S. Petersen, L.M. Fijen, P. Gurugama et al., CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 390(5), 432–441 (2024). https://doi.org/10.1056/NEJMoa2309149
- X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28(11), 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
- A. Ramanathan, G.B. Robb, S.-H. Chan, mRNA capping: biological functions and applications. Nucleic Acids Res. 44(16), 7511–7526 (2016). https://doi.org/10.1093/nar/gkw551
- N. Sonenberg, A.G. Hinnebusch, Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4), 731–745 (2009). https://doi.org/10.1016/j.cell.2009.01.042
- S.W. Lockless, H.T. Cheng, A.E. Hodel, F.A. Quiocho, P.D. Gershon, Recognition of capped RNA substrates by VP39, the vaccinia virus-encoded mRNA cap-specific 2’-O-methyltransferase. Biochemistry 37(23), 8564–8574 (1998). https://doi.org/10.1021/bi980178m
- S.A. Martin, B. Moss, mRNA guanylyltransferase and mRNA (guanine-7-)-methyltransferase from vaccinia virions. Donor and acceptor substrate specificites. J. Biol. Chem. 251(23), 7313–7321 (1976). https://doi.org/10.1016/S0021-9258(17)32851-X
- A.-L. Fuchs, A. Neu, R. Sprangers, A general method for rapid and cost-efficient large-scale production of 5’ capped RNA. RNA 22(9), 1454–1466 (2016). https://doi.org/10.1261/rna.056614.116
- T. Ogino, In vitro capping and transcription of rhabdoviruses. Methods 59(2), 188–198 (2013). https://doi.org/10.1016/j.ymeth.2012.05.013
- H. Ohno, S. Akamine, M. Mochizuki, K. Hayashi, S. Akichika et al., Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5’ cap-modified mRNAs. Nucleic Acids Res. 51(6), e34 (2023). https://doi.org/10.1093/nar/gkad019
- F. Muttach, N. Muthmann, A. Rentmeister, Synthetic mRNA capping. Beilstein J. Org. Chem. 13, 2819–2832 (2017). https://doi.org/10.3762/bjoc.13.274
- A.E. Pasquinelli, J.E. Dahlberg, E. Lund, Reverse 5’ caps in RNAs made in vitro by phage RNA polymerases. RNA 1(9), 957–967 (1995)
- J. Stepinski, C. Waddell, R. Stolarski, E. Darzynkiewicz, R.E. Rhoads, Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA 7(10), 1486–1495 (2001)
- A.N. Kuhn, M. Diken, S. Kreiter, A. Selmi, J. Kowalska et al., Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 17(8), 961–971 (2010). https://doi.org/10.1038/gt.2010.52
- J.M. Henderson, A. Ujita, E. Hill, S. Yousif-Rosales, C. Smith et al., Cap 1 messenger RNA synthesis with co-transcriptional CleanCap® analog by in vitro transcription. Curr. Protoc. 1(2), e39 (2021). https://doi.org/10.1002/cpz1.39
- I. Vlatkovic, J. Ludwig, G. Boros, G.T. Szabó, J. Reichert et al., Ribozyme assays to quantify the capping efficiency of in vitro-transcribed mRNA. Pharmaceutics 14(2), 328 (2022). https://doi.org/10.3390/pharmaceutics14020328
- S.C. Devarkar, C. Wang, M.T. Miller, A. Ramanathan, F. Jiang et al., Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. U. S. A. 113(3), 596–601 (2016). https://doi.org/10.1073/pnas.1515152113
- M. Inagaki, N. Abe, Z. Li, Y. Nakashima, S. Acharyya et al., Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures. Nat. Commun. 14(1), 2657 (2023). https://doi.org/10.1038/s41467-023-38244-8
- A. Bollu, A. Peters, A. Rentmeister, Chemo-enzymatic modification of the 5’ cap to study mRNAs. Acc. Chem. Res. 55(9), 1249–1261 (2022). https://doi.org/10.1021/acs.accounts.2c00059
- M. van Dülmen, N. Muthmann, A. Rentmeister, Chemo-enzymatic modification of the 5’ cap maintains translation and increases immunogenic properties of mRNA. Angew. Chem. Int. Ed. 60(24), 13280–13286 (2021). https://doi.org/10.1002/anie.202100352
- H. Chen, D. Liu, A. Aditham, J. Guo, J. Huang et al., Chemical and topological design of multicapped mRNA and capped circular RNA to augment translation. Nat. Biotechnol. 43(7), 1128–1143 (2025). https://doi.org/10.1038/s41587-024-02393-y
- N. Klöcker, F.P. Weissenboeck, M. van Dülmen, P. Špaček, S. Hüwel et al., Photocaged 5’ cap analogues for optical control of mRNA translation in cells. Nat. Chem. 14(8), 905–913 (2022). https://doi.org/10.1038/s41557-022-00972-7
- E. Wahle, 3’-end processing of pre-mRNA in eukaryotes. FEMS Microbiol. Rev. 23(3), 277–295 (1999). https://doi.org/10.1016/s0168-6445(99)00008-x
- S.Z. Tarun Jr., A.B. Sachs, Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15(24), 7168–7177 (1996). https://doi.org/10.1002/j.1460-2075.1996.tb01108.x
- L.A. Passmore, J. Coller, Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23(2), 93–106 (2022). https://doi.org/10.1038/s41580-021-00417-y
- L. Weill, E. Belloc, F.-A. Bava, R. Méndez, Translational control by changes in poly(A) tail length: recycling mRNAs. Nat. Struct. Mol. Biol. 19(6), 577–585 (2012). https://doi.org/10.1038/nsmb.2311
- A.C. Goldstrohm, M. Wickens, Multifunctional deadenylase complexes diversify mRNA control. Nat. Rev. Mol. Cell Biol. 9(4), 337–344 (2008). https://doi.org/10.1038/nrm2370
- Y. Weng, C. Li, T. Yang, B. Hu, M. Zhang et al., The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020). https://doi.org/10.1016/j.biotechadv.2020.107534
- P.S. Krawczyk, M. Mazur, W. Orzeł, O. Gewartowska, S. Jeleń et al., Re-adenylation by TENT5A enhances efficacy of SARS-CoV-2 mRNA vaccines. Nature 641(8064), 984–992 (2025). https://doi.org/10.1038/s41586-025-08842-1
- H. Chen, D. Liu, J. Guo, A. Aditham, Y. Zhou et al., Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. 43(2), 194–203 (2025). https://doi.org/10.1038/s41587-024-02174-7
- L. Anhäuser, S. Hüwel, T. Zobel, A. Rentmeister, Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res. 47(7), e42 (2019). https://doi.org/10.1093/nar/gkz084
- V. Presnyak, N. Alhusaini, Y.-H. Chen, S. Martin, N. Morris et al., Codon optimality is a major determinant of mRNA stability. Cell 160(6), 1111–1124 (2015). https://doi.org/10.1016/j.cell.2015.02.029
- G. Hanson, J. Coller, Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19(1), 20–30 (2018). https://doi.org/10.1038/nrm.2017.91
- P.M. Sharp, W.H. Li, The codon adaptation index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15(3), 1281–1295 (1987). https://doi.org/10.1093/nar/15.3.1281
- K. Subramanian, B. Payne, F. Feyertag, D. Alvarez-Ponce, The codon statistics database: a database of codon usage bias. Mol. Biol. Evol. 39(8), msac157 (2022). https://doi.org/10.1093/molbev/msac157
- K. Leppek, R. Das, M. Barna, Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19(3), 158–174 (2018). https://doi.org/10.1038/nrm.2017.103
- E. Navarro, A. Mallén, M. Hueso, Dynamic variations of 3’UTR length reprogram the mRNA regulatory landscape. Biomedicines 9(11), 1560 (2021). https://doi.org/10.3390/biomedicines9111560
- V. Reshetnikov, I. Terenin, G. Shepelkova, V. Yeremeev, S. Kolmykov et al., Untranslated region sequences and the efficacy of mRNA vaccines against tuberculosis. Int. J. Mol. Sci. 25(2), 888 (2024). https://doi.org/10.3390/ijms25020888
- L. Jia, Y. Mao, Q. Ji, D. Dersh, J.W. Yewdell et al., Decoding mRNA translatability and stability from the 5’ UTR. Nat. Struct. Mol. Biol. 27(9), 814–821 (2020). https://doi.org/10.1038/s41594-020-0465-x
- C. Barreau, L. Paillard, H.B. Osborne, AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33(22), 7138–7150 (2005). https://doi.org/10.1093/nar/gki1012
- D.P. Bartel, microRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009). https://doi.org/10.1016/j.cell.2009.01.002
- E. Carballo, W.S. Lai, P.J. Blackshear, Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281(5379), 1001–1005 (1998). https://doi.org/10.1126/science.281.5379.1001
- D.A. Siegel, O. Le Tonqueze, A. Biton, N. Zaitlen, D.J. Erle, Massively parallel analysis of human 3’ UTRs reveals that AU-rich element length and registration predict mRNA destabilization. G3 Genes|Genomes|Genetics 12(1), jkab404 (2022). https://doi.org/10.1093/g3journal/jkab404
- G.S. Wilkie, K.S. Dickson, N.K. Gray, Regulation of mRNA translation by 5’- and 3’-UTR-binding factors. Trends Biochem. Sci. 28(4), 182–188 (2003). https://doi.org/10.1016/S0968-0004(03)00051-3
- D.J. Kiltschewskij, P.F. Harrison, C. Fitzsimmons, T.H. Beilharz, M.J. Cairns, Extension of mRNA poly(A) tails and 3’UTRs during neuronal differentiation exhibits variable association with post-transcriptional dynamics. Nucleic Acids Res. 51(15), 8181–8198 (2023). https://doi.org/10.1093/nar/gkad499
- J.R. Babendure, J.L. Babendure, J.-H. Ding, R.Y. Tsien, Control of mammalian translation by mRNA structure near caps. RNA 12(5), 851–861 (2006). https://doi.org/10.1261/rna.2309906
- P.J. Sample, B. Wang, D.W. Reid, V. Presnyak, I.J. McFadyen et al., Human 5’ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37(7), 803–809 (2019). https://doi.org/10.1038/s41587-019-0164-5
- D.M. Mauger, B.J. Cabral, V. Presnyak, S.V. Su, D.W. Reid, B. Goodman, K. Link, N. Khatwani, J. Reynders, M.J. Moore, I.J. McFadyen, mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. U. S. A. 116(48), 24075–24083 (2019). https://doi.org/10.1073/pnas.1908052116
- H. Sun, K. Li, C. Liu, C. Yi, Regulation and functions of non-m6A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24(10), 714–731 (2023). https://doi.org/10.1038/s41580-023-00622-x
- M. Bérouti, M. Wagner, W. Greulich, I. Piseddu, J. Gärtig et al., Pseudouridine RNA avoids immune detection through impaired endolysosomal processing and TLR engagement. Cell (2025). https://doi.org/10.1016/j.cell.2025.05.032
- H. Zhang, L. Zhang, A. Lin, C. Xu, Z. Li et al., Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621(7978), 396–403 (2023). https://doi.org/10.1038/s41586-023-06127-z
- J.D.G. Comes, G.P. Pijlman, T.A.H. Hick, Rise of the RNA machines—self-amplification in mRNA vaccine design. Trends Biotechnol. 41(11), 1417–1429 (2023). https://doi.org/10.1016/j.tibtech.2023.05.007
- J.H. Erasmus, A.P. Khandhar, M.A. O’Connor, A.C. Walls, E.A. Hemann et al., An alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med. 12(555), eabc9396 (2020). https://doi.org/10.1126/scitranslmed.abc9396
- A.B. Vogel, L. Lambert, E. Kinnear, D. Busse, S. Erbar et al., Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26(2), 446–455 (2018). https://doi.org/10.1016/j.ymthe.2017.11.017
- K. Bloom, F. van den Berg, P. Arbuthnot, Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 28(3–4), 117–129 (2021). https://doi.org/10.1038/s41434-020-00204-y
- J.E. McGee, J.R. Kirsch, D. Kenney, F. Cerbo, E.C. Chavez et al., Complete substitution with modified nucleotides in self-amplifying RNA suppresses the interferon response and increases potency. Nat. Biotechnol. 43(5), 720–726 (2025). https://doi.org/10.1038/s41587-024-02306-z
- H. Van luchene, O. Gillon, K. Peynshaert, S.C. De Smedt, N. Sanders et al., Less is more: self-amplifying mRNA becomes self-killing upon dose escalation in immune-competent retinal cells. Eur. J. Pharm. Biopharm. 196, 114204 (2024). https://doi.org/10.1016/j.ejpb.2024.114204
- M. Perkovic, S. Gawletta, T. Hempel, S. Brill, E. Nett et al., A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol. Ther. 31(6), 1636–1646 (2023). https://doi.org/10.1016/j.ymthe.2023.01.019
- D.H. Fuller, P. Berglund, Amplifying RNA vaccine development. N. Engl. J. Med. 382(25), 2469–2471 (2020). https://doi.org/10.1056/NEJMcibr2009737
- S. Kameda, H. Ohno, H. Saito, Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51(4), e24 (2023). https://doi.org/10.1093/nar/gkac1252
- W.R. Jeck, J.A. Sorrentino, K. Wang, M.K. Slevin, C.E. Burd et al., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2), 141–157 (2013). https://doi.org/10.1261/rna.035667.112
- Y. Enuka, M. Lauriola, M.E. Feldman, A. Sas-Chen, I. Ulitsky et al., Circular rnas are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44(3), 1370–1383 (2016). https://doi.org/10.1093/nar/gkv1367
- S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger et al., Circular rnas are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013). https://doi.org/10.1038/nature11928
- R.A. Wesselhoeft, P.S. Kowalski, D.G. Anderson, Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9(1), 2629 (2018). https://doi.org/10.1038/s41467-018-05096-6
- X. Fan, Y. Yang, C. Chen, Z. Wang, Pervasive translation of circular RNAs driven by short IRES-like elements. Nat. Commun. 13(1), 3751 (2022). https://doi.org/10.1038/s41467-022-31327-y
- K. Fukuchi, Y. Nakashima, N. Abe, S. Kimura, F. Hashiya et al., Internal cap-initiated translation for efficient protein production from circular mRNA. Nat. Biotechnol. (2025). https://doi.org/10.1038/s41587-025-02561-8
- T.L. Young, K.C. Wang, A.J. Varley, B. Li, Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv. Drug Deliv. Rev. 197, 114826 (2023). https://doi.org/10.1016/j.addr.2023.114826
- S. Petkovic, S. Müller, RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43(4), 2454–2465 (2015). https://doi.org/10.1093/nar/gkv045
- J. Cai, Z. Qiu, W.C. Cho, Z. Liu, S. Chen et al., Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm 5(11), e720 (2024). https://doi.org/10.1002/mco2.720
- Y.-S. Kim, D.-H. Kim, D. An, Y. Lim, Y.-J. Seo et al., The RNA ligation method using modified splint DNAs significantly improves the efficiency of circular RNA synthesis. Anim. Cells Syst. 27(1), 208–218 (2023). https://doi.org/10.1080/19768354.2023.2265165
- Y. Du, P.K. Zuber, H. Xiao, X. Li, Y. Gordiyenko et al., Efficient circular RNA synthesis for potent rolling circle translation. Nat. Biomed. Eng. 9(7), 1062–1074 (2025). https://doi.org/10.1038/s41551-024-01306-3
- M.-S. Xiao, J.E. Wilusz, An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3’ ends. Nucleic Acids Res. 47(16), 8755–8769 (2019). https://doi.org/10.1093/nar/gkz576
- Z. Zhang, W. Li, X. Ren, D. Luo, X. Yuan et al., Mitigating cellular dysfunction through contaminant reduction in synthetic circRNA for high-efficiency mRNA-based cell reprogramming. Adv. Sci. 12(16), e2416629 (2025). https://doi.org/10.1002/advs.202416629
- R. Chen, S.K. Wang, J.A. Belk, L. Amaya, Z. Li et al., Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41(2), 262–272 (2023). https://doi.org/10.1038/s41587-022-01393-0
- C. Xu, L. Zhang, W. Wang, Y. Tang, Q. Wang et al., Improving the crcularization efficiency, stability and translatability of circular RNA by circDesign. (Preprint) bioRxiv (2023). https://doi.org/10.1101/2023.07.09.548293
- L. Qu, Z. Yi, Y. Shen, L. Lin, F. Chen et al., Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185(10), 1728–1744 (2022). https://doi.org/10.1016/j.cell.2022.03.044
- H. Li, K. Peng, K. Yang, W. Ma, S. Qi et al., Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 12(14), 6422–6436 (2022). https://doi.org/10.7150/thno.77350
- Y. Zhong, S. Du, Y. Dong, mRNA delivery in cancer immunotherapy. Acta Pharm. Sin. B. 13(4), 1348–1357 (2023). https://doi.org/10.1016/j.apsb.2023.03.001
- Y. Xiao, Z. Tang, X. Huang, W. Chen, J. Zhou et al., Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51(10), 3828–3845 (2022). https://doi.org/10.1039/d1cs00617g
- A.K.K. Leung, Y.Y.C. Tam, S. Chen, I.M. Hafez, P.R. Cullis, Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanop systems. J. Phys. Chem. B 119(28), 8698–8706 (2015). https://doi.org/10.1021/acs.jpcb.5b02891
- A. Akinc, M.A. Maier, M. Manoharan, K. Fitzgerald, M. Jayaraman et al., The onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14(12), 1084–1087 (2019). https://doi.org/10.1038/s41565-019-0591-y
- S.A. Dilliard, Q. Cheng, D.J. Siegwart, On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanops. Proc. Natl. Acad. Sci. U. S. A. 118(52), e2109256118 (2021). https://doi.org/10.1073/pnas.2109256118
- S.C. Semple, A. Akinc, J. Chen, A.P. Sandhu, B.L. Mui et al., Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28(2), 172–176 (2010). https://doi.org/10.1038/nbt.1602
- S. Chatterjee, E. Kon, P. Sharma, D. Peer, Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl. Acad. Sci. U. S. A. 121(11), e2307800120 (2024). https://doi.org/10.1073/pnas.2307800120
- C.H. Albertsen, J.A. Kulkarni, D. Witzigmann, M. Lind, K. Petersson et al., The role of lipid components in lipid nanops for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022). https://doi.org/10.1016/j.addr.2022.114416
- Y. Zong, Y. Lin, T. Wei, Q. Cheng, Lipid nanop (LNP) enables mRNA delivery for cancer therapy. Adv. Mater. 35(51), 2303261 (2023). https://doi.org/10.1002/adma.202303261
- L. Xue, A.G. Hamilton, G. Zhao, Z. Xiao, R. El-Mayta et al., High-throughput barcoding of nanops identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 15(1), 1884 (2024). https://doi.org/10.1038/s41467-024-45422-9
- X. Han, H. Zhang, K. Butowska, K.L. Swingle, M.-G. Alameh et al., An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021). https://doi.org/10.1038/s41467-021-27493-0
- X. Han, J. Xu, Y. Xu, M.-G. Alameh, L. Xue et al., In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors. Nat. Commun. 15(1), 1762 (2024). https://doi.org/10.1038/s41467-024-45537-z
- X. Han, M.-G. Alameh, K. Butowska, J.J. Knox, K. Lundgreen et al., Adjuvant lipidoid-substituted lipid nanops augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18(9), 1105–1114 (2023). https://doi.org/10.1038/s41565-023-01404-4
- L. Xue, G. Zhao, N. Gong, X. Han, S.J. Shepherd et al., Combinatorial design of siloxane-incorporated lipid nanops augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20(1), 132–143 (2025). https://doi.org/10.1038/s41565-024-01747-6
- S. Patel, N. Ashwanikumar, E. Robinson, Y. Xia, C. Mihai et al., Naturally-occurring cholesterol analogues in lipid nanops induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020). https://doi.org/10.1038/s41467-020-14527-2
- J.A. Kulkarni, D. Witzigmann, J. Leung, Y.Y.C. Tam, P.R. Cullis, On the role of helper lipids in lipid nanop formulations of siRNA. Nanoscale 11(45), 21733–21739 (2019). https://doi.org/10.1039/c9nr09347h
- J.A. Kulkarni, J.L. Myhre, S. Chen, Y.Y.C. Tam, A. Danescu et al., Design of lipid nanops for in vitro and in vivo delivery of plasmid DNA. Nanomed. Nanotechnol. Biol. Med. 13(4), 1377–1387 (2017). https://doi.org/10.1016/j.nano.2016.12.014
- S. Liu, Q. Cheng, T. Wei, X. Yu, L.T. Johnson et al., Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20(5), 701–710 (2021). https://doi.org/10.1038/s41563-020-00886-0
- J.W. Holland, C. Hui, P.R. Cullis, T.D. Madden, Poly(ethylene glycol)−lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry 35(8), 2618–2624 (1996). https://doi.org/10.1021/bi952000v
- M. Ibrahim, E. Ramadan, N.E. Elsadek, S.E. Emam, T. Shimizu et al., Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Release 351, 215–230 (2022). https://doi.org/10.1016/j.jconrel.2022.09.031
- X. Tang, J. Zhang, D. Sui, Q. Yang, T. Wang et al., Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J. Control. Release 364, 529–545 (2023). https://doi.org/10.1016/j.jconrel.2023.11.008
- H. Zhang, C. Meng, X. Yi, J. Han, J. Wang et al., Fluorinated lipid nanops for enhancing mRNA delivery efficiency. ACS Nano 18(11), 7825–7836 (2024). https://doi.org/10.1021/acsnano.3c04507
- Y. Ju, W.S. Lee, E.H. Pilkington, H.G. Kelly, S. Li et al., Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanop mRNA vaccine. ACS Nano 16(8), 11769–11780 (2022). https://doi.org/10.1021/acsnano.2c04543
- H. Wang, Y. Wang, C. Yuan, X. Xu, W. Zhou et al., Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanops in rats. NPJ Vaccines 8(1), 169 (2023). https://doi.org/10.1038/s41541-023-00766-z
- T. Suzuki, Y. Suzuki, T. Hihara, K. Kubara, K. Kondo et al., Peg shedding-rate-dependent blood clearance of PEGylated lipid nanops in mice: faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 588, 119792 (2020). https://doi.org/10.1016/j.ijpharm.2020.119792
- S. Luozhong, P. Liu, R. Li, Z. Yuan, E. Debley et al., Poly(carboxybetaine) lipids enhance mRNA therapeutics efficacy and reduce their immunogenicity. Nat. Mater., 2240 (2025). https://doi.org/10.1038/s41563-025-02240-8
- M.Z.C. Hatit, C.N. Dobrowolski, M.P. Lokugamage, D. Loughrey, H. Ni et al., Nanop stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat. Chem. 15(4), 508–515 (2023). https://doi.org/10.1038/s41557-023-01138-9
- H. Parhiz, V.V. Shuvaev, N. Pardi, M. Khoshnejad, R.Y. Kiseleva et al., Pecam-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Release 291, 106–115 (2018). https://doi.org/10.1016/j.jconrel.2018.10.015
- A. Kheirolomoom, A.J. Kare, E.S. Ingham, R. Paulmurugan, E.R. Robinson et al., In situ T-cell transfection by anti-CD3-conjugated lipid nanops leads to T-cell activation, migration, and phenotypic shift. Biomaterials 281, 121339 (2022). https://doi.org/10.1016/j.biomaterials.2021.121339
- I. Tombácz, D. Laczkó, H. Shahnawaz, H. Muramatsu, A. Natesan et al., Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol. Ther. 29(11), 3293–3304 (2021). https://doi.org/10.1016/j.ymthe.2021.06.004
- J.G. Rurik, I. Tombácz, A. Yadegari, P.O. Méndez Fernández, S.V. Shewale et al., CAR T cells produced in vivo to treat cardiac injury. Science 375(6576), 91–96 (2022). https://doi.org/10.1126/science.abm0594
- J. Choi, E. Rustique, M. Henry, M. Guidetti, V. Josserand et al., Targeting tumors with cyclic RGD-conjugated lipid nanops loaded with an IR780 NIR dye: in vitro and in vivo evaluation. Int. J. Pharm. 532(2), 677–685 (2017). https://doi.org/10.1016/j.ijpharm.2017.03.007
- Y. Qian, X. Liang, J. Yang, C. Zhao, W. Nie et al., Hyaluronan reduces cationic liposome-induced toxicity and enhances the antitumor effect of targeted gene delivery in mice. ACS Appl. Mater. Interfaces 10(38), 32006–32016 (2018). https://doi.org/10.1021/acsami.8b12393
- M. Kim, M. Jeong, S. Hur, Y. Cho, J. Park et al., Engineered ionizable lipid nanops for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7(9), eabf4398 (2021). https://doi.org/10.1126/sciadv.abf4398
- J. Lei, S. Qi, X. Yu, X. Gao, K. Yang et al., Development of mannosylated lipid nanops for mRNA cancer vaccine with high antigen presentation efficiency and immunomodulatory capability. Angew. Chem. Int. Ed. 63(13), e202318515 (2024). https://doi.org/10.1002/anie.202318515
- A.J. Sinegra, M. Evangelopoulos, J. Park, Z. Huang, C.A. Mirkin, Lipid nanop spherical nucleic acids for intracellular DNA and RNA delivery. Nano Lett. 21(15), 6584–6591 (2021). https://doi.org/10.1021/acs.nanolett.1c01973
- G. Zhu, X. Chen, Aptamer-based targeted therapy. Adv. Drug Deliv. Rev. 134, 65–78 (2018). https://doi.org/10.1016/j.addr.2018.08.005
- J.S. Lee, M. Kim, H. Jin, M. Kwak, E. Cho et al., DNA aptamer-conjugated lipid nanop for targeted PTEN mRNA delivery to prostate cancer cells. Int. J. Pharm. 662, 124519 (2024). https://doi.org/10.1016/j.ijpharm.2024.124519
- R. Hadianamrei, X. Zhao, Current state of the art in peptide-based gene delivery. J. Control. Release 343, 600–619 (2022). https://doi.org/10.1016/j.jconrel.2022.02.010
- H. Kübler, B. Scheel, U. Gnad-Vogt, K. Miller, W. Schultze-Seemann et al., Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 3, 26 (2015). https://doi.org/10.1186/s40425-015-0068-y
- I. Ruseska, K. Fresacher, C. Petschacher, A. Zimmer, Use of protamine in nanopharmaceuticals—a review. Nanomaterials 11(6), 1508 (2021). https://doi.org/10.3390/nano11061508
- M. Tusup, S. Pascolo, Generation of immunostimulating 130 nm protamine-RNA nanops. Methods Mol. Biol. 1499, 155–163 (2017). https://doi.org/10.1007/978-1-4939-6481-9_9
- V.K. Udhayakumar, A. De Beuckelaer, J. McCaffrey, C.M. McCrudden, J.L. Kirschman et al., Arginine-rich peptide-based mRNA nano complexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv. Healthc. Mater. 6(13), 201601412 (2017). https://doi.org/10.1002/adhm.201601412
- S. Lee, S. Nasr, S. Rasheed, Y. Liu, O. Hartwig et al., Proteoid biodynamers for safe mRNA transfection via pH-responsive nanorods enabling endosomal escape. J. Control. Release 353, 915–929 (2023). https://doi.org/10.1016/j.jconrel.2022.12.018
- Y. Wang, Z. Zhang, J. Luo, X. Han, Y. Wei et al., mRNA vaccine: a potential therapeutic strategy. Mol. Cancer 20(1), 33 (2021). https://doi.org/10.1186/s12943-021-01311-z
- R. Zhang, W. Jing, C. Chen, S. Zhang, M. Abdalla et al., Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv. Mater. 34(14), e2107506 (2022). https://doi.org/10.1002/adma.202107506
- M. Segel, B. Lash, J. Song, A. Ladha, C.C. Liu et al., Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373(6557), 882–889 (2021). https://doi.org/10.1126/science.abg6155
- V. Madigan, Y. Zhang, R. Raghavan, M.E. Wilkinson, G. Faure et al., Human paraneoplastic antigen MA2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Proc. Natl. Acad. Sci. U. S. A. 121(11), e2307812120 (2024). https://doi.org/10.1073/pnas.2307812120
- P. Vicennati, A. Giuliano, G. Ortaggi, A. Masotti, Polyethylenimine in medicinal chemistry. Curr. Med. Chem. 15(27), 2826–2839 (2008). https://doi.org/10.2174/092986708786242778
- F. Hao, Y. Li, J. Zhu, J. Sun, B. Marshall et al., Polyethylenimine-based formulations for delivery of oligonucleotides. Curr. Med. Chem. 26(13), 2264–2284 (2019). https://doi.org/10.2174/0929867325666181031094759
- M. Kim, J. Oh, Y. Lee, E.-H. Lee, S.H. Ko et al., Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J. Control. Release 350, 471–485 (2022). https://doi.org/10.1016/j.jconrel.2022.08.049
- Y. Yin, X. Li, H. Ma, J. Zhang, D. Yu et al., In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21(5), 2224–2231 (2021). https://doi.org/10.1021/acs.nanolett.0c05039
- M. Li, M. Zhao, Y. Fu, Y. Li, T. Gong et al., Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release 228, 9–19 (2016). https://doi.org/10.1016/j.jconrel.2016.02.043
- J. Li, Y. Wu, J. Xiang, H. Wang, Q. Zhuang et al., Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. Chem. Eng. J. 456, 140930 (2023). https://doi.org/10.1016/j.cej.2022.140930
- M. Shive, J. Anderson, Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28(1), 5–24 (1997). https://doi.org/10.1016/s0169-409x(97)00048-3
- J.H. Park, A. Mohapatra, J. Zhou, M. Holay, N. Krishnan et al., Virus-mimicking cell membrane-coated nanops for cytosolic delivery of mRNA. Angew. Chem. Int. Ed. 61(2), e202113671 (2022). https://doi.org/10.1002/anie.202113671
- D.G. Anderson, D.M. Lynn, R. Langer, Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. 42(27), 3153–3158 (2003). https://doi.org/10.1002/anie.200351244
- R.A. Cordeiro, A. Serra, J.F.J. Coelho, H. Faneca, Poly(β-amino ester)-based gene delivery systems: from discovery to therapeutic applications. J. Control. Release 310, 155–187 (2019). https://doi.org/10.1016/j.jconrel.2019.08.024
- Z. Li, X.-Q. Zhang, W. Ho, X. Bai, D.K. Jaijyan et al., Lipid-polymer hybrid “p-in-p” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines. Adv. Funct. Mater. 32(40), 2204462 (2022). https://doi.org/10.1002/adfm.202204462
- A.K. Patel, J.C. Kaczmarek, S. Bose, K.J. Kauffman, F. Mir et al., Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31(8), e1805116 (2019). https://doi.org/10.1002/adma.201805116
- P. Huang, L. Jiang, H. Pan, L. Ding, B. Zhou et al., An integrated polymeric mRNA vaccine without inflammation side effects for cellular immunity mediated cancer therapy. Adv. Mater. 35(3), 2207471 (2023). https://doi.org/10.1002/adma.202207471
- J.C. Kaczmarek, A.K. Patel, K.J. Kauffman, O.S. Fenton, M.J. Webber et al., Polymer–lipid nanops for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Ed. 55(44), 13808–13812 (2016). https://doi.org/10.1002/anie.201608450
- N.D. Le, B.L. Nguyen, B.R. Patil, H. Chun, S. Kim et al., Antiangiogenic therapeutic mRNA delivery using lung-selective polymeric nanomedicine for lung cancer treatment. ACS Nano 18(11), 8392–8410 (2024). https://doi.org/10.1021/acsnano.3c13039
- U. Capasso Palmiero, J.C. Kaczmarek, O.S. Fenton, D.G. Anderson, Poly(β-amino ester)-co-poly(caprolactone) terpolymers as nonviral vectors for mRNA delivery in vitro and in vivo. Adv. Healthc. Mater. 7(14), e1800249 (2018). https://doi.org/10.1002/adhm.201800249
- Q. Chen, R. Qi, X. Chen, X. Yang, S. Wu et al., A targeted and stable polymeric nanoformulation enhances systemic delivery of mRNA to tumors. Mol. Ther. 25(1), 92–101 (2017). https://doi.org/10.1016/j.ymthe.2016.10.006
- A. Le Moignic, V. Malard, T. Benvegnu, L. Lemiègre, M. Berchel et al., Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J. Control. Release 278, 110–121 (2018). https://doi.org/10.1016/j.jconrel.2018.03.035
- N.N. Parayath, S.B. Stephan, A.L. Koehne, P.S. Nelson, M.T. Stephan, In vitro -transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11(1), 6080 (2020). https://doi.org/10.1038/s41467-020-19486-2
- K. Ling, Y. Dou, N. Yang, L. Deng, Y. Wang et al., Genome editing mRNA nanotherapies inhibit cervical cancer progression and regulate the immunosuppressive microenvironment for adoptive T-cell therapy. J. Control. Release 360, 496–513 (2023). https://doi.org/10.1016/j.jconrel.2023.07.007
- G. Chen, B. Ma, Y. Wang, S. Gong, A universal GSH-responsive nanoplatform for the delivery of DNA, mRNA, and Cas9/sgRNA ribonucleoprotein. ACS Appl. Mater. Interfaces 10(22), 18515–18523 (2018). https://doi.org/10.1021/acsami.8b03496
- N. Yoshinaga, S. Uchida, A. Dirisala, M. Naito, K. Osada et al., mRNA loading into ATP-responsive polyplex micelles with optimal density of phenylboronate ester crosslinking to balance robustness in the biological milieu and intracellular translational efficiency. J. Control. Release 330, 317–328 (2021). https://doi.org/10.1016/j.jconrel.2020.12.033
- J. Sadoff, G. Gray, A. Vandebosch, V. Cárdenas, G. Shukarev et al., Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19. N. Engl. J. Med. 384(23), 2187–2201 (2021). https://doi.org/10.1056/nejmoa2101544
- A.O. Hassan, N.M. Kafai, I.P. Dmitriev, J.M. Fox, B.K. Smith et al., A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183(1), 169-184.e13 (2020). https://doi.org/10.1016/j.cell.2020.08.026
- S. Ling, S. Yang, X. Hu, D. Yin, Y. Dai et al., Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng. 5(2), 144–156 (2021). https://doi.org/10.1038/s41551-020-00656-y
- D. Yin, S. Ling, D. Wang, Y. Dai, H. Jiang et al., Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat. Biotechnol. 39(5), 567–577 (2021). https://doi.org/10.1038/s41587-020-00781-8
- W. Bai, D. Yang, Y. Zhao, G. Li, Z. Liu et al., Multi-step engineered adeno-associated virus enables whole-brain mRNA delivery. (Preprint) bioRxiv (2024). https://doi.org/10.1101/2024.06.04.597261
- A. Raguram, S. Banskota, D.R. Liu, Therapeutic in vivo delivery of gene editing agents. Cell 185(15), 2806–2827 (2022). https://doi.org/10.1016/j.cell.2022.03.045
- Y. Zhang, Q. Liu, X. Zhang, H. Huang, S. Tang et al., Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J. Nanobiotechnol. 20(1), 279 (2022). https://doi.org/10.1186/s12951-022-01472-z
- Q.-F. Han, W.-J. Li, K.-S. Hu, J. Gao, W.-L. Zhai et al., Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol. Cancer 21(1), 207 (2022). https://doi.org/10.1186/s12943-022-01671-0
- D.-F. Li, Q.-S. Liu, M.-F. Yang, H.-M. Xu, M.-Z. Zhu et al., Nanomaterials for mRNA-based therapeutics: challenges and opportunities. Bioeng. Transl. Med. 8(3), e10492 (2023). https://doi.org/10.1002/btm2.10492
- X. Zhu, M. Badawi, S. Pomeroy, D.S. Sutaria, Z. Xie et al., Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6(1), 1324730 (2017). https://doi.org/10.1080/20013078.2017.1324730
- K.D. Popowski, A. Moatti, G. Scull, D. Silkstone, H. Lutz et al., Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5(9), 2960–2974 (2022). https://doi.org/10.1016/j.matt.2022.06.012
- M. Liu, S. Hu, N. Yan, K.D. Popowski, K. Cheng, Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19(4), 565–575 (2024). https://doi.org/10.1038/s41565-023-01580-3
- W. Gu, S. Luozhong, S. Cai, K. Londhe, N. Elkasri et al., Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat. Biomed. Eng. 8(4), 415–426 (2024). https://doi.org/10.1038/s41551-023-01150-x
- Z. Chen, M.A. Farag, Z. Zhong, C. Zhang, Y. Yang et al., Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev. 176, 113870 (2021). https://doi.org/10.1016/j.addr.2021.113870
- F. Zhan, X. Yan, F. Sheng, B. Li, Facile in situ synthesis of silver nanops on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chem. 330, 127172 (2020). https://doi.org/10.1016/j.foodchem.2020.127172
- Z. Yi, G. Chen, X. Chen, X. Ma, X. Cui et al., Preparation of strong antioxidative, therapeutic nanops based on amino acid-induced ultrafast assembly of tea polyphenols. ACS Appl. Mater. Interfaces 12(30), 33550–33563 (2020). https://doi.org/10.1021/acsami.0c10282
- M. Messaoudene, R. Pidgeon, C. Richard, M. Ponce, K. Diop et al., A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12(4), 1070–1087 (2022). https://doi.org/10.1158/2159-8290.CD-21-0808
- R.-R. He, M. Wang, C.-Z. Wang, B.-T. Chen, C.-N. Lu et al., Protective effect of apple polyphenols against stress-provoked influenza viral infection in restraint mice. J. Agric. Food Chem. 59(8), 3730–3737 (2011). https://doi.org/10.1021/jf104982y
- A. Cano, M. Ettcheto, J.H. Chang, E. Barroso, M. Espina et al., Dual-drug loaded nanops of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release 301, 62–75 (2019). https://doi.org/10.1016/j.jconrel.2019.03.010
- B. Zhang, Y. Qin, L. Yang, Y. Wu, N. Chen et al., A polyphenol-network-mediated coating modulates inflammation and vascular healing on vascular stents. ACS Nano 16(4), 6585–6597 (2022). https://doi.org/10.1021/acsnano.2c00642
- T. Behl, K. Mehta, A. Sehgal, S. Singh, N. Sharma et al., Exploring the role of polyphenols in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 62(19), 5372–5393 (2022). https://doi.org/10.1080/10408398.2021.1924613
- Z. Chen, W. Hao, C. Gao, Y. Zhou, C. Zhang et al., A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharm. Sin. B 12(8), 3367–3382 (2022). https://doi.org/10.1016/j.apsb.2022.03.025
- J. Cronin, X.-Y. Zhang, J. Reiser, Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5(4), 387–398 (2005). https://doi.org/10.2174/1566523054546224
- D. Yin, Y. Zhong, S. Ling, S. Lu, X. Wang et al., Dendritic-cell-targeting virus-like ps as potent mRNA vaccine carriers. Nat. Biomed. Eng. 9(2), 185–200 (2025). https://doi.org/10.1038/s41551-024-01208-4
- J. Fuenmayor, F. Gòdia, L. Cervera, Production of virus-like ps for vaccines. New Biotechnol. 39, 174–180 (2017). https://doi.org/10.1016/j.nbt.2017.07.010
- F. Ruzzi, M.S. Semprini, L. Scalambra, A. Palladini, S. Angelicola et al., Virus-like p (VLP) vaccines for cancer immunotherapy. Int. J. Mol. Sci. 24(16), 12963 (2023). https://doi.org/10.3390/ijms241612963
- M. Ahn, J. Song, B.H. Hong, Facile synthesis of N-doped graphene quantum dots as novel transfection agents for mRNA and pDNA. Nanomaterials 11(11), 2816 (2021). https://doi.org/10.3390/nano11112816
- L.S. Mbatha, F. Maiyo, A. Daniels, M. Singh, Dendrimer-coated gold nanops for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics 13(6), 900 (2021). https://doi.org/10.3390/pharmaceutics13060900
- D.J.H. Tng, J.G.H. Low, Current status of silica-based nanops as therapeutics and its potential as therapies against viruses. Antivir. Res. 210, 105488 (2023). https://doi.org/10.1016/j.antiviral.2022.105488
- X. Huang, F. Zhang, L. Zhu, K.Y. Choi, N. Guo et al., Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7(7), 5684–5693 (2013). https://doi.org/10.1021/nn401911k
- M. Li, T. Chen, J.J. Gooding, J. Liu, Review of carbon and graphene quantum dots for sensing. ACS Sens. 4(7), 1732–1748 (2019). https://doi.org/10.1021/acssensors.9b00514
- P. Singh, S. Pandit, V.R.S.S. Mokkapati, A. Garg, V. Ravikumar et al., Gold nanops in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19(7), 1979 (2018). https://doi.org/10.3390/ijms19071979
- V. Mamaeva, C. Sahlgren, M. Lindén, Mesoporous silica nanops in medicine: recent advances. Adv. Drug Deliv. Rev. 65(5), 689–702 (2013). https://doi.org/10.1016/j.addr.2012.07.018
- A.S. Khalil, X. Yu, J.M. Umhoefer, C.S. Chamberlain, L.A. Wildenauer et al., Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. Sci. Adv. 6(27), eaba2422 (2020). https://doi.org/10.1126/sciadv.aba2422
- A.S. Khalil, D. Hellenbrand, K. Reichl, J. Umhoefer, M. Filipp et al., A localized materials-based strategy to non-virally deliver chondroitinase ABC mRNA improves hindlimb function in a rat spinal cord injury model. Adv. Healthc. Mater. 11(19), e2200206 (2022). https://doi.org/10.1002/adhm.202200206
- T. Xu, S. Yu, Y. Sun, S. Wu, D. Gao et al., DNA origami frameworks enabled self-protective siRNA delivery for dual enhancement of chemo-photothermal combination therapy. Small 17(46), 2101780 (2021). https://doi.org/10.1002/smll.202101780
- Q. Jiang, S. Liu, J. Liu, Z.-G. Wang, B. Ding, Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Adv. Mater. 31(45), 1804785 (2019). https://doi.org/10.1002/adma.201804785
- M. Singh, D. Sharma, M. Garg, A. Kumar, A. Baliyan et al., Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnol. Adv. 61, 108052 (2022). https://doi.org/10.1016/j.biotechadv.2022.108052
- M. Hu, C. Feng, Q. Yuan, C. Liu, B. Ge et al., Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer. Nat. Commun. 14(1), 1307 (2023). https://doi.org/10.1038/s41467-023-37020-y
- N. Al Fayez, M.S. Nassar, A.A. Alshehri, M.K. Alnefaie, F.A. Almughem et al., Recent advancement in mRNA vaccine development and applications. Pharmaceutics 15(7), 1972 (2023). https://doi.org/10.3390/pharmaceutics15071972
- P.G. Kremsner, R.A. Ahuad Guerrero, E. Arana-Arri, G.J. Aroca Martinez, M. Bonten et al., Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis. 22(3), 329–340 (2022). https://doi.org/10.1016/S1473-3099(21)00677-0
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05815498
- G. Baldeon Vaca, M. Meyer, A. Cadete, C.J. Hsiao, A. Golding et al., Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. Sci. Adv. 9(38), eadh1655 (2023). https://doi.org/10.1126/sciadv.adh1655
- K. McMahan, F. Wegmann, M. Aid, M. Sciacca, J. Liu et al., Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature 626(7998), 385–391 (2024). https://doi.org/10.1038/s41586-023-06951-3
- M. Gagne, B.J. Flynn, S.F. Andrew, J. Marquez, D.R. Flebbe et al., Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat. Immunol. 25(10), 1913–1927 (2024). https://doi.org/10.1038/s41590-024-01951-5
- W. Tai, K. Yang, Y. Liu, R. Li, S. Feng et al., A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat. Commun. 14(1), 8042 (2023). https://doi.org/10.1038/s41467-023-43798-8
- Y. Oda, Y. Kumagai, M. Kanai, Y. Iwama, I. Okura et al., Persistence of immune responses of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2. Lancet Infect. Dis. 24(4), 341–343 (2024). https://doi.org/10.1016/S1473-3099(24)00060-4
- N. Fan, K. Chen, R. Zhu, Z. Zhang, H. Huang et al., Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Sci. Adv. 8(51), eabq3500 (2022). https://doi.org/10.1126/sciadv.abq3500
- J. Jaggers, A.R. Wolfson, mRNA COVID-19 vaccine anaphylaxis: epidemiology, risk factors, and evaluation. Curr. Allergy Asthma Rep. 23(3), 195–200 (2023). https://doi.org/10.1007/s11882-023-01065-2
- M. Patone, X.W. Mei, L. Handunnetthi, S. Dixon, F. Zaccardi et al., Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 28(2), 410–422 (2022). https://doi.org/10.1038/s41591-021-01630-0
- P.P. Liu, T.S. Kafil, COVID-19 vaccine myocarditis: cautious reassurance in an era of dynamic uncertainty. J. Am. Coll. Cardiol. 80(24), 2266–2268 (2022). https://doi.org/10.1016/j.jacc.2022.10.010
- W.A. Lee, COVID-19 vaccine-associated optic neuritis. QJM 115(10), 683–685 (2022). https://doi.org/10.1093/qjmed/hcac208
- M. Yang, Z. Zhang, P. Jin, K. Jiang, Y. Xu et al., Effects of PEG antibodies on in vivo performance of LNP-mRNA vaccines. Int. J. Pharm. 650, 123695 (2024). https://doi.org/10.1016/j.ijpharm.2023.123695
- R. Tenchov, J.M. Sasso, Q.A. Zhou, PEGylated lipid nanop formulations: immunological safety and efficiency perspective. Bioconjugate Chem. 34(6), 941–960 (2023). https://doi.org/10.1021/acs.bioconjchem.3c00174
- M. Li, Y. Huang, J. Wu, S. Li, M. Mei et al., A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Mater. Horiz. 10(2), 466–472 (2023). https://doi.org/10.1039/d2mh01260j
- M.A.G. Hoffmann, Z. Yang, K.E. Huey-Tubman, A.A. Cohen, P.N.P. Gnanapragasam et al., ESCRT recruitment to SARS-CoV-2 spike induces virus-like ps that improve mRNA vaccines. Cell 186(11), 2380-2391.e9 (2023). https://doi.org/10.1016/j.cell.2023.04.024
- B. Essink, L. Chu, W. Seger, E. Barranco, N. Le Cam et al., The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect. Dis. 23(5), 621–633 (2023). https://doi.org/10.1016/S1473-3099(22)00764-2
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05831111
- US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06033261
- C.P. Arevalo, M.J. Bolton, V. Le Sage, N. Ye, C. Furey et al., A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378(6622), 899–904 (2022). https://doi.org/10.1126/science.abm0271
- M. Ganley, L.E. Holz, J.J. Minnell, M.N. de Menezes, O.K. Burn et al., mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat. Immunol. 24(9), 1487–1498 (2023). https://doi.org/10.1038/s41590-023-01562-6
- E. Wilson, J. Goswami, A.H. Baqui, P.A. Doreski, G. Perez-Marc et al., Efficacy and safety of an mRNA-based RSV PreF vaccine in older adults. N. Engl. J. Med. 389(24), 2233–2244 (2023). https://doi.org/10.1056/NEJMoa2307079
- C. Liu, Q. Shi, X. Huang, S. Koo, N. Kong et al., mRNA-based cancer therapeutics. Nat. Rev. Cancer 23(8), 526–543 (2023). https://doi.org/10.1038/s41568-023-00586-2
- C.L. Vogel, M.A. Cobleigh, D. Tripathy, J.C. Gutheil, L.N. Harris et al., Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 41(9), 1638–1645 (2023). https://doi.org/10.1200/jco.2002.20.3.719
- A.X. Zhu, F. Dayyani, C.-J. Yen, Z. Ren, Y. Bai et al., Alpha-fetoprotein as a potential surrogate biomarker for atezolizumab + bevacizumab treatment of hepatocellular carcinoma. Clin. Cancer Res. 28(16), 3537–3545 (2022). https://doi.org/10.1158/1078-0432.CCR-21-3275
- S.P. Balk, Y.-J. Ko, G.J. Bubley, Biology of prostate-specific antigen. J. Clin. Oncol. 21(2), 383–391 (2003). https://doi.org/10.1200/jco.2003.02.083
- L.M. Kranz, M. Diken, H. Haas, S. Kreiter, C. Loquai et al., Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607), 396–401 (2016). https://doi.org/10.1038/nature18300
- Y. Li, M. Wang, X. Peng, Y. Yang, Q. Chen et al., mRNA vaccine in cancer therapy: current advance and future outlook. Clin. Transl. Med. 13(8), e1384 (2023). https://doi.org/10.1002/ctm2.1384
- F. Lang, B. Schrörs, M. Löwer, Ö. Türeci, U. Sahin, Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21(4), 261–282 (2022). https://doi.org/10.1038/s41573-021-00387-y
- Z. Sethna, P. Guasp, C. Reiche, M. Milighetti, N. Ceglia et al., RNA neoantigen vaccines prime long-lived CD8+ T cells in pancreatic cancer. Nature 639(8056), 1042–1051 (2025). https://doi.org/10.1038/s41586-024-08508-4
- C.L. Lorentzen, J.B. Haanen, Ö. Met, I.M. Svane, Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23(10), e450–e458 (2022). https://doi.org/10.1016/S1470-2045(22)00372-2
- J. Ramos da Silva, K. Bitencourt Rodrigues, G. Formoso Pelegrin, N. Silva Sales, H. Muramatsu et al., Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci. Transl. Med. 15(686), eabn3464 (2023). https://doi.org/10.1126/scitranslmed.abn3464
- T. Korzun, A.S. Moses, J. Kim, S. Patel, C. Schumann et al., Nanop-based follistatin messenger RNA therapy for reprogramming metastatic ovarian cancer and ameliorating cancer-associated Cachexia. Small 18(44), e2204436 (2022). https://doi.org/10.1002/smll.202204436
- H.R. Mendez-Gomez, A. DeVries, P. Castillo, C. von Roemeling, S. Qdaisat et al., RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 187(10), 2521-2535.e21 (2024). https://doi.org/10.1016/j.cell.2024.04.003
- L. Jiang, J.-S. Park, L. Yin, R. Laureano, E. Jacquinet et al., Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun. 11, 5339 (2020). https://doi.org/10.1038/s41467-020-19156-3
- M. Zhang, A. Hussain, B. Hu, H. Yang, C. Li et al., Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA. Nat. Commun. 15(1), 6463 (2024). https://doi.org/10.1038/s41467-024-50752-9
- L.L. Kenney, R.S. Chiu, M.N. Dutra, A. Wactor, C. Honan et al., mRNA-delivery of IDO1 suppresses T cell-mediated autoimmunity. Cell Rep. Med. 5(9), 101717 (2024). https://doi.org/10.1016/j.xcrm.2024.101717
- Y. You, Y. Tian, Z. Yang, J. Shi, K.J. Kwak et al., Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7(7), 887–900 (2023). https://doi.org/10.1038/s41551-022-00989-w
- Z. Yang, J. Shi, J. Xie, Y. Wang, J. Sun et al., Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 4(1), 69–83 (2020). https://doi.org/10.1038/s41551-019-0485-1
- M. Nawaz, S. Heydarkhan-Hagvall, B. Tangruksa, H. González-King Garibotti, Y. Jing et al., Lipid nanops deliver the therapeutic VEGFA mRNA in vitro and in vivo and transform extracellular vesicles for their functional extensions. Adv. Sci. 10(12), e2206187 (2023). https://doi.org/10.1002/advs.202206187
- S. Du, W. Li, Y. Zhang, Y. Xue, X. Hou et al., Cholesterol-amino-phosphate (CAP) derived lipid nanops for delivery of self-amplifying RNA and restoration of spermatogenesis in infertile mice. Adv. Sci. 10(11), e2300188 (2023). https://doi.org/10.1002/advs.202300188
- D.J. Propper, F.R. Balkwill, Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19(4), 237–253 (2022). https://doi.org/10.1038/s41571-021-00588-9
- D.A.A. Vignali, V.K. Kuchroo, IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13(8), 722–728 (2012). https://doi.org/10.1038/ni.2366
- E.A. Aunins, A.T. Phan, M.-G. Alameh, G. Dwivedi, E. Cruz-Morales et al., An Il12 mRNA-LNP adjuvant enhances mRNA vaccine-induced CD8 T cell responses. Sci. Immunol. 10(108), eads1328 (2025). https://doi.org/10.1126/sciimmunol.ads1328
- A.K. Abbas, E. Trotta, D.R. Simeonov, A. Marson, J.A. Bluestone, Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3(25), eaat1482 (2018). https://doi.org/10.1126/sciimmunol.aat1482
- J.D. Beck, M. Diken, M. Suchan, M. Streuber, E. Diken et al., Long-lasting mRNA-encoded interleukin-2 restores CD8+ T cell neoantigen immunity in MHC class I-deficient cancers. Cancer Cell 42(4), 568-582.e11 (2024). https://doi.org/10.1016/j.ccell.2024.02.013
- S. de Picciotto, N. DeVita, C.J. Hsiao, C. Honan, S.-W. Tse et al., Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat. Commun. 13(1), 3866 (2022). https://doi.org/10.1038/s41467-022-31130-9
- J.-Q. Liu, C. Zhang, X. Zhang, J. Yan, C. Zeng et al., Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanops for cancer immunotherapy. J. Control. Release 345, 306–313 (2022). https://doi.org/10.1016/j.jconrel.2022.03.021
- S.L. Hewitt, A. Bai, D. Bailey, K. Ichikawa, J. Zielinski et al., Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11(477), eaat9143 (2019). https://doi.org/10.1126/scitranslmed.aat9143
- C. Hotz, T.R. Wagenaar, F. Gieseke, D.S. Bangari, M. Callahan et al., Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13(610), eabc7804 (2021). https://doi.org/10.1126/scitranslmed.abc7804
- M. Elsallab, B.L. Levine, A.S. Wayne, M. Abou-El-Enein, CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncol. 21(2), e104–e116 (2020). https://doi.org/10.1016/S1470-2045(19)30729-6
- X. Zhang, L. Zhu, H. Zhang, S. Chen, Y. Xiao, CAR-T cell therapy in hematological malignancies: current opportunities and challenges. Front. Immunol. 13, 927153 (2022). https://doi.org/10.3389/fimmu.2022.927153
- Y. Zhao, E. Moon, C. Carpenito, C.M. Paulos, X. Liu et al., Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70(22), 9053–9061 (2010). https://doi.org/10.1158/0008-5472.CAN-10-2880
- T.L. Hunter, Y. Bao, Y. Zhang, D. Matsuda, R. Riener et al., In vivo CAR T cell generation to treat cancer and autoimmune disease. Science 388(6753), 1311–1317 (2025). https://doi.org/10.1126/science.ads8473
- N. Shimasaki, H. Fujisaki, D. Cho, M. Masselli, T. Lockey et al., A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy 14(7), 830–840 (2012). https://doi.org/10.3109/14653249.2012.671519
- J. Wu, W. Wu, B. Zhou, B. Li, Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol. 42(2), 228–240 (2024). https://doi.org/10.1016/j.tibtech.2023.08.005
- N. Li, S. Geng, Z.-Z. Dong, Y. Jin, H. Ying et al., A new era of cancer immunotherapy: combining revolutionary technologies for enhanced CAR-M therapy. Mol. Cancer 23(1), 117 (2024). https://doi.org/10.1186/s12943-024-02032-9
- K. Gu, T. Liang, L. Hu, Y. Zhao, W. Ying et al., Intraperitoneal programming of tailored CAR macrophages via mRNA-LNP to boost cancer immunotherapy. (Preprint) bioRxiv (2024). https://doi.org/10.1101/2024.07.30.605730
- B. Li, R.S. Manan, S.-Q. Liang, A. Gordon, A. Jiang et al., Combinatorial design of nanops for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41(10), 1410–1415 (2023). https://doi.org/10.1038/s41587-023-01679-x
- L. Breda, T.E. Papp, M.P. Triebwasser, A. Yadegari, M.T. Fedorky et al., In vivo hematopoietic stem cell modification by mRNA delivery. Science 381(6656), 436–443 (2023). https://doi.org/10.1126/science.ade6967
- J.Y. Wang, J.A. Doudna, CRISPR technology: a decade of genome editing is only the beginning. Science 379(6629), eadd8643 (2023). https://doi.org/10.1126/science.add8643
- J.P. Han, M. Kim, B.S. Choi, J.H. Lee, G.S. Lee et al., In vivo delivery of CRISPR-Cas9 using lipid nanops enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 8(3), eabj6901 (2022). https://doi.org/10.1126/sciadv.abj6901
- X.-H. Ren, C. Xu, L.-L. Li, Y. Zuo, D. Han et al., A targeting delivery system for effective genome editing in leukemia cells to reverse malignancy. J. Control. Release 343, 645–656 (2022). https://doi.org/10.1016/j.jconrel.2022.02.012
- N. Zabaleta, L. Torella, N.D. Weber, G. Gonzalez-Aseguinolaza, mRNA and gene editing: Late breaking therapies in liver diseases. Hepatology 76(3), 869–887 (2022). https://doi.org/10.1002/hep.32441
- M. Gautam, A. Jozic, G.L. Su, M. Herrera-Barrera, A. Curtis et al., Lipid nanops with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 14(1), 6468 (2023). https://doi.org/10.1038/s41467-023-42189-3
- Y. Zhao, Y. Li, F. Wang, X. Gan, T. Zheng et al., CES1-triggered liver-specific cargo release of CRISPR/Cas9 elements by cationic triadic copolymeric nanops targeting gene editing of PCSK9 for hyperlipidemia amelioration. Adv. Sci. 10(19), 2300502 (2023). https://doi.org/10.1002/advs.202300502
- M. Moradpour, S.N.A. Abdulah, CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol. J. 18(1), 32–44 (2020). https://doi.org/10.1111/pbi.13232
- J.P. Beyersdorf, S. Bawage, N. Iglesias, H.E. Peck, R.A. Hobbs et al., Robust, durable gene activation in vivo via mRNA-encoded activators. ACS Nano 16(4), 5660–5671 (2022). https://doi.org/10.1021/acsnano.1c10631
- T.E.
References
S. Brenner, F. Jacob, M. Meselson, An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961). https://doi.org/10.1038/190576a0
A. Isaacs, R.A. Cox, Z. Rotem, Foreign nucleic acids as the stimulus to make interferon. Lancet 282(7299), 113–116 (1963). https://doi.org/10.1016/S0140-6736(63)92585-6
A.D. Bangham, M.M. Standish, J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13(1), 238–IN27 (1965). https://doi.org/10.1016/S0022-2836(65)80093-6
S. Muthukrishnan, G.W. Both, Y. Furuichi, A.J. Shatkin, 5’-terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 255(5503), 33–37 (1975). https://doi.org/10.1038/255033a0
M.J. Ostro, D. Giacomoni, D. Lavelle, W. Paxton, S. Dray, Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature 274(5674), 921–923 (1978). https://doi.org/10.1038/274921a0
G.J. Dimitriadis, Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature 274(5674), 923–924 (1978). https://doi.org/10.1038/274923a0
P.A. Krieg, D.A. Melton, Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12(18), 7057–7070 (1984). https://doi.org/10.1093/nar/12.18.7057
R.W. Malone, P.L. Felgner, I.M. Verma, Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. U.S.A. 86(16), 6077–6081 (1989). https://doi.org/10.1073/pnas.86.16.6077
J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi et al., Direct gene transfer into mouse muscle in vivo. Science 247(4949), 1465–1468 (1990). https://doi.org/10.1126/science.1690918
F. Martinon, S. Krishnan, G. Lenzen, R. Magné, E. Gomard et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 23(7), 1719–1722 (1993). https://doi.org/10.1002/eji.1830230749
R.M. Conry, A.F. LoBuglio, M. Wright, L. Sumerel, M.J. Pike et al., Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55(7), 1397–1400 (1995)
A. Heiser, D. Coleman, J. Dannull, D. Yancey, M.A. Maurice et al., Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109(3), 409–417 (2002). https://doi.org/10.1172/JCI14364
K. Karikó, M. Buckstein, H. Ni, D. Weissman, Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2), 165–175 (2005). https://doi.org/10.1016/j.immuni.2005.06.008
K. Karikó, H. Muramatsu, F.A. Welsh, J. Ludwig, H. Kato et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16(11), 1833–1840 (2008). https://doi.org/10.1038/mt.2008.200
B. Weide, S. Pascolo, B. Scheel, E. Derhovanessian, A. Pflugfelder et al., Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 32(5), 498–507 (2009). https://doi.org/10.1097/CJI.0b013e3181a00068
S. Kreiter, A. Selmi, M. Diken, M. Koslowski, C.M. Britten et al., Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70(22), 9031–9040 (2010). https://doi.org/10.1158/0008-5472.CAN-10-0699
W.Y. Hwang, Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31(3), 227–229 (2013). https://doi.org/10.1038/nbt.2501
U. Sahin, E. Derhovanessian, M. Miller, B.-P. Kloke, P. Simon et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662), 222–226 (2017). https://doi.org/10.1038/nature23003
K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586(7830), 567–571 (2020). https://doi.org/10.1038/s41586-020-2622-0
F.P. Polack, S.J. Thomas, N. Kitchin, J. Absalon, A. Gurtman et al., Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 383(27), 2603–2615 (2020). https://doi.org/10.1056/NEJMoa2034577
J.D. Gillmore, E. Gane, J. Taubel, J. Kao, M. Fontana et al., CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385(6), 493–502 (2021). https://doi.org/10.1056/NEJMoa2107454
mRNA vaccine slows melanoma recurrence, Cancer Discov. 13(6), 1278 (2023). https://doi.org/10.1158/2159-8290.CD-NB2023-0028
First self-amplifying mRNA vaccine approved (News in Brief). Nat. Biotechnol. 42(1), 4 (2024). https://doi.org/10.1038/s41587-023-02101-2
D. Koeberl, A. Schulze, N. Sondheimer, G.S. Lipshutz, T. Geberhiwot et al., Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature 628(8009), 872–877 (2024). https://doi.org/10.1038/s41586-024-07266-7
J. Goswami, J.F. Cardona, D.C. Hsu, A.K. Simorellis, L. Wilson et al., Safety and immunogenicity of mRNA-1345 RSV vaccine coadministered with an influenza or COVID-19 vaccine in adults aged 50 years or older: an observer-blinded, placebo-controlled, randomised, phase 3 trial. Lancet Infect. Dis. 25(4), 411–423 (2025). https://doi.org/10.1016/S1473-3099(24)00589-9
M.-G. Alameh, A. Semon, N.U. Bayard, Y.-G. Pan, G. Dwivedi et al., A multivalent mRNA-LNP vaccine protects against Clostridioides difficile infection. Science 386(6717), 69–75 (2024). https://doi.org/10.1126/science.adn4955
L.R. Baden, H.M. El Sahly, B. Essink, K. Kotloff, S. Frey et al., Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384(5), 403–416 (2021). https://doi.org/10.1056/NEJMoa2035389
U. Sahin, P. Oehm, E. Derhovanessian, R.A. Jabulowsky, M. Vormehr et al., An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585(7823), 107–112 (2020). https://doi.org/10.1038/s41586-020-2537-9
J.S. Weber, M.S. Carlino, A. Khattak, T. Meniawy, G. Ansstas et al., Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403(10427), 632–644 (2024). https://doi.org/10.1016/S0140-6736(23)02268-7
L.A. Rojas, Z. Sethna, K.C. Soares, C. Olcese, N. Pang et al., Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618(7963), 144–150 (2023). https://doi.org/10.1038/s41586-023-06063-y
S.L. Hewitt, D. Bailey, J. Zielinski, A. Apte, F. Musenge et al., Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26(23), 6284–6298 (2020). https://doi.org/10.1158/1078-0432.CCR-20-0472
I. Liric Rajlic, B. Guglieri-Lopez, N. Rangoonwala, V. Ivaturi, L. Van et al., Translational kinetic-pharmacodynamics of mRNA-6231, an investigational mRNA therapeutic encoding mutein interleukin-2. CPT Pharmacometrics Syst. Pharmacol. 13(6), 1067–1078 (2024). https://doi.org/10.1002/psp4.13142
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02277522
US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02624258
H.J. Longhurst, K. Lindsay, R.S. Petersen, L.M. Fijen, P. Gurugama et al., CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 390(5), 432–441 (2024). https://doi.org/10.1056/NEJMoa2309149
X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28(11), 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
A. Ramanathan, G.B. Robb, S.-H. Chan, mRNA capping: biological functions and applications. Nucleic Acids Res. 44(16), 7511–7526 (2016). https://doi.org/10.1093/nar/gkw551
N. Sonenberg, A.G. Hinnebusch, Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4), 731–745 (2009). https://doi.org/10.1016/j.cell.2009.01.042
S.W. Lockless, H.T. Cheng, A.E. Hodel, F.A. Quiocho, P.D. Gershon, Recognition of capped RNA substrates by VP39, the vaccinia virus-encoded mRNA cap-specific 2’-O-methyltransferase. Biochemistry 37(23), 8564–8574 (1998). https://doi.org/10.1021/bi980178m
S.A. Martin, B. Moss, mRNA guanylyltransferase and mRNA (guanine-7-)-methyltransferase from vaccinia virions. Donor and acceptor substrate specificites. J. Biol. Chem. 251(23), 7313–7321 (1976). https://doi.org/10.1016/S0021-9258(17)32851-X
A.-L. Fuchs, A. Neu, R. Sprangers, A general method for rapid and cost-efficient large-scale production of 5’ capped RNA. RNA 22(9), 1454–1466 (2016). https://doi.org/10.1261/rna.056614.116
T. Ogino, In vitro capping and transcription of rhabdoviruses. Methods 59(2), 188–198 (2013). https://doi.org/10.1016/j.ymeth.2012.05.013
H. Ohno, S. Akamine, M. Mochizuki, K. Hayashi, S. Akichika et al., Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5’ cap-modified mRNAs. Nucleic Acids Res. 51(6), e34 (2023). https://doi.org/10.1093/nar/gkad019
F. Muttach, N. Muthmann, A. Rentmeister, Synthetic mRNA capping. Beilstein J. Org. Chem. 13, 2819–2832 (2017). https://doi.org/10.3762/bjoc.13.274
A.E. Pasquinelli, J.E. Dahlberg, E. Lund, Reverse 5’ caps in RNAs made in vitro by phage RNA polymerases. RNA 1(9), 957–967 (1995)
J. Stepinski, C. Waddell, R. Stolarski, E. Darzynkiewicz, R.E. Rhoads, Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA 7(10), 1486–1495 (2001)
A.N. Kuhn, M. Diken, S. Kreiter, A. Selmi, J. Kowalska et al., Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 17(8), 961–971 (2010). https://doi.org/10.1038/gt.2010.52
J.M. Henderson, A. Ujita, E. Hill, S. Yousif-Rosales, C. Smith et al., Cap 1 messenger RNA synthesis with co-transcriptional CleanCap® analog by in vitro transcription. Curr. Protoc. 1(2), e39 (2021). https://doi.org/10.1002/cpz1.39
I. Vlatkovic, J. Ludwig, G. Boros, G.T. Szabó, J. Reichert et al., Ribozyme assays to quantify the capping efficiency of in vitro-transcribed mRNA. Pharmaceutics 14(2), 328 (2022). https://doi.org/10.3390/pharmaceutics14020328
S.C. Devarkar, C. Wang, M.T. Miller, A. Ramanathan, F. Jiang et al., Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. U. S. A. 113(3), 596–601 (2016). https://doi.org/10.1073/pnas.1515152113
M. Inagaki, N. Abe, Z. Li, Y. Nakashima, S. Acharyya et al., Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures. Nat. Commun. 14(1), 2657 (2023). https://doi.org/10.1038/s41467-023-38244-8
A. Bollu, A. Peters, A. Rentmeister, Chemo-enzymatic modification of the 5’ cap to study mRNAs. Acc. Chem. Res. 55(9), 1249–1261 (2022). https://doi.org/10.1021/acs.accounts.2c00059
M. van Dülmen, N. Muthmann, A. Rentmeister, Chemo-enzymatic modification of the 5’ cap maintains translation and increases immunogenic properties of mRNA. Angew. Chem. Int. Ed. 60(24), 13280–13286 (2021). https://doi.org/10.1002/anie.202100352
H. Chen, D. Liu, A. Aditham, J. Guo, J. Huang et al., Chemical and topological design of multicapped mRNA and capped circular RNA to augment translation. Nat. Biotechnol. 43(7), 1128–1143 (2025). https://doi.org/10.1038/s41587-024-02393-y
N. Klöcker, F.P. Weissenboeck, M. van Dülmen, P. Špaček, S. Hüwel et al., Photocaged 5’ cap analogues for optical control of mRNA translation in cells. Nat. Chem. 14(8), 905–913 (2022). https://doi.org/10.1038/s41557-022-00972-7
E. Wahle, 3’-end processing of pre-mRNA in eukaryotes. FEMS Microbiol. Rev. 23(3), 277–295 (1999). https://doi.org/10.1016/s0168-6445(99)00008-x
S.Z. Tarun Jr., A.B. Sachs, Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15(24), 7168–7177 (1996). https://doi.org/10.1002/j.1460-2075.1996.tb01108.x
L.A. Passmore, J. Coller, Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23(2), 93–106 (2022). https://doi.org/10.1038/s41580-021-00417-y
L. Weill, E. Belloc, F.-A. Bava, R. Méndez, Translational control by changes in poly(A) tail length: recycling mRNAs. Nat. Struct. Mol. Biol. 19(6), 577–585 (2012). https://doi.org/10.1038/nsmb.2311
A.C. Goldstrohm, M. Wickens, Multifunctional deadenylase complexes diversify mRNA control. Nat. Rev. Mol. Cell Biol. 9(4), 337–344 (2008). https://doi.org/10.1038/nrm2370
Y. Weng, C. Li, T. Yang, B. Hu, M. Zhang et al., The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020). https://doi.org/10.1016/j.biotechadv.2020.107534
P.S. Krawczyk, M. Mazur, W. Orzeł, O. Gewartowska, S. Jeleń et al., Re-adenylation by TENT5A enhances efficacy of SARS-CoV-2 mRNA vaccines. Nature 641(8064), 984–992 (2025). https://doi.org/10.1038/s41586-025-08842-1
H. Chen, D. Liu, J. Guo, A. Aditham, Y. Zhou et al., Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. 43(2), 194–203 (2025). https://doi.org/10.1038/s41587-024-02174-7
L. Anhäuser, S. Hüwel, T. Zobel, A. Rentmeister, Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res. 47(7), e42 (2019). https://doi.org/10.1093/nar/gkz084
V. Presnyak, N. Alhusaini, Y.-H. Chen, S. Martin, N. Morris et al., Codon optimality is a major determinant of mRNA stability. Cell 160(6), 1111–1124 (2015). https://doi.org/10.1016/j.cell.2015.02.029
G. Hanson, J. Coller, Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19(1), 20–30 (2018). https://doi.org/10.1038/nrm.2017.91
P.M. Sharp, W.H. Li, The codon adaptation index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15(3), 1281–1295 (1987). https://doi.org/10.1093/nar/15.3.1281
K. Subramanian, B. Payne, F. Feyertag, D. Alvarez-Ponce, The codon statistics database: a database of codon usage bias. Mol. Biol. Evol. 39(8), msac157 (2022). https://doi.org/10.1093/molbev/msac157
K. Leppek, R. Das, M. Barna, Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19(3), 158–174 (2018). https://doi.org/10.1038/nrm.2017.103
E. Navarro, A. Mallén, M. Hueso, Dynamic variations of 3’UTR length reprogram the mRNA regulatory landscape. Biomedicines 9(11), 1560 (2021). https://doi.org/10.3390/biomedicines9111560
V. Reshetnikov, I. Terenin, G. Shepelkova, V. Yeremeev, S. Kolmykov et al., Untranslated region sequences and the efficacy of mRNA vaccines against tuberculosis. Int. J. Mol. Sci. 25(2), 888 (2024). https://doi.org/10.3390/ijms25020888
L. Jia, Y. Mao, Q. Ji, D. Dersh, J.W. Yewdell et al., Decoding mRNA translatability and stability from the 5’ UTR. Nat. Struct. Mol. Biol. 27(9), 814–821 (2020). https://doi.org/10.1038/s41594-020-0465-x
C. Barreau, L. Paillard, H.B. Osborne, AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33(22), 7138–7150 (2005). https://doi.org/10.1093/nar/gki1012
D.P. Bartel, microRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009). https://doi.org/10.1016/j.cell.2009.01.002
E. Carballo, W.S. Lai, P.J. Blackshear, Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281(5379), 1001–1005 (1998). https://doi.org/10.1126/science.281.5379.1001
D.A. Siegel, O. Le Tonqueze, A. Biton, N. Zaitlen, D.J. Erle, Massively parallel analysis of human 3’ UTRs reveals that AU-rich element length and registration predict mRNA destabilization. G3 Genes|Genomes|Genetics 12(1), jkab404 (2022). https://doi.org/10.1093/g3journal/jkab404
G.S. Wilkie, K.S. Dickson, N.K. Gray, Regulation of mRNA translation by 5’- and 3’-UTR-binding factors. Trends Biochem. Sci. 28(4), 182–188 (2003). https://doi.org/10.1016/S0968-0004(03)00051-3
D.J. Kiltschewskij, P.F. Harrison, C. Fitzsimmons, T.H. Beilharz, M.J. Cairns, Extension of mRNA poly(A) tails and 3’UTRs during neuronal differentiation exhibits variable association with post-transcriptional dynamics. Nucleic Acids Res. 51(15), 8181–8198 (2023). https://doi.org/10.1093/nar/gkad499
J.R. Babendure, J.L. Babendure, J.-H. Ding, R.Y. Tsien, Control of mammalian translation by mRNA structure near caps. RNA 12(5), 851–861 (2006). https://doi.org/10.1261/rna.2309906
P.J. Sample, B. Wang, D.W. Reid, V. Presnyak, I.J. McFadyen et al., Human 5’ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37(7), 803–809 (2019). https://doi.org/10.1038/s41587-019-0164-5
D.M. Mauger, B.J. Cabral, V. Presnyak, S.V. Su, D.W. Reid, B. Goodman, K. Link, N. Khatwani, J. Reynders, M.J. Moore, I.J. McFadyen, mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. U. S. A. 116(48), 24075–24083 (2019). https://doi.org/10.1073/pnas.1908052116
H. Sun, K. Li, C. Liu, C. Yi, Regulation and functions of non-m6A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24(10), 714–731 (2023). https://doi.org/10.1038/s41580-023-00622-x
M. Bérouti, M. Wagner, W. Greulich, I. Piseddu, J. Gärtig et al., Pseudouridine RNA avoids immune detection through impaired endolysosomal processing and TLR engagement. Cell (2025). https://doi.org/10.1016/j.cell.2025.05.032
H. Zhang, L. Zhang, A. Lin, C. Xu, Z. Li et al., Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621(7978), 396–403 (2023). https://doi.org/10.1038/s41586-023-06127-z
J.D.G. Comes, G.P. Pijlman, T.A.H. Hick, Rise of the RNA machines—self-amplification in mRNA vaccine design. Trends Biotechnol. 41(11), 1417–1429 (2023). https://doi.org/10.1016/j.tibtech.2023.05.007
J.H. Erasmus, A.P. Khandhar, M.A. O’Connor, A.C. Walls, E.A. Hemann et al., An alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med. 12(555), eabc9396 (2020). https://doi.org/10.1126/scitranslmed.abc9396
A.B. Vogel, L. Lambert, E. Kinnear, D. Busse, S. Erbar et al., Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26(2), 446–455 (2018). https://doi.org/10.1016/j.ymthe.2017.11.017
K. Bloom, F. van den Berg, P. Arbuthnot, Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 28(3–4), 117–129 (2021). https://doi.org/10.1038/s41434-020-00204-y
J.E. McGee, J.R. Kirsch, D. Kenney, F. Cerbo, E.C. Chavez et al., Complete substitution with modified nucleotides in self-amplifying RNA suppresses the interferon response and increases potency. Nat. Biotechnol. 43(5), 720–726 (2025). https://doi.org/10.1038/s41587-024-02306-z
H. Van luchene, O. Gillon, K. Peynshaert, S.C. De Smedt, N. Sanders et al., Less is more: self-amplifying mRNA becomes self-killing upon dose escalation in immune-competent retinal cells. Eur. J. Pharm. Biopharm. 196, 114204 (2024). https://doi.org/10.1016/j.ejpb.2024.114204
M. Perkovic, S. Gawletta, T. Hempel, S. Brill, E. Nett et al., A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol. Ther. 31(6), 1636–1646 (2023). https://doi.org/10.1016/j.ymthe.2023.01.019
D.H. Fuller, P. Berglund, Amplifying RNA vaccine development. N. Engl. J. Med. 382(25), 2469–2471 (2020). https://doi.org/10.1056/NEJMcibr2009737
S. Kameda, H. Ohno, H. Saito, Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51(4), e24 (2023). https://doi.org/10.1093/nar/gkac1252
W.R. Jeck, J.A. Sorrentino, K. Wang, M.K. Slevin, C.E. Burd et al., Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2), 141–157 (2013). https://doi.org/10.1261/rna.035667.112
Y. Enuka, M. Lauriola, M.E. Feldman, A. Sas-Chen, I. Ulitsky et al., Circular rnas are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44(3), 1370–1383 (2016). https://doi.org/10.1093/nar/gkv1367
S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger et al., Circular rnas are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013). https://doi.org/10.1038/nature11928
R.A. Wesselhoeft, P.S. Kowalski, D.G. Anderson, Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9(1), 2629 (2018). https://doi.org/10.1038/s41467-018-05096-6
X. Fan, Y. Yang, C. Chen, Z. Wang, Pervasive translation of circular RNAs driven by short IRES-like elements. Nat. Commun. 13(1), 3751 (2022). https://doi.org/10.1038/s41467-022-31327-y
K. Fukuchi, Y. Nakashima, N. Abe, S. Kimura, F. Hashiya et al., Internal cap-initiated translation for efficient protein production from circular mRNA. Nat. Biotechnol. (2025). https://doi.org/10.1038/s41587-025-02561-8
T.L. Young, K.C. Wang, A.J. Varley, B. Li, Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv. Drug Deliv. Rev. 197, 114826 (2023). https://doi.org/10.1016/j.addr.2023.114826
S. Petkovic, S. Müller, RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43(4), 2454–2465 (2015). https://doi.org/10.1093/nar/gkv045
J. Cai, Z. Qiu, W.C. Cho, Z. Liu, S. Chen et al., Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm 5(11), e720 (2024). https://doi.org/10.1002/mco2.720
Y.-S. Kim, D.-H. Kim, D. An, Y. Lim, Y.-J. Seo et al., The RNA ligation method using modified splint DNAs significantly improves the efficiency of circular RNA synthesis. Anim. Cells Syst. 27(1), 208–218 (2023). https://doi.org/10.1080/19768354.2023.2265165
Y. Du, P.K. Zuber, H. Xiao, X. Li, Y. Gordiyenko et al., Efficient circular RNA synthesis for potent rolling circle translation. Nat. Biomed. Eng. 9(7), 1062–1074 (2025). https://doi.org/10.1038/s41551-024-01306-3
M.-S. Xiao, J.E. Wilusz, An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3’ ends. Nucleic Acids Res. 47(16), 8755–8769 (2019). https://doi.org/10.1093/nar/gkz576
Z. Zhang, W. Li, X. Ren, D. Luo, X. Yuan et al., Mitigating cellular dysfunction through contaminant reduction in synthetic circRNA for high-efficiency mRNA-based cell reprogramming. Adv. Sci. 12(16), e2416629 (2025). https://doi.org/10.1002/advs.202416629
R. Chen, S.K. Wang, J.A. Belk, L. Amaya, Z. Li et al., Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41(2), 262–272 (2023). https://doi.org/10.1038/s41587-022-01393-0
C. Xu, L. Zhang, W. Wang, Y. Tang, Q. Wang et al., Improving the crcularization efficiency, stability and translatability of circular RNA by circDesign. (Preprint) bioRxiv (2023). https://doi.org/10.1101/2023.07.09.548293
L. Qu, Z. Yi, Y. Shen, L. Lin, F. Chen et al., Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185(10), 1728–1744 (2022). https://doi.org/10.1016/j.cell.2022.03.044
H. Li, K. Peng, K. Yang, W. Ma, S. Qi et al., Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 12(14), 6422–6436 (2022). https://doi.org/10.7150/thno.77350
Y. Zhong, S. Du, Y. Dong, mRNA delivery in cancer immunotherapy. Acta Pharm. Sin. B. 13(4), 1348–1357 (2023). https://doi.org/10.1016/j.apsb.2023.03.001
Y. Xiao, Z. Tang, X. Huang, W. Chen, J. Zhou et al., Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51(10), 3828–3845 (2022). https://doi.org/10.1039/d1cs00617g
A.K.K. Leung, Y.Y.C. Tam, S. Chen, I.M. Hafez, P.R. Cullis, Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanop systems. J. Phys. Chem. B 119(28), 8698–8706 (2015). https://doi.org/10.1021/acs.jpcb.5b02891
A. Akinc, M.A. Maier, M. Manoharan, K. Fitzgerald, M. Jayaraman et al., The onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14(12), 1084–1087 (2019). https://doi.org/10.1038/s41565-019-0591-y
S.A. Dilliard, Q. Cheng, D.J. Siegwart, On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanops. Proc. Natl. Acad. Sci. U. S. A. 118(52), e2109256118 (2021). https://doi.org/10.1073/pnas.2109256118
S.C. Semple, A. Akinc, J. Chen, A.P. Sandhu, B.L. Mui et al., Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28(2), 172–176 (2010). https://doi.org/10.1038/nbt.1602
S. Chatterjee, E. Kon, P. Sharma, D. Peer, Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl. Acad. Sci. U. S. A. 121(11), e2307800120 (2024). https://doi.org/10.1073/pnas.2307800120
C.H. Albertsen, J.A. Kulkarni, D. Witzigmann, M. Lind, K. Petersson et al., The role of lipid components in lipid nanops for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022). https://doi.org/10.1016/j.addr.2022.114416
Y. Zong, Y. Lin, T. Wei, Q. Cheng, Lipid nanop (LNP) enables mRNA delivery for cancer therapy. Adv. Mater. 35(51), 2303261 (2023). https://doi.org/10.1002/adma.202303261
L. Xue, A.G. Hamilton, G. Zhao, Z. Xiao, R. El-Mayta et al., High-throughput barcoding of nanops identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 15(1), 1884 (2024). https://doi.org/10.1038/s41467-024-45422-9
X. Han, H. Zhang, K. Butowska, K.L. Swingle, M.-G. Alameh et al., An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021). https://doi.org/10.1038/s41467-021-27493-0
X. Han, J. Xu, Y. Xu, M.-G. Alameh, L. Xue et al., In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors. Nat. Commun. 15(1), 1762 (2024). https://doi.org/10.1038/s41467-024-45537-z
X. Han, M.-G. Alameh, K. Butowska, J.J. Knox, K. Lundgreen et al., Adjuvant lipidoid-substituted lipid nanops augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18(9), 1105–1114 (2023). https://doi.org/10.1038/s41565-023-01404-4
L. Xue, G. Zhao, N. Gong, X. Han, S.J. Shepherd et al., Combinatorial design of siloxane-incorporated lipid nanops augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20(1), 132–143 (2025). https://doi.org/10.1038/s41565-024-01747-6
S. Patel, N. Ashwanikumar, E. Robinson, Y. Xia, C. Mihai et al., Naturally-occurring cholesterol analogues in lipid nanops induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020). https://doi.org/10.1038/s41467-020-14527-2
J.A. Kulkarni, D. Witzigmann, J. Leung, Y.Y.C. Tam, P.R. Cullis, On the role of helper lipids in lipid nanop formulations of siRNA. Nanoscale 11(45), 21733–21739 (2019). https://doi.org/10.1039/c9nr09347h
J.A. Kulkarni, J.L. Myhre, S. Chen, Y.Y.C. Tam, A. Danescu et al., Design of lipid nanops for in vitro and in vivo delivery of plasmid DNA. Nanomed. Nanotechnol. Biol. Med. 13(4), 1377–1387 (2017). https://doi.org/10.1016/j.nano.2016.12.014
S. Liu, Q. Cheng, T. Wei, X. Yu, L.T. Johnson et al., Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20(5), 701–710 (2021). https://doi.org/10.1038/s41563-020-00886-0
J.W. Holland, C. Hui, P.R. Cullis, T.D. Madden, Poly(ethylene glycol)−lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry 35(8), 2618–2624 (1996). https://doi.org/10.1021/bi952000v
M. Ibrahim, E. Ramadan, N.E. Elsadek, S.E. Emam, T. Shimizu et al., Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Release 351, 215–230 (2022). https://doi.org/10.1016/j.jconrel.2022.09.031
X. Tang, J. Zhang, D. Sui, Q. Yang, T. Wang et al., Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J. Control. Release 364, 529–545 (2023). https://doi.org/10.1016/j.jconrel.2023.11.008
H. Zhang, C. Meng, X. Yi, J. Han, J. Wang et al., Fluorinated lipid nanops for enhancing mRNA delivery efficiency. ACS Nano 18(11), 7825–7836 (2024). https://doi.org/10.1021/acsnano.3c04507
Y. Ju, W.S. Lee, E.H. Pilkington, H.G. Kelly, S. Li et al., Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanop mRNA vaccine. ACS Nano 16(8), 11769–11780 (2022). https://doi.org/10.1021/acsnano.2c04543
H. Wang, Y. Wang, C. Yuan, X. Xu, W. Zhou et al., Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanops in rats. NPJ Vaccines 8(1), 169 (2023). https://doi.org/10.1038/s41541-023-00766-z
T. Suzuki, Y. Suzuki, T. Hihara, K. Kubara, K. Kondo et al., Peg shedding-rate-dependent blood clearance of PEGylated lipid nanops in mice: faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 588, 119792 (2020). https://doi.org/10.1016/j.ijpharm.2020.119792
S. Luozhong, P. Liu, R. Li, Z. Yuan, E. Debley et al., Poly(carboxybetaine) lipids enhance mRNA therapeutics efficacy and reduce their immunogenicity. Nat. Mater., 2240 (2025). https://doi.org/10.1038/s41563-025-02240-8
M.Z.C. Hatit, C.N. Dobrowolski, M.P. Lokugamage, D. Loughrey, H. Ni et al., Nanop stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat. Chem. 15(4), 508–515 (2023). https://doi.org/10.1038/s41557-023-01138-9
H. Parhiz, V.V. Shuvaev, N. Pardi, M. Khoshnejad, R.Y. Kiseleva et al., Pecam-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Release 291, 106–115 (2018). https://doi.org/10.1016/j.jconrel.2018.10.015
A. Kheirolomoom, A.J. Kare, E.S. Ingham, R. Paulmurugan, E.R. Robinson et al., In situ T-cell transfection by anti-CD3-conjugated lipid nanops leads to T-cell activation, migration, and phenotypic shift. Biomaterials 281, 121339 (2022). https://doi.org/10.1016/j.biomaterials.2021.121339
I. Tombácz, D. Laczkó, H. Shahnawaz, H. Muramatsu, A. Natesan et al., Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol. Ther. 29(11), 3293–3304 (2021). https://doi.org/10.1016/j.ymthe.2021.06.004
J.G. Rurik, I. Tombácz, A. Yadegari, P.O. Méndez Fernández, S.V. Shewale et al., CAR T cells produced in vivo to treat cardiac injury. Science 375(6576), 91–96 (2022). https://doi.org/10.1126/science.abm0594
J. Choi, E. Rustique, M. Henry, M. Guidetti, V. Josserand et al., Targeting tumors with cyclic RGD-conjugated lipid nanops loaded with an IR780 NIR dye: in vitro and in vivo evaluation. Int. J. Pharm. 532(2), 677–685 (2017). https://doi.org/10.1016/j.ijpharm.2017.03.007
Y. Qian, X. Liang, J. Yang, C. Zhao, W. Nie et al., Hyaluronan reduces cationic liposome-induced toxicity and enhances the antitumor effect of targeted gene delivery in mice. ACS Appl. Mater. Interfaces 10(38), 32006–32016 (2018). https://doi.org/10.1021/acsami.8b12393
M. Kim, M. Jeong, S. Hur, Y. Cho, J. Park et al., Engineered ionizable lipid nanops for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7(9), eabf4398 (2021). https://doi.org/10.1126/sciadv.abf4398
J. Lei, S. Qi, X. Yu, X. Gao, K. Yang et al., Development of mannosylated lipid nanops for mRNA cancer vaccine with high antigen presentation efficiency and immunomodulatory capability. Angew. Chem. Int. Ed. 63(13), e202318515 (2024). https://doi.org/10.1002/anie.202318515
A.J. Sinegra, M. Evangelopoulos, J. Park, Z. Huang, C.A. Mirkin, Lipid nanop spherical nucleic acids for intracellular DNA and RNA delivery. Nano Lett. 21(15), 6584–6591 (2021). https://doi.org/10.1021/acs.nanolett.1c01973
G. Zhu, X. Chen, Aptamer-based targeted therapy. Adv. Drug Deliv. Rev. 134, 65–78 (2018). https://doi.org/10.1016/j.addr.2018.08.005
J.S. Lee, M. Kim, H. Jin, M. Kwak, E. Cho et al., DNA aptamer-conjugated lipid nanop for targeted PTEN mRNA delivery to prostate cancer cells. Int. J. Pharm. 662, 124519 (2024). https://doi.org/10.1016/j.ijpharm.2024.124519
R. Hadianamrei, X. Zhao, Current state of the art in peptide-based gene delivery. J. Control. Release 343, 600–619 (2022). https://doi.org/10.1016/j.jconrel.2022.02.010
H. Kübler, B. Scheel, U. Gnad-Vogt, K. Miller, W. Schultze-Seemann et al., Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 3, 26 (2015). https://doi.org/10.1186/s40425-015-0068-y
I. Ruseska, K. Fresacher, C. Petschacher, A. Zimmer, Use of protamine in nanopharmaceuticals—a review. Nanomaterials 11(6), 1508 (2021). https://doi.org/10.3390/nano11061508
M. Tusup, S. Pascolo, Generation of immunostimulating 130 nm protamine-RNA nanops. Methods Mol. Biol. 1499, 155–163 (2017). https://doi.org/10.1007/978-1-4939-6481-9_9
V.K. Udhayakumar, A. De Beuckelaer, J. McCaffrey, C.M. McCrudden, J.L. Kirschman et al., Arginine-rich peptide-based mRNA nano complexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv. Healthc. Mater. 6(13), 201601412 (2017). https://doi.org/10.1002/adhm.201601412
S. Lee, S. Nasr, S. Rasheed, Y. Liu, O. Hartwig et al., Proteoid biodynamers for safe mRNA transfection via pH-responsive nanorods enabling endosomal escape. J. Control. Release 353, 915–929 (2023). https://doi.org/10.1016/j.jconrel.2022.12.018
Y. Wang, Z. Zhang, J. Luo, X. Han, Y. Wei et al., mRNA vaccine: a potential therapeutic strategy. Mol. Cancer 20(1), 33 (2021). https://doi.org/10.1186/s12943-021-01311-z
R. Zhang, W. Jing, C. Chen, S. Zhang, M. Abdalla et al., Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv. Mater. 34(14), e2107506 (2022). https://doi.org/10.1002/adma.202107506
M. Segel, B. Lash, J. Song, A. Ladha, C.C. Liu et al., Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373(6557), 882–889 (2021). https://doi.org/10.1126/science.abg6155
V. Madigan, Y. Zhang, R. Raghavan, M.E. Wilkinson, G. Faure et al., Human paraneoplastic antigen MA2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Proc. Natl. Acad. Sci. U. S. A. 121(11), e2307812120 (2024). https://doi.org/10.1073/pnas.2307812120
P. Vicennati, A. Giuliano, G. Ortaggi, A. Masotti, Polyethylenimine in medicinal chemistry. Curr. Med. Chem. 15(27), 2826–2839 (2008). https://doi.org/10.2174/092986708786242778
F. Hao, Y. Li, J. Zhu, J. Sun, B. Marshall et al., Polyethylenimine-based formulations for delivery of oligonucleotides. Curr. Med. Chem. 26(13), 2264–2284 (2019). https://doi.org/10.2174/0929867325666181031094759
M. Kim, J. Oh, Y. Lee, E.-H. Lee, S.H. Ko et al., Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J. Control. Release 350, 471–485 (2022). https://doi.org/10.1016/j.jconrel.2022.08.049
Y. Yin, X. Li, H. Ma, J. Zhang, D. Yu et al., In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21(5), 2224–2231 (2021). https://doi.org/10.1021/acs.nanolett.0c05039
M. Li, M. Zhao, Y. Fu, Y. Li, T. Gong et al., Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release 228, 9–19 (2016). https://doi.org/10.1016/j.jconrel.2016.02.043
J. Li, Y. Wu, J. Xiang, H. Wang, Q. Zhuang et al., Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. Chem. Eng. J. 456, 140930 (2023). https://doi.org/10.1016/j.cej.2022.140930
M. Shive, J. Anderson, Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28(1), 5–24 (1997). https://doi.org/10.1016/s0169-409x(97)00048-3
J.H. Park, A. Mohapatra, J. Zhou, M. Holay, N. Krishnan et al., Virus-mimicking cell membrane-coated nanops for cytosolic delivery of mRNA. Angew. Chem. Int. Ed. 61(2), e202113671 (2022). https://doi.org/10.1002/anie.202113671
D.G. Anderson, D.M. Lynn, R. Langer, Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. 42(27), 3153–3158 (2003). https://doi.org/10.1002/anie.200351244
R.A. Cordeiro, A. Serra, J.F.J. Coelho, H. Faneca, Poly(β-amino ester)-based gene delivery systems: from discovery to therapeutic applications. J. Control. Release 310, 155–187 (2019). https://doi.org/10.1016/j.jconrel.2019.08.024
Z. Li, X.-Q. Zhang, W. Ho, X. Bai, D.K. Jaijyan et al., Lipid-polymer hybrid “p-in-p” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines. Adv. Funct. Mater. 32(40), 2204462 (2022). https://doi.org/10.1002/adfm.202204462
A.K. Patel, J.C. Kaczmarek, S. Bose, K.J. Kauffman, F. Mir et al., Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31(8), e1805116 (2019). https://doi.org/10.1002/adma.201805116
P. Huang, L. Jiang, H. Pan, L. Ding, B. Zhou et al., An integrated polymeric mRNA vaccine without inflammation side effects for cellular immunity mediated cancer therapy. Adv. Mater. 35(3), 2207471 (2023). https://doi.org/10.1002/adma.202207471
J.C. Kaczmarek, A.K. Patel, K.J. Kauffman, O.S. Fenton, M.J. Webber et al., Polymer–lipid nanops for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Ed. 55(44), 13808–13812 (2016). https://doi.org/10.1002/anie.201608450
N.D. Le, B.L. Nguyen, B.R. Patil, H. Chun, S. Kim et al., Antiangiogenic therapeutic mRNA delivery using lung-selective polymeric nanomedicine for lung cancer treatment. ACS Nano 18(11), 8392–8410 (2024). https://doi.org/10.1021/acsnano.3c13039
U. Capasso Palmiero, J.C. Kaczmarek, O.S. Fenton, D.G. Anderson, Poly(β-amino ester)-co-poly(caprolactone) terpolymers as nonviral vectors for mRNA delivery in vitro and in vivo. Adv. Healthc. Mater. 7(14), e1800249 (2018). https://doi.org/10.1002/adhm.201800249
Q. Chen, R. Qi, X. Chen, X. Yang, S. Wu et al., A targeted and stable polymeric nanoformulation enhances systemic delivery of mRNA to tumors. Mol. Ther. 25(1), 92–101 (2017). https://doi.org/10.1016/j.ymthe.2016.10.006
A. Le Moignic, V. Malard, T. Benvegnu, L. Lemiègre, M. Berchel et al., Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J. Control. Release 278, 110–121 (2018). https://doi.org/10.1016/j.jconrel.2018.03.035
N.N. Parayath, S.B. Stephan, A.L. Koehne, P.S. Nelson, M.T. Stephan, In vitro -transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11(1), 6080 (2020). https://doi.org/10.1038/s41467-020-19486-2
K. Ling, Y. Dou, N. Yang, L. Deng, Y. Wang et al., Genome editing mRNA nanotherapies inhibit cervical cancer progression and regulate the immunosuppressive microenvironment for adoptive T-cell therapy. J. Control. Release 360, 496–513 (2023). https://doi.org/10.1016/j.jconrel.2023.07.007
G. Chen, B. Ma, Y. Wang, S. Gong, A universal GSH-responsive nanoplatform for the delivery of DNA, mRNA, and Cas9/sgRNA ribonucleoprotein. ACS Appl. Mater. Interfaces 10(22), 18515–18523 (2018). https://doi.org/10.1021/acsami.8b03496
N. Yoshinaga, S. Uchida, A. Dirisala, M. Naito, K. Osada et al., mRNA loading into ATP-responsive polyplex micelles with optimal density of phenylboronate ester crosslinking to balance robustness in the biological milieu and intracellular translational efficiency. J. Control. Release 330, 317–328 (2021). https://doi.org/10.1016/j.jconrel.2020.12.033
J. Sadoff, G. Gray, A. Vandebosch, V. Cárdenas, G. Shukarev et al., Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19. N. Engl. J. Med. 384(23), 2187–2201 (2021). https://doi.org/10.1056/nejmoa2101544
A.O. Hassan, N.M. Kafai, I.P. Dmitriev, J.M. Fox, B.K. Smith et al., A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183(1), 169-184.e13 (2020). https://doi.org/10.1016/j.cell.2020.08.026
S. Ling, S. Yang, X. Hu, D. Yin, Y. Dai et al., Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat. Biomed. Eng. 5(2), 144–156 (2021). https://doi.org/10.1038/s41551-020-00656-y
D. Yin, S. Ling, D. Wang, Y. Dai, H. Jiang et al., Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat. Biotechnol. 39(5), 567–577 (2021). https://doi.org/10.1038/s41587-020-00781-8
W. Bai, D. Yang, Y. Zhao, G. Li, Z. Liu et al., Multi-step engineered adeno-associated virus enables whole-brain mRNA delivery. (Preprint) bioRxiv (2024). https://doi.org/10.1101/2024.06.04.597261
A. Raguram, S. Banskota, D.R. Liu, Therapeutic in vivo delivery of gene editing agents. Cell 185(15), 2806–2827 (2022). https://doi.org/10.1016/j.cell.2022.03.045
Y. Zhang, Q. Liu, X. Zhang, H. Huang, S. Tang et al., Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J. Nanobiotechnol. 20(1), 279 (2022). https://doi.org/10.1186/s12951-022-01472-z
Q.-F. Han, W.-J. Li, K.-S. Hu, J. Gao, W.-L. Zhai et al., Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol. Cancer 21(1), 207 (2022). https://doi.org/10.1186/s12943-022-01671-0
D.-F. Li, Q.-S. Liu, M.-F. Yang, H.-M. Xu, M.-Z. Zhu et al., Nanomaterials for mRNA-based therapeutics: challenges and opportunities. Bioeng. Transl. Med. 8(3), e10492 (2023). https://doi.org/10.1002/btm2.10492
X. Zhu, M. Badawi, S. Pomeroy, D.S. Sutaria, Z. Xie et al., Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6(1), 1324730 (2017). https://doi.org/10.1080/20013078.2017.1324730
K.D. Popowski, A. Moatti, G. Scull, D. Silkstone, H. Lutz et al., Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5(9), 2960–2974 (2022). https://doi.org/10.1016/j.matt.2022.06.012
M. Liu, S. Hu, N. Yan, K.D. Popowski, K. Cheng, Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19(4), 565–575 (2024). https://doi.org/10.1038/s41565-023-01580-3
W. Gu, S. Luozhong, S. Cai, K. Londhe, N. Elkasri et al., Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat. Biomed. Eng. 8(4), 415–426 (2024). https://doi.org/10.1038/s41551-023-01150-x
Z. Chen, M.A. Farag, Z. Zhong, C. Zhang, Y. Yang et al., Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev. 176, 113870 (2021). https://doi.org/10.1016/j.addr.2021.113870
F. Zhan, X. Yan, F. Sheng, B. Li, Facile in situ synthesis of silver nanops on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chem. 330, 127172 (2020). https://doi.org/10.1016/j.foodchem.2020.127172
Z. Yi, G. Chen, X. Chen, X. Ma, X. Cui et al., Preparation of strong antioxidative, therapeutic nanops based on amino acid-induced ultrafast assembly of tea polyphenols. ACS Appl. Mater. Interfaces 12(30), 33550–33563 (2020). https://doi.org/10.1021/acsami.0c10282
M. Messaoudene, R. Pidgeon, C. Richard, M. Ponce, K. Diop et al., A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12(4), 1070–1087 (2022). https://doi.org/10.1158/2159-8290.CD-21-0808
R.-R. He, M. Wang, C.-Z. Wang, B.-T. Chen, C.-N. Lu et al., Protective effect of apple polyphenols against stress-provoked influenza viral infection in restraint mice. J. Agric. Food Chem. 59(8), 3730–3737 (2011). https://doi.org/10.1021/jf104982y
A. Cano, M. Ettcheto, J.H. Chang, E. Barroso, M. Espina et al., Dual-drug loaded nanops of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release 301, 62–75 (2019). https://doi.org/10.1016/j.jconrel.2019.03.010
B. Zhang, Y. Qin, L. Yang, Y. Wu, N. Chen et al., A polyphenol-network-mediated coating modulates inflammation and vascular healing on vascular stents. ACS Nano 16(4), 6585–6597 (2022). https://doi.org/10.1021/acsnano.2c00642
T. Behl, K. Mehta, A. Sehgal, S. Singh, N. Sharma et al., Exploring the role of polyphenols in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 62(19), 5372–5393 (2022). https://doi.org/10.1080/10408398.2021.1924613
Z. Chen, W. Hao, C. Gao, Y. Zhou, C. Zhang et al., A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharm. Sin. B 12(8), 3367–3382 (2022). https://doi.org/10.1016/j.apsb.2022.03.025
J. Cronin, X.-Y. Zhang, J. Reiser, Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5(4), 387–398 (2005). https://doi.org/10.2174/1566523054546224
D. Yin, Y. Zhong, S. Ling, S. Lu, X. Wang et al., Dendritic-cell-targeting virus-like ps as potent mRNA vaccine carriers. Nat. Biomed. Eng. 9(2), 185–200 (2025). https://doi.org/10.1038/s41551-024-01208-4
J. Fuenmayor, F. Gòdia, L. Cervera, Production of virus-like ps for vaccines. New Biotechnol. 39, 174–180 (2017). https://doi.org/10.1016/j.nbt.2017.07.010
F. Ruzzi, M.S. Semprini, L. Scalambra, A. Palladini, S. Angelicola et al., Virus-like p (VLP) vaccines for cancer immunotherapy. Int. J. Mol. Sci. 24(16), 12963 (2023). https://doi.org/10.3390/ijms241612963
M. Ahn, J. Song, B.H. Hong, Facile synthesis of N-doped graphene quantum dots as novel transfection agents for mRNA and pDNA. Nanomaterials 11(11), 2816 (2021). https://doi.org/10.3390/nano11112816
L.S. Mbatha, F. Maiyo, A. Daniels, M. Singh, Dendrimer-coated gold nanops for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics 13(6), 900 (2021). https://doi.org/10.3390/pharmaceutics13060900
D.J.H. Tng, J.G.H. Low, Current status of silica-based nanops as therapeutics and its potential as therapies against viruses. Antivir. Res. 210, 105488 (2023). https://doi.org/10.1016/j.antiviral.2022.105488
X. Huang, F. Zhang, L. Zhu, K.Y. Choi, N. Guo et al., Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7(7), 5684–5693 (2013). https://doi.org/10.1021/nn401911k
M. Li, T. Chen, J.J. Gooding, J. Liu, Review of carbon and graphene quantum dots for sensing. ACS Sens. 4(7), 1732–1748 (2019). https://doi.org/10.1021/acssensors.9b00514
P. Singh, S. Pandit, V.R.S.S. Mokkapati, A. Garg, V. Ravikumar et al., Gold nanops in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19(7), 1979 (2018). https://doi.org/10.3390/ijms19071979
V. Mamaeva, C. Sahlgren, M. Lindén, Mesoporous silica nanops in medicine: recent advances. Adv. Drug Deliv. Rev. 65(5), 689–702 (2013). https://doi.org/10.1016/j.addr.2012.07.018
A.S. Khalil, X. Yu, J.M. Umhoefer, C.S. Chamberlain, L.A. Wildenauer et al., Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. Sci. Adv. 6(27), eaba2422 (2020). https://doi.org/10.1126/sciadv.aba2422
A.S. Khalil, D. Hellenbrand, K. Reichl, J. Umhoefer, M. Filipp et al., A localized materials-based strategy to non-virally deliver chondroitinase ABC mRNA improves hindlimb function in a rat spinal cord injury model. Adv. Healthc. Mater. 11(19), e2200206 (2022). https://doi.org/10.1002/adhm.202200206
T. Xu, S. Yu, Y. Sun, S. Wu, D. Gao et al., DNA origami frameworks enabled self-protective siRNA delivery for dual enhancement of chemo-photothermal combination therapy. Small 17(46), 2101780 (2021). https://doi.org/10.1002/smll.202101780
Q. Jiang, S. Liu, J. Liu, Z.-G. Wang, B. Ding, Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Adv. Mater. 31(45), 1804785 (2019). https://doi.org/10.1002/adma.201804785
M. Singh, D. Sharma, M. Garg, A. Kumar, A. Baliyan et al., Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnol. Adv. 61, 108052 (2022). https://doi.org/10.1016/j.biotechadv.2022.108052
M. Hu, C. Feng, Q. Yuan, C. Liu, B. Ge et al., Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer. Nat. Commun. 14(1), 1307 (2023). https://doi.org/10.1038/s41467-023-37020-y
N. Al Fayez, M.S. Nassar, A.A. Alshehri, M.K. Alnefaie, F.A. Almughem et al., Recent advancement in mRNA vaccine development and applications. Pharmaceutics 15(7), 1972 (2023). https://doi.org/10.3390/pharmaceutics15071972
P.G. Kremsner, R.A. Ahuad Guerrero, E. Arana-Arri, G.J. Aroca Martinez, M. Bonten et al., Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis. 22(3), 329–340 (2022). https://doi.org/10.1016/S1473-3099(21)00677-0
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05815498
G. Baldeon Vaca, M. Meyer, A. Cadete, C.J. Hsiao, A. Golding et al., Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. Sci. Adv. 9(38), eadh1655 (2023). https://doi.org/10.1126/sciadv.adh1655
K. McMahan, F. Wegmann, M. Aid, M. Sciacca, J. Liu et al., Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature 626(7998), 385–391 (2024). https://doi.org/10.1038/s41586-023-06951-3
M. Gagne, B.J. Flynn, S.F. Andrew, J. Marquez, D.R. Flebbe et al., Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat. Immunol. 25(10), 1913–1927 (2024). https://doi.org/10.1038/s41590-024-01951-5
W. Tai, K. Yang, Y. Liu, R. Li, S. Feng et al., A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat. Commun. 14(1), 8042 (2023). https://doi.org/10.1038/s41467-023-43798-8
Y. Oda, Y. Kumagai, M. Kanai, Y. Iwama, I. Okura et al., Persistence of immune responses of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2. Lancet Infect. Dis. 24(4), 341–343 (2024). https://doi.org/10.1016/S1473-3099(24)00060-4
N. Fan, K. Chen, R. Zhu, Z. Zhang, H. Huang et al., Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Sci. Adv. 8(51), eabq3500 (2022). https://doi.org/10.1126/sciadv.abq3500
J. Jaggers, A.R. Wolfson, mRNA COVID-19 vaccine anaphylaxis: epidemiology, risk factors, and evaluation. Curr. Allergy Asthma Rep. 23(3), 195–200 (2023). https://doi.org/10.1007/s11882-023-01065-2
M. Patone, X.W. Mei, L. Handunnetthi, S. Dixon, F. Zaccardi et al., Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 28(2), 410–422 (2022). https://doi.org/10.1038/s41591-021-01630-0
P.P. Liu, T.S. Kafil, COVID-19 vaccine myocarditis: cautious reassurance in an era of dynamic uncertainty. J. Am. Coll. Cardiol. 80(24), 2266–2268 (2022). https://doi.org/10.1016/j.jacc.2022.10.010
W.A. Lee, COVID-19 vaccine-associated optic neuritis. QJM 115(10), 683–685 (2022). https://doi.org/10.1093/qjmed/hcac208
M. Yang, Z. Zhang, P. Jin, K. Jiang, Y. Xu et al., Effects of PEG antibodies on in vivo performance of LNP-mRNA vaccines. Int. J. Pharm. 650, 123695 (2024). https://doi.org/10.1016/j.ijpharm.2023.123695
R. Tenchov, J.M. Sasso, Q.A. Zhou, PEGylated lipid nanop formulations: immunological safety and efficiency perspective. Bioconjugate Chem. 34(6), 941–960 (2023). https://doi.org/10.1021/acs.bioconjchem.3c00174
M. Li, Y. Huang, J. Wu, S. Li, M. Mei et al., A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Mater. Horiz. 10(2), 466–472 (2023). https://doi.org/10.1039/d2mh01260j
M.A.G. Hoffmann, Z. Yang, K.E. Huey-Tubman, A.A. Cohen, P.N.P. Gnanapragasam et al., ESCRT recruitment to SARS-CoV-2 spike induces virus-like ps that improve mRNA vaccines. Cell 186(11), 2380-2391.e9 (2023). https://doi.org/10.1016/j.cell.2023.04.024
B. Essink, L. Chu, W. Seger, E. Barranco, N. Le Cam et al., The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect. Dis. 23(5), 621–633 (2023). https://doi.org/10.1016/S1473-3099(22)00764-2
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05831111
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06033261
C.P. Arevalo, M.J. Bolton, V. Le Sage, N. Ye, C. Furey et al., A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378(6622), 899–904 (2022). https://doi.org/10.1126/science.abm0271
M. Ganley, L.E. Holz, J.J. Minnell, M.N. de Menezes, O.K. Burn et al., mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat. Immunol. 24(9), 1487–1498 (2023). https://doi.org/10.1038/s41590-023-01562-6
E. Wilson, J. Goswami, A.H. Baqui, P.A. Doreski, G. Perez-Marc et al., Efficacy and safety of an mRNA-based RSV PreF vaccine in older adults. N. Engl. J. Med. 389(24), 2233–2244 (2023). https://doi.org/10.1056/NEJMoa2307079
C. Liu, Q. Shi, X. Huang, S. Koo, N. Kong et al., mRNA-based cancer therapeutics. Nat. Rev. Cancer 23(8), 526–543 (2023). https://doi.org/10.1038/s41568-023-00586-2
C.L. Vogel, M.A. Cobleigh, D. Tripathy, J.C. Gutheil, L.N. Harris et al., Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 41(9), 1638–1645 (2023). https://doi.org/10.1200/jco.2002.20.3.719
A.X. Zhu, F. Dayyani, C.-J. Yen, Z. Ren, Y. Bai et al., Alpha-fetoprotein as a potential surrogate biomarker for atezolizumab + bevacizumab treatment of hepatocellular carcinoma. Clin. Cancer Res. 28(16), 3537–3545 (2022). https://doi.org/10.1158/1078-0432.CCR-21-3275
S.P. Balk, Y.-J. Ko, G.J. Bubley, Biology of prostate-specific antigen. J. Clin. Oncol. 21(2), 383–391 (2003). https://doi.org/10.1200/jco.2003.02.083
L.M. Kranz, M. Diken, H. Haas, S. Kreiter, C. Loquai et al., Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607), 396–401 (2016). https://doi.org/10.1038/nature18300
Y. Li, M. Wang, X. Peng, Y. Yang, Q. Chen et al., mRNA vaccine in cancer therapy: current advance and future outlook. Clin. Transl. Med. 13(8), e1384 (2023). https://doi.org/10.1002/ctm2.1384
F. Lang, B. Schrörs, M. Löwer, Ö. Türeci, U. Sahin, Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21(4), 261–282 (2022). https://doi.org/10.1038/s41573-021-00387-y
Z. Sethna, P. Guasp, C. Reiche, M. Milighetti, N. Ceglia et al., RNA neoantigen vaccines prime long-lived CD8+ T cells in pancreatic cancer. Nature 639(8056), 1042–1051 (2025). https://doi.org/10.1038/s41586-024-08508-4
C.L. Lorentzen, J.B. Haanen, Ö. Met, I.M. Svane, Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23(10), e450–e458 (2022). https://doi.org/10.1016/S1470-2045(22)00372-2
J. Ramos da Silva, K. Bitencourt Rodrigues, G. Formoso Pelegrin, N. Silva Sales, H. Muramatsu et al., Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci. Transl. Med. 15(686), eabn3464 (2023). https://doi.org/10.1126/scitranslmed.abn3464
T. Korzun, A.S. Moses, J. Kim, S. Patel, C. Schumann et al., Nanop-based follistatin messenger RNA therapy for reprogramming metastatic ovarian cancer and ameliorating cancer-associated Cachexia. Small 18(44), e2204436 (2022). https://doi.org/10.1002/smll.202204436
H.R. Mendez-Gomez, A. DeVries, P. Castillo, C. von Roemeling, S. Qdaisat et al., RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 187(10), 2521-2535.e21 (2024). https://doi.org/10.1016/j.cell.2024.04.003
L. Jiang, J.-S. Park, L. Yin, R. Laureano, E. Jacquinet et al., Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun. 11, 5339 (2020). https://doi.org/10.1038/s41467-020-19156-3
M. Zhang, A. Hussain, B. Hu, H. Yang, C. Li et al., Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA. Nat. Commun. 15(1), 6463 (2024). https://doi.org/10.1038/s41467-024-50752-9
L.L. Kenney, R.S. Chiu, M.N. Dutra, A. Wactor, C. Honan et al., mRNA-delivery of IDO1 suppresses T cell-mediated autoimmunity. Cell Rep. Med. 5(9), 101717 (2024). https://doi.org/10.1016/j.xcrm.2024.101717
Y. You, Y. Tian, Z. Yang, J. Shi, K.J. Kwak et al., Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7(7), 887–900 (2023). https://doi.org/10.1038/s41551-022-00989-w
Z. Yang, J. Shi, J. Xie, Y. Wang, J. Sun et al., Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 4(1), 69–83 (2020). https://doi.org/10.1038/s41551-019-0485-1
M. Nawaz, S. Heydarkhan-Hagvall, B. Tangruksa, H. González-King Garibotti, Y. Jing et al., Lipid nanops deliver the therapeutic VEGFA mRNA in vitro and in vivo and transform extracellular vesicles for their functional extensions. Adv. Sci. 10(12), e2206187 (2023). https://doi.org/10.1002/advs.202206187
S. Du, W. Li, Y. Zhang, Y. Xue, X. Hou et al., Cholesterol-amino-phosphate (CAP) derived lipid nanops for delivery of self-amplifying RNA and restoration of spermatogenesis in infertile mice. Adv. Sci. 10(11), e2300188 (2023). https://doi.org/10.1002/advs.202300188
D.J. Propper, F.R. Balkwill, Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19(4), 237–253 (2022). https://doi.org/10.1038/s41571-021-00588-9
D.A.A. Vignali, V.K. Kuchroo, IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13(8), 722–728 (2012). https://doi.org/10.1038/ni.2366
E.A. Aunins, A.T. Phan, M.-G. Alameh, G. Dwivedi, E. Cruz-Morales et al., An Il12 mRNA-LNP adjuvant enhances mRNA vaccine-induced CD8 T cell responses. Sci. Immunol. 10(108), eads1328 (2025). https://doi.org/10.1126/sciimmunol.ads1328
A.K. Abbas, E. Trotta, D.R. Simeonov, A. Marson, J.A. Bluestone, Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3(25), eaat1482 (2018). https://doi.org/10.1126/sciimmunol.aat1482
J.D. Beck, M. Diken, M. Suchan, M. Streuber, E. Diken et al., Long-lasting mRNA-encoded interleukin-2 restores CD8+ T cell neoantigen immunity in MHC class I-deficient cancers. Cancer Cell 42(4), 568-582.e11 (2024). https://doi.org/10.1016/j.ccell.2024.02.013
S. de Picciotto, N. DeVita, C.J. Hsiao, C. Honan, S.-W. Tse et al., Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat. Commun. 13(1), 3866 (2022). https://doi.org/10.1038/s41467-022-31130-9
J.-Q. Liu, C. Zhang, X. Zhang, J. Yan, C. Zeng et al., Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanops for cancer immunotherapy. J. Control. Release 345, 306–313 (2022). https://doi.org/10.1016/j.jconrel.2022.03.021
S.L. Hewitt, A. Bai, D. Bailey, K. Ichikawa, J. Zielinski et al., Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11(477), eaat9143 (2019). https://doi.org/10.1126/scitranslmed.aat9143
C. Hotz, T.R. Wagenaar, F. Gieseke, D.S. Bangari, M. Callahan et al., Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13(610), eabc7804 (2021). https://doi.org/10.1126/scitranslmed.abc7804
M. Elsallab, B.L. Levine, A.S. Wayne, M. Abou-El-Enein, CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncol. 21(2), e104–e116 (2020). https://doi.org/10.1016/S1470-2045(19)30729-6
X. Zhang, L. Zhu, H. Zhang, S. Chen, Y. Xiao, CAR-T cell therapy in hematological malignancies: current opportunities and challenges. Front. Immunol. 13, 927153 (2022). https://doi.org/10.3389/fimmu.2022.927153
Y. Zhao, E. Moon, C. Carpenito, C.M. Paulos, X. Liu et al., Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70(22), 9053–9061 (2010). https://doi.org/10.1158/0008-5472.CAN-10-2880
T.L. Hunter, Y. Bao, Y. Zhang, D. Matsuda, R. Riener et al., In vivo CAR T cell generation to treat cancer and autoimmune disease. Science 388(6753), 1311–1317 (2025). https://doi.org/10.1126/science.ads8473
N. Shimasaki, H. Fujisaki, D. Cho, M. Masselli, T. Lockey et al., A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy 14(7), 830–840 (2012). https://doi.org/10.3109/14653249.2012.671519
J. Wu, W. Wu, B. Zhou, B. Li, Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol. 42(2), 228–240 (2024). https://doi.org/10.1016/j.tibtech.2023.08.005
N. Li, S. Geng, Z.-Z. Dong, Y. Jin, H. Ying et al., A new era of cancer immunotherapy: combining revolutionary technologies for enhanced CAR-M therapy. Mol. Cancer 23(1), 117 (2024). https://doi.org/10.1186/s12943-024-02032-9
K. Gu, T. Liang, L. Hu, Y. Zhao, W. Ying et al., Intraperitoneal programming of tailored CAR macrophages via mRNA-LNP to boost cancer immunotherapy. (Preprint) bioRxiv (2024). https://doi.org/10.1101/2024.07.30.605730
B. Li, R.S. Manan, S.-Q. Liang, A. Gordon, A. Jiang et al., Combinatorial design of nanops for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41(10), 1410–1415 (2023). https://doi.org/10.1038/s41587-023-01679-x
L. Breda, T.E. Papp, M.P. Triebwasser, A. Yadegari, M.T. Fedorky et al., In vivo hematopoietic stem cell modification by mRNA delivery. Science 381(6656), 436–443 (2023). https://doi.org/10.1126/science.ade6967
J.Y. Wang, J.A. Doudna, CRISPR technology: a decade of genome editing is only the beginning. Science 379(6629), eadd8643 (2023). https://doi.org/10.1126/science.add8643
J.P. Han, M. Kim, B.S. Choi, J.H. Lee, G.S. Lee et al., In vivo delivery of CRISPR-Cas9 using lipid nanops enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 8(3), eabj6901 (2022). https://doi.org/10.1126/sciadv.abj6901
X.-H. Ren, C. Xu, L.-L. Li, Y. Zuo, D. Han et al., A targeting delivery system for effective genome editing in leukemia cells to reverse malignancy. J. Control. Release 343, 645–656 (2022). https://doi.org/10.1016/j.jconrel.2022.02.012
N. Zabaleta, L. Torella, N.D. Weber, G. Gonzalez-Aseguinolaza, mRNA and gene editing: Late breaking therapies in liver diseases. Hepatology 76(3), 869–887 (2022). https://doi.org/10.1002/hep.32441
M. Gautam, A. Jozic, G.L. Su, M. Herrera-Barrera, A. Curtis et al., Lipid nanops with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 14(1), 6468 (2023). https://doi.org/10.1038/s41467-023-42189-3
Y. Zhao, Y. Li, F. Wang, X. Gan, T. Zheng et al., CES1-triggered liver-specific cargo release of CRISPR/Cas9 elements by cationic triadic copolymeric nanops targeting gene editing of PCSK9 for hyperlipidemia amelioration. Adv. Sci. 10(19), 2300502 (2023). https://doi.org/10.1002/advs.202300502
M. Moradpour, S.N.A. Abdulah, CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol. J. 18(1), 32–44 (2020). https://doi.org/10.1111/pbi.13232
J.P. Beyersdorf, S. Bawage, N. Iglesias, H.E. Peck, R.A. Hobbs et al., Robust, durable gene activation in vivo via mRNA-encoded activators. ACS Nano 16(4), 5660–5671 (2022). https://doi.org/10.1021/acsnano.1c10631
T.E.