A Comprehensive Review of the Functionalized Integrated Application of Gel Polymer Electrolytes in Electrochromic Devices
Corresponding Author: Jiupeng Zhao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 106
Abstract
With the global push for energy conservation and the rapid development of low-power, flexible and wearable optical displays, the demand for electrochromic technology has surged. Gel polymer electrolytes (GPEs), a crucial component of electrochromic devices (ECDs), show great promise in applications. This is attributed to their efficient ion-transport capabilities, excellent mechanical properties and strong adhesion. All of these characteristics are conducive to enhancing the safety of the devices, streamlining the packaging process, significantly improving the electrochromic performance of ECDs and boosting their commercial application potential. This review provides a comprehensive overview of GPEs for ECDs, focusing on their basic designs, functional modifications and practical applications. Firstly, this review outlines the fundamental design of GPEs for ECDs, encompassing key performance index, classification, gelation mechanism and preparation methods. Building on this foundation, it provides an in-depth discussion of functionalized GPEs developed to enhance device performance or expand functionality, including electrochromic, temperature-responsive, photo-responsive and stretchable self-healing GPE. Furthermore, the integration of GPEs into various ECD applications, including smart windows, displays, energy storage devices and wearable electronic, are summarized to highlight the advantages that the design of GPEs brings to the practical application of ECDs. Finally, based on the summary of GPEs employed for ECDs, the challenges and development expectations in this direction were indicated.
Highlights:
1 In response to the demands of electrochromic devices, the advantages and designs of the corresponding multifunctional integrated gel polymer electrolytes were discussed.
2 Through reviewing the applications of electrochromic devices based on gel polymer electrolytes, the remarkable advantages that gel polymer electrolytes bring to electrochromic devices and their practical applications in electrochromic devices were analyzed.
3 The future research directions of gel polymer electrolytes for electrochromic devices were explored, thereby facilitating their further development and commercial application.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R. Rep. 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
- R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27(1), 2–18 (2006). https://doi.org/10.1016/j.displa.2005.03.003
- J.R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys. 34(3), 862–863 (1961). https://doi.org/10.1063/1.1731686
- H. Fu, L. Zhang, Y. Dong, C. Zhang, W. Li, Recent advances in electrochromic materials and devices for camouflage applications. Mater. Chem. Front. 7(12), 2337–2358 (2023). https://doi.org/10.1039/D3QM00121K
- C. Gu, A.-B. Jia, Y.-M. Zhang, S.X. Zhang, Emerging electrochromic materials and devices for future displays. Chem. Rev. 122(18), 14679–14721 (2022). https://doi.org/10.1021/acs.chemrev.1c01055
- M.N. Mustafa, M.A.A. Mohd Abdah, A. Numan, A. Moreno-Rangel, A. Radwan et al., Smart window technology and its potential for net-zero buildings: a review. Renew. Sustain. Energy Rev. 181, 113355 (2023). https://doi.org/10.1016/j.rser.2023.113355
- J. Wang, Z. Wang, M. Zhang, X. Huo, M. Guo, Toward next-generation smart windows: an in-depth analysis of dual-band electrochromic materials and devices. Adv. Opt. Mater. 12(11), 2302344 (2024). https://doi.org/10.1002/adom.202302344
- X. Fan, S. Wang, M. Pan, H. Pang, H. Xu, Biphenyl dicarboxylic-based Ni-IRMOF-74 film for fast-switching and high-stability electrochromism. ACS Energy Lett. 9(6), 2840–2847 (2024). https://doi.org/10.1021/acsenergylett.4c00492
- V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 4070–4070 (2012). https://doi.org/10.1002/adma.201290180
- G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu et al., Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49(23), 8687–8720 (2020). https://doi.org/10.1039/d0cs00317d
- P. Barbosa, L. Rodrigues, M. Silva, M. Smith, A. Gonçalves et al., Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays. J. Mater. Chem. 20(4), 723–730 (2010). https://doi.org/10.1039/b917208d
- T.Y. Yun, X. Li, J. Bae, S.H. Kim, H.C. Moon, Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Mater. Des. 162, 45–51 (2019). https://doi.org/10.1016/j.matdes.2018.11.016
- Z. Zhou, Y. Tang, F. Zhao, G. Li, G. Xu et al., Transparent succinonitrile-modified polyacrylate gel polymer electrolyte for solid electrochromic devices. Chem. Eng. J. 481, 148724 (2024). https://doi.org/10.1016/j.cej.2024.148724
- C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028
- O. Bohnke, C. Rousselot, P.A. Gillet, C. Truche, Gel electrolyte for solid-state electrochromic cell. J. Electrochem. Soc. 139(7), 1862–1865 (1992). https://doi.org/10.1149/1.2069512
- H. Inaba, M. Iwaku, K. Nakase, H. Yasukawa, I. Seo et al., Electrochromic display device of tungsten trioxide and Prussian blue films using polymer gel electrolyte of methacrylate. Electrochim. Acta 40(2), 227–232 (1995). https://doi.org/10.1016/0013-4686(94)00230-X
- S. Ahmad, S. Ahmad, S.A. Agnihotry, Composite polymeric electrolytes based on PMMA-LiCF3SO3-SiO2. Ionics 9(5), 439–443 (2003). https://doi.org/10.1007/BF02376598
- Y.-F. Gong, X.-K. Fu, S.-P. Zhang, Q.-L. Jiang, Preparation of a star network PEG-based gel polymer electrolyte and its application to electrochromic devices. Chin. J. Chem. 25(11), 1743–1747 (2007). https://doi.org/10.1002/cjoc.200790322
- C.O. Avellaneda, D.F. Vieira, A. Al-Kahlout, S. Heusing, E.R. Leite et al., All solid-state electrochromic devices with gelatin-based electrolyte. Sol. Energy Mater. Sol. Cells 92(2), 228–233 (2008). https://doi.org/10.1016/j.solmat.2007.02.025
- S. Desai, R.L. Shepherd, P.C. Innis, P. Murphy, C. Hall et al., Gel electrolytes with ionic liquid plasticiser for electrochromic devices. Electrochim. Acta 56(11), 4408–4413 (2011). https://doi.org/10.1016/j.electacta.2010.10.030
- R. Sydam, M. Deepa, A.G. Joshi, A novel 1, 1’-bis [4-(5, 6-dimethyl-1H-benzimidazole-1-yl)butyl]-4, 4’-bipyridinium dibromide (viologen) for a high contrast electrochromic device. Org. Electron. 14(4), 1027–1036 (2013). https://doi.org/10.1016/j.orgel.2013.01.035
- J. Ko, A. Surendran, B. Febriansyah, W.L. Leong, Self-healable electrochromic ion gels for low power and robust displays. Org. Electron. 71, 199–205 (2019). https://doi.org/10.1016/j.orgel.2019.05.022
- P.V. Rathod, J.M.C. Puguan, H. Kim, Self-bleaching dual responsive poly(ionic liquid) with optical bistability toward climate-adaptable solar modulation. Chem. Eng. J. 422, 130065 (2021). https://doi.org/10.1016/j.cej.2021.130065
- T.J. Adams, A.R. Brotherton, J.A. Molai, N. Parmar, J.R. Palmer et al., Obtaining reversible, high contrast electrochromism, electrofluorochromism, and photochromism in an aqueous hydrogel device using chromogenic thiazolothiazoles. Adv. Funct. Mater. 31(36), 2103408 (2021). https://doi.org/10.1002/adfm.202103408
- F. Xu, H. Li, Y. Li, Sea cucumber-inspired polyurethane demonstrating record-breaking mechanical properties in room-temperature self-healing ionogels. Adv. Mater. 36(44), 2412317 (2024). https://doi.org/10.1002/adma.202412317
- Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
- S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 3(1), 1–17 (2018). https://doi.org/10.1016/j.jsamd.2018.01.002
- Z. Tian, L. Hou, D. Feng, Y. Jiao, P. Wu, Modulating the coordination environment of lithium bonds for high performance polymer electrolyte batteries. ACS Nano 17(4), 3786–3796 (2023). https://doi.org/10.1021/acsnano.2c11734
- D.G. Seo, H.C. Moon, Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices. Adv. Funct. Mater. 28(14), 1706948 (2018). https://doi.org/10.1002/adfm.201706948
- J. Ding, Y. Yang, J. Poisson, Y. He, H. Zhang et al., Recent advances in biopolymer-based hydrogel electrolytes for flexible supercapacitors. ACS Energy Lett. 9(4), 1803–1825 (2024). https://doi.org/10.1021/acsenergylett.3c02567
- H. Oh, D.G. Seo, T.Y. Yun, C.Y. Kim, H.C. Moon, Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 9(8), 7658–7665 (2017). https://doi.org/10.1021/acsami.7b00624
- Z. Bai, R. Li, L. Ping, Q. Fan, Z. Lu et al., Photo-induced self-reduction enabling ultralow threshold voltage energy-conservation electrochromism. Chem. Eng. J. 452, 139645 (2023). https://doi.org/10.1016/j.cej.2022.139645
- G.K. Pande, D.Y. Kim, F. Sun, R. Pal, J.S. Park, Photocurable allyl viologens exhibiting RGB-to-black electrochromic switching for versatile heat-shielding capability. Sol. Energy Mater. Sol. Cells 263, 112579 (2023). https://doi.org/10.1016/j.solmat.2023.112579
- W. Wu, S. Guo, J. Bian, X. He, H. Li et al., Viologen-based flexible electrochromic devices. J. Energy Chem. 93, 453–470 (2024). https://doi.org/10.1016/j.jechem.2024.02.027
- B. Deng, Y. Zhu, X. Wang, J. Zhu, M. Liu et al., An ultrafast, energy-efficient electrochromic and thermochromic device for smart windows. Adv. Mater. 35(35), e2302685 (2023). https://doi.org/10.1002/adma.202302685
- P.V. Rathod, P.V. Chavan, H. Kim, Phase-changing sodium carboxymethylcellulose-As an electrolyte for electro-thermochromic smart window with synergistic optical modulation. Adv. Sustain. Syst. 8(2), 2300349 (2024). https://doi.org/10.1002/adsu.202300349
- M. Chang, D. Liang, F. Zhou, H. Xue, H. Zong et al., Photochromic and electrochromic hydrogels based on ammonium- and sulfonate-functionalized thienoviologen derivatives. ACS Appl. Mater. Interfaces 14(13), 15448–15460 (2022). https://doi.org/10.1021/acsami.1c24560
- Y. Alesanco, A. Viñuales, J. Rodriguez, R. Tena-Zaera, All-in-one gel-based electrochromic devices: strengths and recent developments. Materials 11(3), 414 (2018). https://doi.org/10.3390/ma11030414
- B.O. Orimolade, E.R. Draper, Application of quasi solid electrolytes in organic based electrochromic devices: a mini review. Chem. Eur. J. 30(23), e202303880 (2024). https://doi.org/10.1002/chem.202303880
- W. Wang, S. Guo, F. Feng, Q. Li, H. Cai et al., Research progress in polymer electrolytes for electrochromic devices. Polym. Rev. 65(1), 302–328 (2025). https://doi.org/10.1080/15583724.2024.2406973
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b
- W.C. Poh, A.L. Eh, W. Wu, X. Guo, P.S. Lee, Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and flexible electrochromic devices. Adv. Mater. 34(51), 2206952 (2022). https://doi.org/10.1002/adma.202206952
- G.K. Silori, S. Thoka, K.-C. Ho, Morphological features of SiO2 nanofillers address poor stability issue in gel polymer electrolyte-based electrochromic devices. ACS Appl. Mater. Interfaces 15(21), 25791–25805 (2023). https://doi.org/10.1021/acsami.3c04685
- R. Zhou, W. Liu, X. Yao, Y.W. Leong, X. Lu, Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanops as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries. J. Mater. Chem. A 3(31), 16040–16049 (2015). https://doi.org/10.1039/C5TA02154E
- C. Ma, W. Cui, X. Liu, Y. Ding, Y. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 4(2), e12232 (2022). https://doi.org/10.1002/inf2.12232
- M. Zhu, J. Wu, Y. Wang, M. Song, L. Long et al., Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
- X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
- X. Zhou, Y. Zhou, L. Yu, L. Qi, K.-S. Oh et al., Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53(10), 5291–5337 (2024). https://doi.org/10.1039/d3cs00551h
- Z. Deng, Y. Liu, Z. Dai, Gel electrolytes for electrochemical actuators and sensors applications. Chem. Asian J. 18(3), e202201160 (2023). https://doi.org/10.1002/asia.202201160
- H. Che, S. Chen, Y. Xie, H. Wang, K. Amine et al., Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10(5), 1075–1101 (2017). https://doi.org/10.1039/c7ee00524e
- C.Y. Chan, Z. Wang, H. Jia, P.F. Ng, L. Chow et al., Recent advances of hydrogel electrolytes in flexible energy storage devices. J. Mater. Chem. A 9(4), 2043–2069 (2021). https://doi.org/10.1039/d0ta09500a
- M. Nujud Badawi, M. Kuniyil, M. Bhatia, S.S.A. Kumar, B. Mrutunjaya et al., Recent advances in flexible/stretchable hydrogel electrolytes in energy storage devices. J. Energy Storage 73, 108810 (2023). https://doi.org/10.1016/j.est.2023.108810
- X. Luo, R. Wan, Z. Zhang, M. Song, L. Yan et al., 3D-printed hydrogel-based flexible electrochromic device for wearable displays. Adv. Sci. 11(38), e2404679 (2024). https://doi.org/10.1002/advs.202404679
- S. Xiao, Y. Zhang, L. Ma, S. Zhao, N. Wu et al., Easy-to-make sulfonatoalkyl viologen/sodium carboxymethylcellulose hydrogel-based electrochromic devices with high coloration efficiency, fast response and excellent cycling stability. Dyes Pigments 174, 108055 (2020). https://doi.org/10.1016/j.dyepig.2019.108055
- X. Ai, Q. Zhao, Y. Duan, Z. Chen, Z. Zhang et al., Zinc polyacrylamide hydrogel electrolyte for quasi-solid-state electrochromic devices with low-temperature tolerance. Cell Rep. Phys. Sci. 3(11), 101148 (2022). https://doi.org/10.1016/j.xcrp.2022.101148
- J. Yin, K. Wei, J. Zhang, S. Liu, X. Wang et al., MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 3(5), 100893 (2022). https://doi.org/10.1016/j.xcrp.2022.100893
- X. Li, N. Ma, G. Xu, R. Zhang, J. Liu, Efficient electrochromic device employing thermal tolerant hydrogel electrolyte with a wide operating temperature range from-40 to 60℃. Sol. Energy Mater. Sol. Cells 234, 111449 (2022). https://doi.org/10.1016/j.solmat.2021.111449
- W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, A novel phase-transformation activation process toward Ni–Mn–O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv. Mater. 29(36), 1703463 (2017). https://doi.org/10.1002/adma.201703463
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
- A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3), 497–540 (2017). https://doi.org/10.1007/s11581-016-1908-6
- J. Reiter, O. Krejza, M. Sedlaříková, Electrochromic devices employing methacrylate-based polymer electrolytes. Sol. Energy Mater. Sol. Cells 93(2), 249–255 (2009). https://doi.org/10.1016/j.solmat.2008.10.010
- F.A. Alamer, M.T. Otley, Y. Zhu, A. Kumar, G.A. Sotzing, Dependency of polyelectrolyte solvent composition on electrochromic photopic contrast. Sol. Energy Mater. Sol. Cells 132, 131–135 (2015). https://doi.org/10.1016/j.solmat.2014.08.033
- P. Sun, J. Chen, Y. Li, X. Tang, H. Sun et al., Deep eutectic solvent-based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability. InfoMat 5(2), e12363 (2023). https://doi.org/10.1002/inf2.12363
- M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009). https://doi.org/10.1038/nmat2448
- I. Osada, H. De Vries, B. Scrosati, S. Passerini, Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 55(2), 500–513 (2016). https://doi.org/10.1002/anie.201504971
- C.F.J. Francis, I.L. Kyratzis, A.S. Best, Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv. Mater. 32(18), 1904205 (2020). https://doi.org/10.1002/adma.201904205
- K. Deng, Q. Zeng, D. Wang, Z. Liu, G. Wang et al., Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 32, 425–447 (2020). https://doi.org/10.1016/j.ensm.2020.07.018
- Q. Tang, H. Li, Y. Yue, Q. Zhang, H. Wang et al., 1-ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. Mater. Des. 118, 279–285 (2017). https://doi.org/10.1016/j.matdes.2017.01.033
- B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang et al., Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121(3), 1232–1285 (2021). https://doi.org/10.1021/acs.chemrev.0c00385
- A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis et al., Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chem. Eng. 2(5), 1063–1071 (2014). https://doi.org/10.1021/sc500096j
- D.-C. Kong, M.-H. Yang, X.-S. Zhang, Z.-C. Du, Q. Fu et al., Control of polymer properties by entanglement: a review. Macromol. Mater. Eng. 306(12), 2100536 (2021). https://doi.org/10.1002/mame.202100536
- Y. Wang, G. Nian, J. Kim, Z. Suo, Polyacrylamide hydrogels. VI. Synthesis-property relation. J. Mech. Phys. Solids 170, 105099 (2023). https://doi.org/10.1016/j.jmps.2022.105099
- Q. Lu, H. Li, Z. Tan, Physically entangled multifunctional eutectogels for flexible sensors with mechanically robust. J. Mater. Chem. A 12(31), 20307–20316 (2024). https://doi.org/10.1039/d4ta02751e
- Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 35(21), 2406620 (2025). https://doi.org/10.1002/adfm.202406620
- C.J. Kloxin, C.N. Bowman, Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42(17), 7161–7173 (2013). https://doi.org/10.1039/c3cs60046g
- S. Seiffert, J. Sprakel, Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 41(2), 909–930 (2012). https://doi.org/10.1039/c1cs15191f
- M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels. Mater. Adv. 3(21), 7709–7725 (2022). https://doi.org/10.1039/d2ma00539e
- J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
- K. Liu, Y. Kang, Z. Wang, X. Zhang, 25th anniversary : reversible and adaptive functional supramolecular materials: “noncovalent interaction” matters. Adv. Mater. 25(39), 5530–5548 (2013). https://doi.org/10.1002/adma201302015
- C.-H. Li, J.-L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32(27), 1903762 (2020). https://doi.org/10.1002/adma.201903762
- Y. Yang, X. Ding, M.W. Urban, Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49, 34–59 (2015). https://doi.org/10.1016/j.progpolymsci.2015.06.001
- K. Wang, H. Wang, J. Li, Y. Liang, X.-Q. Xie et al., Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour. Mater. Horiz. 8(9), 2520–2532 (2021). https://doi.org/10.1039/D1MH00725D
- M. Green, K. Kaydanik, M. Orozco, L. Hanna, M.A.T. Marple et al., Closo-borate gel polymer electrolyte with remarkable electrochemical stability and a wide operating temperature window. Adv. Sci. 9(16), 2106032 (2022). https://doi.org/10.1002/advs.202106032
- H. Gong, A. Li, G. Fu, M. Zhang, Z. Zheng et al., Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films. J. Mater. Chem. A 11(16), 8939–8949 (2023). https://doi.org/10.1039/d2ta09807e
- L. Wang, Y. Chen, L. Zeng, X. Huang, W. Lv et al., The nanofiber gel electrolytes with ultra-high ionic conductivity regulated by different acid radical ions for lithium batteries. Chem. Eng. J. 496, 154252 (2024). https://doi.org/10.1016/j.cej.2024.154252
- G. Xing, L. Wu, G. Kuang, T. Ma, Z. Chen et al., Integration of high surface-energy electrochromic polymer with in situ polymerized quasi-solid electrolyte for efficient electrochromism. Electrochim. Acta 432, 141216 (2022). https://doi.org/10.1016/j.electacta.2022.141216
- Y.-G. Cho, C. Hwang, D.S. Cheong, Y.-S. Kim, H.-K. Song, Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv. Mater. 31(20), 1804909 (2019). https://doi.org/10.1002/adma.201804909
- G. Xiao, H. Xu, C. Bai, M. Liu, Y.-B. He, Progress and perspectives of in situ polymerization method for lithium-based batteries. Interdiscip. Mater. 2(4), 609–634 (2023). https://doi.org/10.1002/idm2.12109
- H. Cai, Z. Chen, S. Guo, D. Ma, J. Wang, Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices. Sol. Energy Mater. Sol. Cells 256, 112310 (2023). https://doi.org/10.1016/j.solmat.2023.112310
- S.-Y. Kao, C.-W. Kung, H.-W. Chen, C.-W. Hu, K.-C. Ho, An electrochromic device based on all-in-one polymer gel through in situ thermal polymerization. Sol. Energy Mater. Sol. Cells 145, 61–68 (2016). https://doi.org/10.1016/j.solmat.2015.04.012
- W. Chen, C. Zhu, L. Guo, M. Yan, L. Wu et al., A novel ionically crosslinked gel polymer electrolyte as an ion transport layer for high-performance electrochromic devices. J. Mater. Chem. C 7(13), 3744–3750 (2019). https://doi.org/10.1039/C9TC00621D
- F. Feng, S. Guo, D. Ma, J. Wang, An overview of electrochromic devices with electrolytes containing viologens. Sol. Energy Mater. Sol. Cells 254, 112270 (2023). https://doi.org/10.1016/j.solmat.2023.112270
- T.P. Lodge, T. Ueki, Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc. Chem. Res. 49(10), 2107–2114 (2016). https://doi.org/10.1021/acs.accounts.6b00308
- Y. Alesanco, A. Viñuales, G. Cabañero, J. Rodriguez, R. Tena-Zaera, Colorless to neutral color electrochromic devices based on asymmetric viologens. ACS Appl. Mater. Interfaces 8(43), 29619–29627 (2016). https://doi.org/10.1021/acsami.6b11321
- S.-Y. Kao, H.-C. Lu, C.-W. Kung, H.-W. Chen, T.-H. Chang et al., Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation. ACS Appl. Mater. Interfaces 8(6), 4175–4184 (2016). https://doi.org/10.1021/acsami.5b11947
- H.-C. Lu, S.-Y. Kao, T.-H. Chang, C.-W. Kung, K.-C. Ho, An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Sol. Energy Mater. Sol. Cells 147, 75–84 (2016). https://doi.org/10.1016/j.solmat.2015.11.044
- S. Zhao, L. Chen, W. Huang, Y.-H. Liu, Transparent multicolor electrochromic displays with ingenious hues adjustment by integrating cholesteric liquid crystal with viologen gel. Adv. Opt. Mater. 11(19), 2300503 (2023). https://doi.org/10.1002/adom.202300503
- L. Wang, M. Guo, J. Zhan, X. Jiao, D. Chen et al., A new design of an electrochromic energy storage device with high capacity, long cycle lifetime and multicolor display. J. Mater. Chem. A 8(33), 17098–17105 (2020). https://doi.org/10.1039/D0TA04824K
- A.N. Woodward, J.M. Kolesar, S.R. Hall, N.-A. Saleh, D.S. Jones et al., Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 139(25), 8467–8473 (2017). https://doi.org/10.1021/jacs.7b01005
- A. Kavanagh, K.J. Fraser, R. Byrne, D. Diamond, An electrochromic ionic liquid: design, characterization, and performance in a solid-state platform. ACS Appl. Mater. Interfaces 5(1), 55–62 (2013). https://doi.org/10.1021/am3018948
- K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.-C. Ho, Viologen-based electrochromic materials and devices. J. Mater. Chem. C 7(16), 4622–4637 (2019). https://doi.org/10.1039/c9tc00416e
- Y. Zhuang, W. Zhao, L. Wang, F. Li, W. Wang et al., Soluble triarylamine functionalized symmetric viologen for all-solid-state electrochromic supercapacitors. Sci. China Chem. 63(11), 1632–1644 (2020). https://doi.org/10.1007/s11426-020-9789-9
- J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang et al., Viologen-inspired functional materials: synthetic strategies and applications. J. Mater. Chem. A 7(41), 23337–23360 (2019). https://doi.org/10.1039/c9ta01724k
- P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong et al., Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv. Mater. 29(7), 1604491 (2017). https://doi.org/10.1002/adma.201604491
- J.-W. Kim, J.-M. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv. Funct. Mater. 29(13), 1808911 (2019). https://doi.org/10.1002/adfm.201808911
- X. Wu, Q. Fan, Z. Bai, Q. Zhang, W. Jiang et al., Synergistic interaction of dual-polymer networks containing viologens-anchored poly(ionic liquid)s enabling long-life and large-area electrochromic organogels. Small 19(37), 2301742 (2023). https://doi.org/10.1002/smll.202301742
- S. Tang, R. Zheng, J. Niu, Z. Wan, C. Jia et al., All-in-one electrochromic gel consist of benzylboronic acid viologen with superior long-term stability and self-healing property. Sol. Energy Mater. Sol. Cells 257, 112353 (2023). https://doi.org/10.1016/j.solmat.2023.112353
- H. Yang, Z. Liu, B.K. Chandran, J. Deng, J. Yu et al., Self-protection of electrochemical storage devices via a thermal reversible sol–gel transition. Adv. Mater. 27(37), 5593–5598 (2015). https://doi.org/10.1002/adma.201502484
- F. Mo, H. Li, Z. Pei, G. Liang, L. Ma et al., A smart safe rechargeable zinc ion battery based on Sol-gel transition electrolytes. Sci. Bull. 63(16), 1077–1086 (2018). https://doi.org/10.1016/j.scib.2018.06.019
- Y. Zhou, X. Dong, Y. Mi, F. Fan, Q. Xu et al., Hydrogel smart windows. J. Mater. Chem. A 8(20), 10007–10025 (2020). https://doi.org/10.1039/d0ta00849d
- F. Xin, Q. Lu, B. Liu, S. Yuan, R. Zhang et al., Metal-ion-mediated hydrogels with thermo-responsiveness for smart windows. Eur. Polym. J. 99, 65–71 (2018). https://doi.org/10.1016/j.eurpolymj.2017.12.008
- X.-H. Li, C. Liu, S.-P. Feng, N.X. Fang, Broadband light management with thermochromic hydrogel microps for smart windows. Joule 3(1), 290–302 (2019). https://doi.org/10.1016/j.joule.2018.10.019
- R. Zhang, B. Xiang, Y. Shen, L. Xia, L. Xu et al., Energy-efficient smart window based on a thermochromic microgel with ultrahigh visible transparency and infrared transmittance modulation. J. Mater. Chem. A 9(32), 17481–17491 (2021). https://doi.org/10.1039/D1TA03917B
- G. Chen, K. Wang, J. Yang, J. Huang, Z. Chen et al., Printable thermochromic hydrogel-based smart window for all-weather building temperature regulation in diverse climates. Adv. Mater. 35(20), 2211716 (2023). https://doi.org/10.1002/adma.202211716
- M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen et al., Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer. Biosens. Bioelectron. 50, 229–234 (2013). https://doi.org/10.1016/j.bios.2013.06.030
- H.-H. Lin, Y.-L. Cheng, In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules 34(11), 3710–3715 (2001). https://doi.org/10.1021/ma001852m
- L. Zhang, Y. Du, F. Xia, Y. Gao, Two birds with one stone: a novel thermochromic cellulose hydrogel as electrolyte for fabricating electric-/thermal-dual-responsive smart windows. Chem. Eng. J. 455, 140849 (2023). https://doi.org/10.1016/j.cej.2022.140849
- P.V. Chavan, P.V. Rathod, J. Lee, S.V. Kostjuk, H. Kim, Active and passive modulation of solar light transmittance in a uniquely multifunctional dual-band single molecule for smart window applications. J. Energy Chem. 88, 293–305 (2024). https://doi.org/10.1016/j.jechem.2023.09.014
- H. Peng, H. Wang, Y. Wang, X. Wang, S. Chen et al., Achieving a highly safe supercapacitor via the combination of a temperature-responsive hydrogel-electrolyte and electrochromic electrodes. J. Mater. Chem. A 10(38), 20302–20311 (2022). https://doi.org/10.1039/D2TA04560E
- H. Zhou, M. Parmananda, K.R. Crompton, M.P. Hladky, M.A. Dann et al., Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios. Energy Storage Mater. 44, 326–341 (2022). https://doi.org/10.1016/j.ensm.2021.10.030
- A.C.C. Rotzetter, C.M. Schumacher, S.B. Bubenhofer, R.N. Grass, L.C. Gerber et al., Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings. Adv. Mater. 24(39), 5352–5356 (2012). https://doi.org/10.1002/adma.201202574
- D.L. Huber, R.P. Manginell, M.A. Samara, B.-I. Kim, B.C. Bunker, Programmed adsorption and release of proteins in a microfluidic device. Science 301(5631), 352–354 (2003). https://doi.org/10.1126/science.1080759
- J. Bae, J.-H. Na, C.D. Santangelo, R.C. Hayward, Edge-defined metric buckling of temperature-responsive hydrogel ribbons and rings. Polymer 55(23), 5908–5914 (2014). https://doi.org/10.1016/j.polymer.2014.08.033
- W. Han, Z. Liu, S. Wang, Y. Ji, X. Zhang, Construction of a novel photoresponsive supramolecular fluorescent hydrogel through host-guest interaction between β-cyclodextrin and azobenzene. ChemistrySelect 5(7), 2300–2305 (2020). https://doi.org/10.1002/slct.201904361
- Y. Shan, Q. Zhang, J. Sheng, M.C.A. Stuart, D.-H. Qu et al., Motorized photomodulator: making a non-photoresponsive supramolecular gel switchable by light. Angew. Chem. Int. Ed. 62(43), e202310582 (2023). https://doi.org/10.1002/anie.202310582
- Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta et al., Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 3, 1270 (2012). https://doi.org/10.1038/ncomms2280
- D. Tian, W. Ma, L. Zheng, K. Jiang, H. He et al., Tough, healable, photoresponsive actuator based on a quadruple hydrogen-bond-capped slide-ring structure. ACS Appl. Polym. Mater. 5(10), 8641–8649 (2023). https://doi.org/10.1021/acsapm.3c01683
- B. Wang, P. Liu, F. Zhao, B. Huang, W. Zhang et al., Electro- and photo- dual responsive chromatic devices for high-contrast dimmers. Adv. Mater. 37(7), e2410703 (2025). https://doi.org/10.1002/adma.202410703
- L. Manjakkal, L. Pereira, E. Kumi Barimah, P. Grey, F.F. Franco et al., Multifunctional flexible and stretchable electrochromic energy storage devices. Prog. Mater. Sci. 142, 101244 (2024). https://doi.org/10.1016/j.pmatsci.2024.101244
- R. Zheng, Y. Fan, Y. Wang, Z. Wan, C. Jia et al., A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance. Electrochim. Acta 286, 296–303 (2018). https://doi.org/10.1016/j.electacta.2018.08.009
- J.W. Kim, S. Kim, Y.R. Jeong, J. Kim, D.S. Kim et al., Self-healing strain-responsive electrochromic display based on a multiple crosslinked network hydrogel. Chem. Eng. J. 430, 132685 (2022). https://doi.org/10.1016/j.cej.2021.132685
- G. Xu, B. Wang, S. Song, Z. Ren, D. Liu et al., Dual-dynamic modulation of thermal radiation and electromagnetic interference shielding with the self-healing electrochromic device. Adv. Mater. Technol. 7(7), 2101381 (2022). https://doi.org/10.1002/admt.202101381
- D.S. Kim, H. Lee, K. Keum, J.W. Kim, G. Jung et al., A stretchable patch of multi-color electrochromic devices for driving integrated sensors and displaying bio-signals. Nano Energy 113, 108607 (2023). https://doi.org/10.1016/j.nanoen.2023.108607
- G. Yang, J. Ding, B. Yang, X. Wang, C. Gu et al., Highly stretchable electrochromic hydrogels for use in wearable electronic devices. J. Mater. Chem. C 7(31), 9481–9486 (2019). https://doi.org/10.1039/c9tc02673h
- T. Cheng, Y.-Z. Zhang, S. Wang, Y.-L. Chen, S.-Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31(24), 2101303 (2021). https://doi.org/10.1002/adfm.202101303
- W. Wu, W.C. Poh, J. Lv, S. Chen, D. Gao et al., Self-powered and light-adaptable stretchable electrochromic display. Adv. Energy Mater. 13(18), 2204103 (2023). https://doi.org/10.1002/aenm.202204103
- F. Sun, K.S. Kim, S.Y. Eom, J.W. Choi, E.J. Kim et al., Stretchable interconnected modular electrochromic devices enabled by self-healing, self-adhesive, and ion-conducting polymer electrolyte. Chem. Eng. J. 494, 153107 (2024). https://doi.org/10.1016/j.cej.2024.153107
- Q. Chen, Y. Shi, K. Sheng, J. Zheng, C. Xu, Dynamically cross-linked hydrogel electrolyte with remarkable stretchability and self-healing capability for flexible electrochromic devices. ACS Appl. Mater. Interfaces 13(47), 56544–56553 (2021). https://doi.org/10.1021/acsami.1c15432
- W. Li, Y. Cui, A self-healing polyacrylic acid-based hydrogel electrolyte for flexible quasi-solid-state electrochromic device. Sol. Energy Mater. Sol. Cells 250, 112071 (2023). https://doi.org/10.1016/j.solmat.2022.112071
- J.-N. Liu, Q. He, M.-Y. Pan, K. Du, C.-B. Gong et al., An energy-saving, bending sensitive, and self-healing PVA-borax-IL ternary hydrogel electrolyte for visual flexible electrochromic strain sensors. J. Mater. Chem. A 10(47), 25118–25128 (2022). https://doi.org/10.1039/d2ta06667j
- Y. Meng, Z. Li, L. Wang, X. Yang, Y. Yang et al., Flexible solid-state zinc-ion electrochromic energy storage device with self-healing electrolyte for wearable electronics. J. Energy Storage 99, 113221 (2024). https://doi.org/10.1016/j.est.2024.113221
- Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou et al., Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9(39), 1902066 (2019). https://doi.org/10.1002/aenm.201902066
- S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
- M. Tarantini, A.D. Loprieno, P.L. Porta, A life cycle approach to Green Public Procurement of building materials and elements: a case study on windows. Energy 36(5), 2473–2482 (2011). https://doi.org/10.1016/j.energy.2011.01.039
- S.-Z. Sheng, J.-L. Wang, B. Zhao, Z. He, X.-F. Feng et al., Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14(1), 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
- H. Khandelwal, A.P.H.J. Schenning, M.G. Debije, Infrared regulating smart window based on organic materials. Adv. Energy Mater. 7(14), 1602209 (2017). https://doi.org/10.1002/aenm.201602209
- Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- T. Hoyt, E. Arens, H. Zhang, Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 89–96 (2015). https://doi.org/10.1016/j.buildenv.2014.09.010
- Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7(6), 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
- S. Wu, H. Sun, M. Duan, H. Mao, Y. Wu et al., Applications of thermochromic and electrochromic smart windows: materials to buildings. Cell Rep. Phys. Sci. 4(5), 101370 (2023). https://doi.org/10.1016/j.xcrp.2023.101370
- H.J. Lee, C. Lee, J. Song, Y.J. Yun, Y. Jun et al., Electrochromic devices based on ultraviolet-cured poly(methyl methacrylate) gel electrolytes and their utilisation in smart window applications. J. Mater. Chem. C 8(26), 8747–8754 (2020). https://doi.org/10.1039/D0TC00420K
- H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Automatic light-adjusting electrochromic device powered by perovskite solar cell. Nat. Commun. 12(1), 1010 (2021). https://doi.org/10.1038/s41467-021-21086-7
- L. Gonzalez, C. Liu, B. Dietrich, H. Su, S. Sproules et al., Transparent-to-dark photo- and electrochromic gels. Commun. Chem. 1, 77 (2018). https://doi.org/10.1038/s42004-018-0075-2
- B. Li, F. Xu, T. Guan, Y. Li, J. Sun, Self-adhesive self-healing thermochromic ionogels for smart windows with excellent environmental and mechanical stability, solar modulation, and antifogging capabilities. Adv. Mater. 35(20), 2211456 (2023). https://doi.org/10.1002/adma.202211456
- D. Wang, G. Chen, J. Fu, Multifunctional thermochromic smart windows for building energy saving. J. Mater. Chem. A 12(22), 12960–12982 (2024). https://doi.org/10.1039/d4ta01767f
- S.J. Lee, S.H. Lee, H.W. Kang, S. Nahm, B.H. Kim et al., Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. Chem. Eng. J. 416, 129028 (2021). https://doi.org/10.1016/j.cej.2021.129028
- P.V. Rathod, J.M.C. Puguan, H. Kim, Thermo- and electrochromic smart window derived from a viologen-tethered triazolum based poly(NIPAmn-TEG-BPV) electrolyte to enhance building energy efficiency and visual comfort. Chem. Eng. J. 455, 140874 (2023). https://doi.org/10.1016/j.cej.2022.140874
- Y. Shi, J. Liu, M. Li, J. Zheng, C. Xu, Novel electrochromic-fluorescent bi-functional devices based on aromatic viologen derivates. Electrochim. Acta 285, 415–423 (2018). https://doi.org/10.1016/j.electacta.2018.07.236
- Y. Shi, G. Wang, Q. Chen, J. Zheng, C. Xu, Electrochromism and electrochromic devices of new extended viologen derivatives with various substituent benzene. Sol. Energy Mater. Sol. Cells 208, 110413 (2020). https://doi.org/10.1016/j.solmat.2020.110413
- F. Sun, J. Cai, H. Wu, H. Zhang, Y. Chen et al., Novel extended viologen derivatives for photochromic and electrochromic dual-response smart windows. Sol. Energy Mater. Sol. Cells 260, 112496 (2023). https://doi.org/10.1016/j.solmat.2023.112496
- S. Kandpal, T. Ghosh, C. Rani, A. Chaudhary, J. Park et al., Multifunctional electrochromic devices for energy applications. ACS Energy Lett. 8(4), 1870–1886 (2023). https://doi.org/10.1021/acsenergylett.3c00159
- Z. Tong, X. Zhu, H. Xu, Z. Li, S. Li et al., Multivalent-ion electrochromic energy saving and storage devices. Adv. Funct. Mater. 35(21), 2308989 (2025). https://doi.org/10.1002/adfm.202308989
- P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19(7), 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
- G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen et al., Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6(4), 1501882 (2016). https://doi.org/10.1002/aenm.201501882
- J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu et al., A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function. J. Mater. Chem. A 6(24), 11113–11118 (2018). https://doi.org/10.1039/c8ta03143f
- T.G. Yun, M. Park, D.-H. Kim, D. Kim, J.Y. Cheong et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3), 3141–3150 (2019). https://doi.org/10.1021/acsnano.8b08560
- X. Fan, C. Zhong, J. Liu, J. Ding, Y. Deng et al., Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 122(23), 17155–17239 (2022). https://doi.org/10.1021/acs.chemrev.2c00196
- R. Ma, Z. Xu, X. Wang, Polymer hydrogel electrolytes for flexible and multifunctional zinc-ion batteries and capacitors. Energy Environ. Mater. 6(5), e12464 (2023). https://doi.org/10.1002/eem2.12464
- J. Li, H. Jia, S. Ma, L. Xie, X.-X. Wei et al., Separator design for high-performance supercapacitors: requirements, challenges, strategies, and prospects. ACS Energy Lett. 8(1), 56–78 (2023). https://doi.org/10.1021/acsenergylett.2c01853
- S. Samantaray, D. Mohanty, I.-M. Hung, M. Moniruzzaman, S.K. Satpathy, Unleashing recent electrolyte materials for next-generation supercapacitor applications: a comprehensive review. J. Energy Storage 72, 108352 (2023). https://doi.org/10.1016/j.est.2023.108352
- C. Du, X. Cheng, B. Lu, W. Zhou, J. Zhang et al., Engineering a 3D conductive polythiophene network with conformational locking for camouflaged wearable electrochromic-supercapacitor devices. Energy Storage Mater. 80, 104394 (2025). https://doi.org/10.1016/j.ensm.2025.104394
- S.Y. Kim, Y.J. Jang, Y.M. Kim, J.K. Lee, H.C. Moon, Tailoring diffusion dynamics in energy storage ionic conductors for high-performance, multi-function, single-layer electrochromic supercapacitors. Adv. Funct. Mater. 32(25), 2200757 (2022). https://doi.org/10.1002/adfm.202200757
- G. Li, L. Gao, L. Li, L. Guo, An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2.7/Au NPs electrode and hydrogel electrolyte. J. Alloys Compd. 786, 40–49 (2019). https://doi.org/10.1016/j.jallcom.2018.12.142
- T.G. Yun, J. Lee, H.S. Kim, J.Y. Cheong, S.H. Kim et al., A π-bridge spacer embedded electron donor–acceptor polymer for flexible electrochromic Zn-ion batteries. Adv. Mater. 35(31), 2301141 (2023). https://doi.org/10.1002/adma.202301141
- Q. Liu, X. Ou, Y. Niu, L. Li, D. Xing et al., Flexible Zn-ion electrochromic batteries with multiple-color variations. Angew. Chem. Int. Ed. 63(14), e202317944 (2024). https://doi.org/10.1002/anie.202317944
- H. Lv, Z. Wei, C. Han, X. Yang, Z. Tang et al., Cross-linked polyaniline for production of long lifespan aqueous iron, organic batteries with electrochromic properties. Nat. Commun. 14(1), 3117 (2023). https://doi.org/10.1038/s41467-023-38890-y
- D.Y. Kim, M.-J. Kim, G. Sung, J.-Y. Sun, Stretchable and reflective displays: materials, technologies and strategies. Nano Convergence 6(1), 21 (2019). https://doi.org/10.1186/s40580-019-0190-5
- W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light. Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
- Y. Li, P. Sun, J. Chen, X. Zha, X. Tang et al., Colorful electrochromic displays with high visual quality based on porous metamaterials. Adv. Mater. 35(23), e2300116 (2023). https://doi.org/10.1002/adma.202300116
- J. Chen, G. Song, S. Cong, Z. Zhao, Resonant-cavity-enhanced electrochromic materials and devices. Adv. Mater. 35(47), 2300179 (2023). https://doi.org/10.1002/adma.202300179
- Z. Bai, X. Wu, R. Fang, Z. Lu, C. Hou et al., Divalent viologen cation-based ionogels facilitate reversible intercalation of anions in PProDOT-Me2 for flexible electrochromic displays. Adv. Funct. Mater. 34(12), 2312587 (2024). https://doi.org/10.1002/adfm.202312587
- H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang et al., Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Mater. Horiz. 5(5), 1000–1007 (2018). https://doi.org/10.1039/C8MH00856F
- H. Kai, W. Suda, Y. Ogawa, K. Nagamine, M. Nishizawa, Intrinsically stretchable electrochromic display by a composite film of poly(3, 4-ethylenedioxythiophene) and polyurethane. ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017). https://doi.org/10.1021/acsami.7b03124
- Q. Chen, J. Zhao, J. Zheng, C. Xu, Antifreezing and self-healing organohydrogels regulated by ethylene glycol towards customizable electrochromic displays. Electrochim. Acta 431, 141156 (2022). https://doi.org/10.1016/j.electacta.2022.141156
- H.-H. Chou, A. Nguyen, A. Chortos, J.W.F. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015). https://doi.org/10.1038/ncomms9011
- J.M. Lee, S.W. Cho, C. Jo, S.H. Yang, J. Kim et al., Monolithically integrated neuromorphic electronic skin for biomimetic radiation shielding. Sci. Adv. 10(40), eadp9885 (2024). https://doi.org/10.1126/sciadv.adp9885
- G. Fu, H. Gong, J. Xu, B. Zhuang, B. Rong et al., Highly integrated all-in-one electrochromic fabrics for unmanned environmental adaptive camouflage. J. Mater. Chem. A 12(11), 6351–6358 (2024). https://doi.org/10.1039/d3ta07562a
- H. Peng, M. Pan, H. Jiang, W. Huang, X. Wang et al., Cobweb-inspired quintuple network structures toward high-performance wearable electrochromic devices with excellent bending resistance. ACS Appl. Mater. Interfaces 14(37), 42402–42411 (2022). https://doi.org/10.1021/acsami.2c10140
- C. Yan, W. Kang, J. Wang, M. Cui, X. Wang et al., Stretchable and wearable electrochromic devices. ACS Nano 8(1), 316–322 (2014). https://doi.org/10.1021/nn404061g
- Q. Fan, H. Fan, H. Han, Z. Bai, X. Wu et al., Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers. Adv. Funct. Mater. 34(16), 2310858 (2024). https://doi.org/10.1002/adfm.202310858
- N. Wang, Y. Wang, Y. Si, J. Yu, P. Tang, Electrochromic covalent organic framework-assembled nanofibrous membranes with mimetic chameleon skin architectures for visible and near-infrared camouflage stealth. Nano Lett. 24(42), 13341–13348 (2024). https://doi.org/10.1021/acs.nanolett.4c03848
- J. Koo, V. Amoli, S.Y. Kim, C. Lee, J. Kim et al., Low-power, deformable, dynamic multicolor electrochromic skin. Nano Energy 78, 105199 (2020). https://doi.org/10.1016/j.nanoen.2020.105199
- R. Zheng, Y. Wang, C. Jia, Z. Wan, J. Luo et al., Intelligent biomimetic chameleon skin with excellent self-healing and electrochromic properties. ACS Appl. Mater. Interfaces 10(41), 35533–35538 (2018). https://doi.org/10.1021/acsami.8b13249
- J. Li, P. Yang, X. Li, C. Jiang, J. Yun et al., Ultrathin smart energy-storage devices for skin-interfaced wearable electronics. ACS Energy Lett. 8(1), 1–8 (2023). https://doi.org/10.1021/acsenergylett.2c02029
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34(21), 2109357 (2022). https://doi.org/10.1002/adma.202109357
- J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
- W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380(6646), 735–742 (2023). https://doi.org/10.1126/science.ade0086
- J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15(1), 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
- Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou et al., High-stretchability, ultralow-hysteresis ConductingPolymer hydrogel strain sensors for soft machines. Adv. Mater. 34(32), e2203650 (2022). https://doi.org/10.1002/adma.202203650
- Y. Ni, J. Liu, H. Han, Q. Yu, L. Yang et al., Visualized in-sensor computing. Nat. Commun. 15, 3454 (2024). https://doi.org/10.1038/s41467-024-47630-9
- L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5(10), 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
- C. Chen, M.-H. Wang, M.-H. Zhu, F.-X. Zhao, B. Yu et al., Electrochromic pressure-sensitive device for in situ and instantaneous pressure visualization. Nano Lett. 25(11), 4154–4162 (2025). https://doi.org/10.1021/acs.nanolett.4c05064
- Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35(29), 2300855 (2023). https://doi.org/10.1002/adma.202300855
References
Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R. Rep. 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
R.J. Mortimer, A.L. Dyer, J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 27(1), 2–18 (2006). https://doi.org/10.1016/j.displa.2005.03.003
J.R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys. 34(3), 862–863 (1961). https://doi.org/10.1063/1.1731686
H. Fu, L. Zhang, Y. Dong, C. Zhang, W. Li, Recent advances in electrochromic materials and devices for camouflage applications. Mater. Chem. Front. 7(12), 2337–2358 (2023). https://doi.org/10.1039/D3QM00121K
C. Gu, A.-B. Jia, Y.-M. Zhang, S.X. Zhang, Emerging electrochromic materials and devices for future displays. Chem. Rev. 122(18), 14679–14721 (2022). https://doi.org/10.1021/acs.chemrev.1c01055
M.N. Mustafa, M.A.A. Mohd Abdah, A. Numan, A. Moreno-Rangel, A. Radwan et al., Smart window technology and its potential for net-zero buildings: a review. Renew. Sustain. Energy Rev. 181, 113355 (2023). https://doi.org/10.1016/j.rser.2023.113355
J. Wang, Z. Wang, M. Zhang, X. Huo, M. Guo, Toward next-generation smart windows: an in-depth analysis of dual-band electrochromic materials and devices. Adv. Opt. Mater. 12(11), 2302344 (2024). https://doi.org/10.1002/adom.202302344
X. Fan, S. Wang, M. Pan, H. Pang, H. Xu, Biphenyl dicarboxylic-based Ni-IRMOF-74 film for fast-switching and high-stability electrochromism. ACS Energy Lett. 9(6), 2840–2847 (2024). https://doi.org/10.1021/acsenergylett.4c00492
V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 4070–4070 (2012). https://doi.org/10.1002/adma.201290180
G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu et al., Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49(23), 8687–8720 (2020). https://doi.org/10.1039/d0cs00317d
P. Barbosa, L. Rodrigues, M. Silva, M. Smith, A. Gonçalves et al., Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays. J. Mater. Chem. 20(4), 723–730 (2010). https://doi.org/10.1039/b917208d
T.Y. Yun, X. Li, J. Bae, S.H. Kim, H.C. Moon, Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Mater. Des. 162, 45–51 (2019). https://doi.org/10.1016/j.matdes.2018.11.016
Z. Zhou, Y. Tang, F. Zhao, G. Li, G. Xu et al., Transparent succinonitrile-modified polyacrylate gel polymer electrolyte for solid electrochromic devices. Chem. Eng. J. 481, 148724 (2024). https://doi.org/10.1016/j.cej.2024.148724
C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028
O. Bohnke, C. Rousselot, P.A. Gillet, C. Truche, Gel electrolyte for solid-state electrochromic cell. J. Electrochem. Soc. 139(7), 1862–1865 (1992). https://doi.org/10.1149/1.2069512
H. Inaba, M. Iwaku, K. Nakase, H. Yasukawa, I. Seo et al., Electrochromic display device of tungsten trioxide and Prussian blue films using polymer gel electrolyte of methacrylate. Electrochim. Acta 40(2), 227–232 (1995). https://doi.org/10.1016/0013-4686(94)00230-X
S. Ahmad, S. Ahmad, S.A. Agnihotry, Composite polymeric electrolytes based on PMMA-LiCF3SO3-SiO2. Ionics 9(5), 439–443 (2003). https://doi.org/10.1007/BF02376598
Y.-F. Gong, X.-K. Fu, S.-P. Zhang, Q.-L. Jiang, Preparation of a star network PEG-based gel polymer electrolyte and its application to electrochromic devices. Chin. J. Chem. 25(11), 1743–1747 (2007). https://doi.org/10.1002/cjoc.200790322
C.O. Avellaneda, D.F. Vieira, A. Al-Kahlout, S. Heusing, E.R. Leite et al., All solid-state electrochromic devices with gelatin-based electrolyte. Sol. Energy Mater. Sol. Cells 92(2), 228–233 (2008). https://doi.org/10.1016/j.solmat.2007.02.025
S. Desai, R.L. Shepherd, P.C. Innis, P. Murphy, C. Hall et al., Gel electrolytes with ionic liquid plasticiser for electrochromic devices. Electrochim. Acta 56(11), 4408–4413 (2011). https://doi.org/10.1016/j.electacta.2010.10.030
R. Sydam, M. Deepa, A.G. Joshi, A novel 1, 1’-bis [4-(5, 6-dimethyl-1H-benzimidazole-1-yl)butyl]-4, 4’-bipyridinium dibromide (viologen) for a high contrast electrochromic device. Org. Electron. 14(4), 1027–1036 (2013). https://doi.org/10.1016/j.orgel.2013.01.035
J. Ko, A. Surendran, B. Febriansyah, W.L. Leong, Self-healable electrochromic ion gels for low power and robust displays. Org. Electron. 71, 199–205 (2019). https://doi.org/10.1016/j.orgel.2019.05.022
P.V. Rathod, J.M.C. Puguan, H. Kim, Self-bleaching dual responsive poly(ionic liquid) with optical bistability toward climate-adaptable solar modulation. Chem. Eng. J. 422, 130065 (2021). https://doi.org/10.1016/j.cej.2021.130065
T.J. Adams, A.R. Brotherton, J.A. Molai, N. Parmar, J.R. Palmer et al., Obtaining reversible, high contrast electrochromism, electrofluorochromism, and photochromism in an aqueous hydrogel device using chromogenic thiazolothiazoles. Adv. Funct. Mater. 31(36), 2103408 (2021). https://doi.org/10.1002/adfm.202103408
F. Xu, H. Li, Y. Li, Sea cucumber-inspired polyurethane demonstrating record-breaking mechanical properties in room-temperature self-healing ionogels. Adv. Mater. 36(44), 2412317 (2024). https://doi.org/10.1002/adma.202412317
Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 3(1), 1–17 (2018). https://doi.org/10.1016/j.jsamd.2018.01.002
Z. Tian, L. Hou, D. Feng, Y. Jiao, P. Wu, Modulating the coordination environment of lithium bonds for high performance polymer electrolyte batteries. ACS Nano 17(4), 3786–3796 (2023). https://doi.org/10.1021/acsnano.2c11734
D.G. Seo, H.C. Moon, Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices. Adv. Funct. Mater. 28(14), 1706948 (2018). https://doi.org/10.1002/adfm.201706948
J. Ding, Y. Yang, J. Poisson, Y. He, H. Zhang et al., Recent advances in biopolymer-based hydrogel electrolytes for flexible supercapacitors. ACS Energy Lett. 9(4), 1803–1825 (2024). https://doi.org/10.1021/acsenergylett.3c02567
H. Oh, D.G. Seo, T.Y. Yun, C.Y. Kim, H.C. Moon, Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 9(8), 7658–7665 (2017). https://doi.org/10.1021/acsami.7b00624
Z. Bai, R. Li, L. Ping, Q. Fan, Z. Lu et al., Photo-induced self-reduction enabling ultralow threshold voltage energy-conservation electrochromism. Chem. Eng. J. 452, 139645 (2023). https://doi.org/10.1016/j.cej.2022.139645
G.K. Pande, D.Y. Kim, F. Sun, R. Pal, J.S. Park, Photocurable allyl viologens exhibiting RGB-to-black electrochromic switching for versatile heat-shielding capability. Sol. Energy Mater. Sol. Cells 263, 112579 (2023). https://doi.org/10.1016/j.solmat.2023.112579
W. Wu, S. Guo, J. Bian, X. He, H. Li et al., Viologen-based flexible electrochromic devices. J. Energy Chem. 93, 453–470 (2024). https://doi.org/10.1016/j.jechem.2024.02.027
B. Deng, Y. Zhu, X. Wang, J. Zhu, M. Liu et al., An ultrafast, energy-efficient electrochromic and thermochromic device for smart windows. Adv. Mater. 35(35), e2302685 (2023). https://doi.org/10.1002/adma.202302685
P.V. Rathod, P.V. Chavan, H. Kim, Phase-changing sodium carboxymethylcellulose-As an electrolyte for electro-thermochromic smart window with synergistic optical modulation. Adv. Sustain. Syst. 8(2), 2300349 (2024). https://doi.org/10.1002/adsu.202300349
M. Chang, D. Liang, F. Zhou, H. Xue, H. Zong et al., Photochromic and electrochromic hydrogels based on ammonium- and sulfonate-functionalized thienoviologen derivatives. ACS Appl. Mater. Interfaces 14(13), 15448–15460 (2022). https://doi.org/10.1021/acsami.1c24560
Y. Alesanco, A. Viñuales, J. Rodriguez, R. Tena-Zaera, All-in-one gel-based electrochromic devices: strengths and recent developments. Materials 11(3), 414 (2018). https://doi.org/10.3390/ma11030414
B.O. Orimolade, E.R. Draper, Application of quasi solid electrolytes in organic based electrochromic devices: a mini review. Chem. Eur. J. 30(23), e202303880 (2024). https://doi.org/10.1002/chem.202303880
W. Wang, S. Guo, F. Feng, Q. Li, H. Cai et al., Research progress in polymer electrolytes for electrochromic devices. Polym. Rev. 65(1), 302–328 (2025). https://doi.org/10.1080/15583724.2024.2406973
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b
W.C. Poh, A.L. Eh, W. Wu, X. Guo, P.S. Lee, Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and flexible electrochromic devices. Adv. Mater. 34(51), 2206952 (2022). https://doi.org/10.1002/adma.202206952
G.K. Silori, S. Thoka, K.-C. Ho, Morphological features of SiO2 nanofillers address poor stability issue in gel polymer electrolyte-based electrochromic devices. ACS Appl. Mater. Interfaces 15(21), 25791–25805 (2023). https://doi.org/10.1021/acsami.3c04685
R. Zhou, W. Liu, X. Yao, Y.W. Leong, X. Lu, Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanops as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries. J. Mater. Chem. A 3(31), 16040–16049 (2015). https://doi.org/10.1039/C5TA02154E
C. Ma, W. Cui, X. Liu, Y. Ding, Y. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 4(2), e12232 (2022). https://doi.org/10.1002/inf2.12232
M. Zhu, J. Wu, Y. Wang, M. Song, L. Long et al., Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
X. Zhou, Y. Zhou, L. Yu, L. Qi, K.-S. Oh et al., Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53(10), 5291–5337 (2024). https://doi.org/10.1039/d3cs00551h
Z. Deng, Y. Liu, Z. Dai, Gel electrolytes for electrochemical actuators and sensors applications. Chem. Asian J. 18(3), e202201160 (2023). https://doi.org/10.1002/asia.202201160
H. Che, S. Chen, Y. Xie, H. Wang, K. Amine et al., Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 10(5), 1075–1101 (2017). https://doi.org/10.1039/c7ee00524e
C.Y. Chan, Z. Wang, H. Jia, P.F. Ng, L. Chow et al., Recent advances of hydrogel electrolytes in flexible energy storage devices. J. Mater. Chem. A 9(4), 2043–2069 (2021). https://doi.org/10.1039/d0ta09500a
M. Nujud Badawi, M. Kuniyil, M. Bhatia, S.S.A. Kumar, B. Mrutunjaya et al., Recent advances in flexible/stretchable hydrogel electrolytes in energy storage devices. J. Energy Storage 73, 108810 (2023). https://doi.org/10.1016/j.est.2023.108810
X. Luo, R. Wan, Z. Zhang, M. Song, L. Yan et al., 3D-printed hydrogel-based flexible electrochromic device for wearable displays. Adv. Sci. 11(38), e2404679 (2024). https://doi.org/10.1002/advs.202404679
S. Xiao, Y. Zhang, L. Ma, S. Zhao, N. Wu et al., Easy-to-make sulfonatoalkyl viologen/sodium carboxymethylcellulose hydrogel-based electrochromic devices with high coloration efficiency, fast response and excellent cycling stability. Dyes Pigments 174, 108055 (2020). https://doi.org/10.1016/j.dyepig.2019.108055
X. Ai, Q. Zhao, Y. Duan, Z. Chen, Z. Zhang et al., Zinc polyacrylamide hydrogel electrolyte for quasi-solid-state electrochromic devices with low-temperature tolerance. Cell Rep. Phys. Sci. 3(11), 101148 (2022). https://doi.org/10.1016/j.xcrp.2022.101148
J. Yin, K. Wei, J. Zhang, S. Liu, X. Wang et al., MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 3(5), 100893 (2022). https://doi.org/10.1016/j.xcrp.2022.100893
X. Li, N. Ma, G. Xu, R. Zhang, J. Liu, Efficient electrochromic device employing thermal tolerant hydrogel electrolyte with a wide operating temperature range from-40 to 60℃. Sol. Energy Mater. Sol. Cells 234, 111449 (2022). https://doi.org/10.1016/j.solmat.2021.111449
W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, A novel phase-transformation activation process toward Ni–Mn–O nanoprism arrays for 2.4 V ultrahigh-voltage aqueous supercapacitors. Adv. Mater. 29(36), 1703463 (2017). https://doi.org/10.1002/adma.201703463
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g
A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3), 497–540 (2017). https://doi.org/10.1007/s11581-016-1908-6
J. Reiter, O. Krejza, M. Sedlaříková, Electrochromic devices employing methacrylate-based polymer electrolytes. Sol. Energy Mater. Sol. Cells 93(2), 249–255 (2009). https://doi.org/10.1016/j.solmat.2008.10.010
F.A. Alamer, M.T. Otley, Y. Zhu, A. Kumar, G.A. Sotzing, Dependency of polyelectrolyte solvent composition on electrochromic photopic contrast. Sol. Energy Mater. Sol. Cells 132, 131–135 (2015). https://doi.org/10.1016/j.solmat.2014.08.033
P. Sun, J. Chen, Y. Li, X. Tang, H. Sun et al., Deep eutectic solvent-based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability. InfoMat 5(2), e12363 (2023). https://doi.org/10.1002/inf2.12363
M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009). https://doi.org/10.1038/nmat2448
I. Osada, H. De Vries, B. Scrosati, S. Passerini, Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 55(2), 500–513 (2016). https://doi.org/10.1002/anie.201504971
C.F.J. Francis, I.L. Kyratzis, A.S. Best, Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv. Mater. 32(18), 1904205 (2020). https://doi.org/10.1002/adma.201904205
K. Deng, Q. Zeng, D. Wang, Z. Liu, G. Wang et al., Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 32, 425–447 (2020). https://doi.org/10.1016/j.ensm.2020.07.018
Q. Tang, H. Li, Y. Yue, Q. Zhang, H. Wang et al., 1-ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. Mater. Des. 118, 279–285 (2017). https://doi.org/10.1016/j.matdes.2017.01.033
B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang et al., Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121(3), 1232–1285 (2021). https://doi.org/10.1021/acs.chemrev.0c00385
A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis et al., Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chem. Eng. 2(5), 1063–1071 (2014). https://doi.org/10.1021/sc500096j
D.-C. Kong, M.-H. Yang, X.-S. Zhang, Z.-C. Du, Q. Fu et al., Control of polymer properties by entanglement: a review. Macromol. Mater. Eng. 306(12), 2100536 (2021). https://doi.org/10.1002/mame.202100536
Y. Wang, G. Nian, J. Kim, Z. Suo, Polyacrylamide hydrogels. VI. Synthesis-property relation. J. Mech. Phys. Solids 170, 105099 (2023). https://doi.org/10.1016/j.jmps.2022.105099
Q. Lu, H. Li, Z. Tan, Physically entangled multifunctional eutectogels for flexible sensors with mechanically robust. J. Mater. Chem. A 12(31), 20307–20316 (2024). https://doi.org/10.1039/d4ta02751e
Z. Shen, Y. Liu, Z. Li, Z. Tang, J. Pu et al., Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 35(21), 2406620 (2025). https://doi.org/10.1002/adfm.202406620
C.J. Kloxin, C.N. Bowman, Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42(17), 7161–7173 (2013). https://doi.org/10.1039/c3cs60046g
S. Seiffert, J. Sprakel, Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 41(2), 909–930 (2012). https://doi.org/10.1039/c1cs15191f
M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels. Mater. Adv. 3(21), 7709–7725 (2022). https://doi.org/10.1039/d2ma00539e
J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021). https://doi.org/10.1126/science.abg6320
K. Liu, Y. Kang, Z. Wang, X. Zhang, 25th anniversary : reversible and adaptive functional supramolecular materials: “noncovalent interaction” matters. Adv. Mater. 25(39), 5530–5548 (2013). https://doi.org/10.1002/adma201302015
C.-H. Li, J.-L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32(27), 1903762 (2020). https://doi.org/10.1002/adma.201903762
Y. Yang, X. Ding, M.W. Urban, Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49, 34–59 (2015). https://doi.org/10.1016/j.progpolymsci.2015.06.001
K. Wang, H. Wang, J. Li, Y. Liang, X.-Q. Xie et al., Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour. Mater. Horiz. 8(9), 2520–2532 (2021). https://doi.org/10.1039/D1MH00725D
M. Green, K. Kaydanik, M. Orozco, L. Hanna, M.A.T. Marple et al., Closo-borate gel polymer electrolyte with remarkable electrochemical stability and a wide operating temperature window. Adv. Sci. 9(16), 2106032 (2022). https://doi.org/10.1002/advs.202106032
H. Gong, A. Li, G. Fu, M. Zhang, Z. Zheng et al., Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films. J. Mater. Chem. A 11(16), 8939–8949 (2023). https://doi.org/10.1039/d2ta09807e
L. Wang, Y. Chen, L. Zeng, X. Huang, W. Lv et al., The nanofiber gel electrolytes with ultra-high ionic conductivity regulated by different acid radical ions for lithium batteries. Chem. Eng. J. 496, 154252 (2024). https://doi.org/10.1016/j.cej.2024.154252
G. Xing, L. Wu, G. Kuang, T. Ma, Z. Chen et al., Integration of high surface-energy electrochromic polymer with in situ polymerized quasi-solid electrolyte for efficient electrochromism. Electrochim. Acta 432, 141216 (2022). https://doi.org/10.1016/j.electacta.2022.141216
Y.-G. Cho, C. Hwang, D.S. Cheong, Y.-S. Kim, H.-K. Song, Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv. Mater. 31(20), 1804909 (2019). https://doi.org/10.1002/adma.201804909
G. Xiao, H. Xu, C. Bai, M. Liu, Y.-B. He, Progress and perspectives of in situ polymerization method for lithium-based batteries. Interdiscip. Mater. 2(4), 609–634 (2023). https://doi.org/10.1002/idm2.12109
H. Cai, Z. Chen, S. Guo, D. Ma, J. Wang, Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices. Sol. Energy Mater. Sol. Cells 256, 112310 (2023). https://doi.org/10.1016/j.solmat.2023.112310
S.-Y. Kao, C.-W. Kung, H.-W. Chen, C.-W. Hu, K.-C. Ho, An electrochromic device based on all-in-one polymer gel through in situ thermal polymerization. Sol. Energy Mater. Sol. Cells 145, 61–68 (2016). https://doi.org/10.1016/j.solmat.2015.04.012
W. Chen, C. Zhu, L. Guo, M. Yan, L. Wu et al., A novel ionically crosslinked gel polymer electrolyte as an ion transport layer for high-performance electrochromic devices. J. Mater. Chem. C 7(13), 3744–3750 (2019). https://doi.org/10.1039/C9TC00621D
F. Feng, S. Guo, D. Ma, J. Wang, An overview of electrochromic devices with electrolytes containing viologens. Sol. Energy Mater. Sol. Cells 254, 112270 (2023). https://doi.org/10.1016/j.solmat.2023.112270
T.P. Lodge, T. Ueki, Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc. Chem. Res. 49(10), 2107–2114 (2016). https://doi.org/10.1021/acs.accounts.6b00308
Y. Alesanco, A. Viñuales, G. Cabañero, J. Rodriguez, R. Tena-Zaera, Colorless to neutral color electrochromic devices based on asymmetric viologens. ACS Appl. Mater. Interfaces 8(43), 29619–29627 (2016). https://doi.org/10.1021/acsami.6b11321
S.-Y. Kao, H.-C. Lu, C.-W. Kung, H.-W. Chen, T.-H. Chang et al., Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation. ACS Appl. Mater. Interfaces 8(6), 4175–4184 (2016). https://doi.org/10.1021/acsami.5b11947
H.-C. Lu, S.-Y. Kao, T.-H. Chang, C.-W. Kung, K.-C. Ho, An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Sol. Energy Mater. Sol. Cells 147, 75–84 (2016). https://doi.org/10.1016/j.solmat.2015.11.044
S. Zhao, L. Chen, W. Huang, Y.-H. Liu, Transparent multicolor electrochromic displays with ingenious hues adjustment by integrating cholesteric liquid crystal with viologen gel. Adv. Opt. Mater. 11(19), 2300503 (2023). https://doi.org/10.1002/adom.202300503
L. Wang, M. Guo, J. Zhan, X. Jiao, D. Chen et al., A new design of an electrochromic energy storage device with high capacity, long cycle lifetime and multicolor display. J. Mater. Chem. A 8(33), 17098–17105 (2020). https://doi.org/10.1039/D0TA04824K
A.N. Woodward, J.M. Kolesar, S.R. Hall, N.-A. Saleh, D.S. Jones et al., Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 139(25), 8467–8473 (2017). https://doi.org/10.1021/jacs.7b01005
A. Kavanagh, K.J. Fraser, R. Byrne, D. Diamond, An electrochromic ionic liquid: design, characterization, and performance in a solid-state platform. ACS Appl. Mater. Interfaces 5(1), 55–62 (2013). https://doi.org/10.1021/am3018948
K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.-C. Ho, Viologen-based electrochromic materials and devices. J. Mater. Chem. C 7(16), 4622–4637 (2019). https://doi.org/10.1039/c9tc00416e
Y. Zhuang, W. Zhao, L. Wang, F. Li, W. Wang et al., Soluble triarylamine functionalized symmetric viologen for all-solid-state electrochromic supercapacitors. Sci. China Chem. 63(11), 1632–1644 (2020). https://doi.org/10.1007/s11426-020-9789-9
J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang et al., Viologen-inspired functional materials: synthetic strategies and applications. J. Mater. Chem. A 7(41), 23337–23360 (2019). https://doi.org/10.1039/c9ta01724k
P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong et al., Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv. Mater. 29(7), 1604491 (2017). https://doi.org/10.1002/adma.201604491
J.-W. Kim, J.-M. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv. Funct. Mater. 29(13), 1808911 (2019). https://doi.org/10.1002/adfm.201808911
X. Wu, Q. Fan, Z. Bai, Q. Zhang, W. Jiang et al., Synergistic interaction of dual-polymer networks containing viologens-anchored poly(ionic liquid)s enabling long-life and large-area electrochromic organogels. Small 19(37), 2301742 (2023). https://doi.org/10.1002/smll.202301742
S. Tang, R. Zheng, J. Niu, Z. Wan, C. Jia et al., All-in-one electrochromic gel consist of benzylboronic acid viologen with superior long-term stability and self-healing property. Sol. Energy Mater. Sol. Cells 257, 112353 (2023). https://doi.org/10.1016/j.solmat.2023.112353
H. Yang, Z. Liu, B.K. Chandran, J. Deng, J. Yu et al., Self-protection of electrochemical storage devices via a thermal reversible sol–gel transition. Adv. Mater. 27(37), 5593–5598 (2015). https://doi.org/10.1002/adma.201502484
F. Mo, H. Li, Z. Pei, G. Liang, L. Ma et al., A smart safe rechargeable zinc ion battery based on Sol-gel transition electrolytes. Sci. Bull. 63(16), 1077–1086 (2018). https://doi.org/10.1016/j.scib.2018.06.019
Y. Zhou, X. Dong, Y. Mi, F. Fan, Q. Xu et al., Hydrogel smart windows. J. Mater. Chem. A 8(20), 10007–10025 (2020). https://doi.org/10.1039/d0ta00849d
F. Xin, Q. Lu, B. Liu, S. Yuan, R. Zhang et al., Metal-ion-mediated hydrogels with thermo-responsiveness for smart windows. Eur. Polym. J. 99, 65–71 (2018). https://doi.org/10.1016/j.eurpolymj.2017.12.008
X.-H. Li, C. Liu, S.-P. Feng, N.X. Fang, Broadband light management with thermochromic hydrogel microps for smart windows. Joule 3(1), 290–302 (2019). https://doi.org/10.1016/j.joule.2018.10.019
R. Zhang, B. Xiang, Y. Shen, L. Xia, L. Xu et al., Energy-efficient smart window based on a thermochromic microgel with ultrahigh visible transparency and infrared transmittance modulation. J. Mater. Chem. A 9(32), 17481–17491 (2021). https://doi.org/10.1039/D1TA03917B
G. Chen, K. Wang, J. Yang, J. Huang, Z. Chen et al., Printable thermochromic hydrogel-based smart window for all-weather building temperature regulation in diverse climates. Adv. Mater. 35(20), 2211716 (2023). https://doi.org/10.1002/adma.202211716
M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen et al., Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer. Biosens. Bioelectron. 50, 229–234 (2013). https://doi.org/10.1016/j.bios.2013.06.030
H.-H. Lin, Y.-L. Cheng, In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules 34(11), 3710–3715 (2001). https://doi.org/10.1021/ma001852m
L. Zhang, Y. Du, F. Xia, Y. Gao, Two birds with one stone: a novel thermochromic cellulose hydrogel as electrolyte for fabricating electric-/thermal-dual-responsive smart windows. Chem. Eng. J. 455, 140849 (2023). https://doi.org/10.1016/j.cej.2022.140849
P.V. Chavan, P.V. Rathod, J. Lee, S.V. Kostjuk, H. Kim, Active and passive modulation of solar light transmittance in a uniquely multifunctional dual-band single molecule for smart window applications. J. Energy Chem. 88, 293–305 (2024). https://doi.org/10.1016/j.jechem.2023.09.014
H. Peng, H. Wang, Y. Wang, X. Wang, S. Chen et al., Achieving a highly safe supercapacitor via the combination of a temperature-responsive hydrogel-electrolyte and electrochromic electrodes. J. Mater. Chem. A 10(38), 20302–20311 (2022). https://doi.org/10.1039/D2TA04560E
H. Zhou, M. Parmananda, K.R. Crompton, M.P. Hladky, M.A. Dann et al., Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios. Energy Storage Mater. 44, 326–341 (2022). https://doi.org/10.1016/j.ensm.2021.10.030
A.C.C. Rotzetter, C.M. Schumacher, S.B. Bubenhofer, R.N. Grass, L.C. Gerber et al., Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings. Adv. Mater. 24(39), 5352–5356 (2012). https://doi.org/10.1002/adma.201202574
D.L. Huber, R.P. Manginell, M.A. Samara, B.-I. Kim, B.C. Bunker, Programmed adsorption and release of proteins in a microfluidic device. Science 301(5631), 352–354 (2003). https://doi.org/10.1126/science.1080759
J. Bae, J.-H. Na, C.D. Santangelo, R.C. Hayward, Edge-defined metric buckling of temperature-responsive hydrogel ribbons and rings. Polymer 55(23), 5908–5914 (2014). https://doi.org/10.1016/j.polymer.2014.08.033
W. Han, Z. Liu, S. Wang, Y. Ji, X. Zhang, Construction of a novel photoresponsive supramolecular fluorescent hydrogel through host-guest interaction between β-cyclodextrin and azobenzene. ChemistrySelect 5(7), 2300–2305 (2020). https://doi.org/10.1002/slct.201904361
Y. Shan, Q. Zhang, J. Sheng, M.C.A. Stuart, D.-H. Qu et al., Motorized photomodulator: making a non-photoresponsive supramolecular gel switchable by light. Angew. Chem. Int. Ed. 62(43), e202310582 (2023). https://doi.org/10.1002/anie.202310582
Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta et al., Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 3, 1270 (2012). https://doi.org/10.1038/ncomms2280
D. Tian, W. Ma, L. Zheng, K. Jiang, H. He et al., Tough, healable, photoresponsive actuator based on a quadruple hydrogen-bond-capped slide-ring structure. ACS Appl. Polym. Mater. 5(10), 8641–8649 (2023). https://doi.org/10.1021/acsapm.3c01683
B. Wang, P. Liu, F. Zhao, B. Huang, W. Zhang et al., Electro- and photo- dual responsive chromatic devices for high-contrast dimmers. Adv. Mater. 37(7), e2410703 (2025). https://doi.org/10.1002/adma.202410703
L. Manjakkal, L. Pereira, E. Kumi Barimah, P. Grey, F.F. Franco et al., Multifunctional flexible and stretchable electrochromic energy storage devices. Prog. Mater. Sci. 142, 101244 (2024). https://doi.org/10.1016/j.pmatsci.2024.101244
R. Zheng, Y. Fan, Y. Wang, Z. Wan, C. Jia et al., A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance. Electrochim. Acta 286, 296–303 (2018). https://doi.org/10.1016/j.electacta.2018.08.009
J.W. Kim, S. Kim, Y.R. Jeong, J. Kim, D.S. Kim et al., Self-healing strain-responsive electrochromic display based on a multiple crosslinked network hydrogel. Chem. Eng. J. 430, 132685 (2022). https://doi.org/10.1016/j.cej.2021.132685
G. Xu, B. Wang, S. Song, Z. Ren, D. Liu et al., Dual-dynamic modulation of thermal radiation and electromagnetic interference shielding with the self-healing electrochromic device. Adv. Mater. Technol. 7(7), 2101381 (2022). https://doi.org/10.1002/admt.202101381
D.S. Kim, H. Lee, K. Keum, J.W. Kim, G. Jung et al., A stretchable patch of multi-color electrochromic devices for driving integrated sensors and displaying bio-signals. Nano Energy 113, 108607 (2023). https://doi.org/10.1016/j.nanoen.2023.108607
G. Yang, J. Ding, B. Yang, X. Wang, C. Gu et al., Highly stretchable electrochromic hydrogels for use in wearable electronic devices. J. Mater. Chem. C 7(31), 9481–9486 (2019). https://doi.org/10.1039/c9tc02673h
T. Cheng, Y.-Z. Zhang, S. Wang, Y.-L. Chen, S.-Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31(24), 2101303 (2021). https://doi.org/10.1002/adfm.202101303
W. Wu, W.C. Poh, J. Lv, S. Chen, D. Gao et al., Self-powered and light-adaptable stretchable electrochromic display. Adv. Energy Mater. 13(18), 2204103 (2023). https://doi.org/10.1002/aenm.202204103
F. Sun, K.S. Kim, S.Y. Eom, J.W. Choi, E.J. Kim et al., Stretchable interconnected modular electrochromic devices enabled by self-healing, self-adhesive, and ion-conducting polymer electrolyte. Chem. Eng. J. 494, 153107 (2024). https://doi.org/10.1016/j.cej.2024.153107
Q. Chen, Y. Shi, K. Sheng, J. Zheng, C. Xu, Dynamically cross-linked hydrogel electrolyte with remarkable stretchability and self-healing capability for flexible electrochromic devices. ACS Appl. Mater. Interfaces 13(47), 56544–56553 (2021). https://doi.org/10.1021/acsami.1c15432
W. Li, Y. Cui, A self-healing polyacrylic acid-based hydrogel electrolyte for flexible quasi-solid-state electrochromic device. Sol. Energy Mater. Sol. Cells 250, 112071 (2023). https://doi.org/10.1016/j.solmat.2022.112071
J.-N. Liu, Q. He, M.-Y. Pan, K. Du, C.-B. Gong et al., An energy-saving, bending sensitive, and self-healing PVA-borax-IL ternary hydrogel electrolyte for visual flexible electrochromic strain sensors. J. Mater. Chem. A 10(47), 25118–25128 (2022). https://doi.org/10.1039/d2ta06667j
Y. Meng, Z. Li, L. Wang, X. Yang, Y. Yang et al., Flexible solid-state zinc-ion electrochromic energy storage device with self-healing electrolyte for wearable electronics. J. Energy Storage 99, 113221 (2024). https://doi.org/10.1016/j.est.2024.113221
Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou et al., Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9(39), 1902066 (2019). https://doi.org/10.1002/aenm.201902066
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
M. Tarantini, A.D. Loprieno, P.L. Porta, A life cycle approach to Green Public Procurement of building materials and elements: a case study on windows. Energy 36(5), 2473–2482 (2011). https://doi.org/10.1016/j.energy.2011.01.039
S.-Z. Sheng, J.-L. Wang, B. Zhao, Z. He, X.-F. Feng et al., Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14(1), 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
H. Khandelwal, A.P.H.J. Schenning, M.G. Debije, Infrared regulating smart window based on organic materials. Adv. Energy Mater. 7(14), 1602209 (2017). https://doi.org/10.1002/aenm.201602209
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
T. Hoyt, E. Arens, H. Zhang, Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 89–96 (2015). https://doi.org/10.1016/j.buildenv.2014.09.010
Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7(6), 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
S. Wu, H. Sun, M. Duan, H. Mao, Y. Wu et al., Applications of thermochromic and electrochromic smart windows: materials to buildings. Cell Rep. Phys. Sci. 4(5), 101370 (2023). https://doi.org/10.1016/j.xcrp.2023.101370
H.J. Lee, C. Lee, J. Song, Y.J. Yun, Y. Jun et al., Electrochromic devices based on ultraviolet-cured poly(methyl methacrylate) gel electrolytes and their utilisation in smart window applications. J. Mater. Chem. C 8(26), 8747–8754 (2020). https://doi.org/10.1039/D0TC00420K
H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Automatic light-adjusting electrochromic device powered by perovskite solar cell. Nat. Commun. 12(1), 1010 (2021). https://doi.org/10.1038/s41467-021-21086-7
L. Gonzalez, C. Liu, B. Dietrich, H. Su, S. Sproules et al., Transparent-to-dark photo- and electrochromic gels. Commun. Chem. 1, 77 (2018). https://doi.org/10.1038/s42004-018-0075-2
B. Li, F. Xu, T. Guan, Y. Li, J. Sun, Self-adhesive self-healing thermochromic ionogels for smart windows with excellent environmental and mechanical stability, solar modulation, and antifogging capabilities. Adv. Mater. 35(20), 2211456 (2023). https://doi.org/10.1002/adma.202211456
D. Wang, G. Chen, J. Fu, Multifunctional thermochromic smart windows for building energy saving. J. Mater. Chem. A 12(22), 12960–12982 (2024). https://doi.org/10.1039/d4ta01767f
S.J. Lee, S.H. Lee, H.W. Kang, S. Nahm, B.H. Kim et al., Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. Chem. Eng. J. 416, 129028 (2021). https://doi.org/10.1016/j.cej.2021.129028
P.V. Rathod, J.M.C. Puguan, H. Kim, Thermo- and electrochromic smart window derived from a viologen-tethered triazolum based poly(NIPAmn-TEG-BPV) electrolyte to enhance building energy efficiency and visual comfort. Chem. Eng. J. 455, 140874 (2023). https://doi.org/10.1016/j.cej.2022.140874
Y. Shi, J. Liu, M. Li, J. Zheng, C. Xu, Novel electrochromic-fluorescent bi-functional devices based on aromatic viologen derivates. Electrochim. Acta 285, 415–423 (2018). https://doi.org/10.1016/j.electacta.2018.07.236
Y. Shi, G. Wang, Q. Chen, J. Zheng, C. Xu, Electrochromism and electrochromic devices of new extended viologen derivatives with various substituent benzene. Sol. Energy Mater. Sol. Cells 208, 110413 (2020). https://doi.org/10.1016/j.solmat.2020.110413
F. Sun, J. Cai, H. Wu, H. Zhang, Y. Chen et al., Novel extended viologen derivatives for photochromic and electrochromic dual-response smart windows. Sol. Energy Mater. Sol. Cells 260, 112496 (2023). https://doi.org/10.1016/j.solmat.2023.112496
S. Kandpal, T. Ghosh, C. Rani, A. Chaudhary, J. Park et al., Multifunctional electrochromic devices for energy applications. ACS Energy Lett. 8(4), 1870–1886 (2023). https://doi.org/10.1021/acsenergylett.3c00159
Z. Tong, X. Zhu, H. Xu, Z. Li, S. Li et al., Multivalent-ion electrochromic energy saving and storage devices. Adv. Funct. Mater. 35(21), 2308989 (2025). https://doi.org/10.1002/adfm.202308989
P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19(7), 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen et al., Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6(4), 1501882 (2016). https://doi.org/10.1002/aenm.201501882
J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu et al., A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function. J. Mater. Chem. A 6(24), 11113–11118 (2018). https://doi.org/10.1039/c8ta03143f
T.G. Yun, M. Park, D.-H. Kim, D. Kim, J.Y. Cheong et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3), 3141–3150 (2019). https://doi.org/10.1021/acsnano.8b08560
X. Fan, C. Zhong, J. Liu, J. Ding, Y. Deng et al., Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 122(23), 17155–17239 (2022). https://doi.org/10.1021/acs.chemrev.2c00196
R. Ma, Z. Xu, X. Wang, Polymer hydrogel electrolytes for flexible and multifunctional zinc-ion batteries and capacitors. Energy Environ. Mater. 6(5), e12464 (2023). https://doi.org/10.1002/eem2.12464
J. Li, H. Jia, S. Ma, L. Xie, X.-X. Wei et al., Separator design for high-performance supercapacitors: requirements, challenges, strategies, and prospects. ACS Energy Lett. 8(1), 56–78 (2023). https://doi.org/10.1021/acsenergylett.2c01853
S. Samantaray, D. Mohanty, I.-M. Hung, M. Moniruzzaman, S.K. Satpathy, Unleashing recent electrolyte materials for next-generation supercapacitor applications: a comprehensive review. J. Energy Storage 72, 108352 (2023). https://doi.org/10.1016/j.est.2023.108352
C. Du, X. Cheng, B. Lu, W. Zhou, J. Zhang et al., Engineering a 3D conductive polythiophene network with conformational locking for camouflaged wearable electrochromic-supercapacitor devices. Energy Storage Mater. 80, 104394 (2025). https://doi.org/10.1016/j.ensm.2025.104394
S.Y. Kim, Y.J. Jang, Y.M. Kim, J.K. Lee, H.C. Moon, Tailoring diffusion dynamics in energy storage ionic conductors for high-performance, multi-function, single-layer electrochromic supercapacitors. Adv. Funct. Mater. 32(25), 2200757 (2022). https://doi.org/10.1002/adfm.202200757
G. Li, L. Gao, L. Li, L. Guo, An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2.7/Au NPs electrode and hydrogel electrolyte. J. Alloys Compd. 786, 40–49 (2019). https://doi.org/10.1016/j.jallcom.2018.12.142
T.G. Yun, J. Lee, H.S. Kim, J.Y. Cheong, S.H. Kim et al., A π-bridge spacer embedded electron donor–acceptor polymer for flexible electrochromic Zn-ion batteries. Adv. Mater. 35(31), 2301141 (2023). https://doi.org/10.1002/adma.202301141
Q. Liu, X. Ou, Y. Niu, L. Li, D. Xing et al., Flexible Zn-ion electrochromic batteries with multiple-color variations. Angew. Chem. Int. Ed. 63(14), e202317944 (2024). https://doi.org/10.1002/anie.202317944
H. Lv, Z. Wei, C. Han, X. Yang, Z. Tang et al., Cross-linked polyaniline for production of long lifespan aqueous iron, organic batteries with electrochromic properties. Nat. Commun. 14(1), 3117 (2023). https://doi.org/10.1038/s41467-023-38890-y
D.Y. Kim, M.-J. Kim, G. Sung, J.-Y. Sun, Stretchable and reflective displays: materials, technologies and strategies. Nano Convergence 6(1), 21 (2019). https://doi.org/10.1186/s40580-019-0190-5
W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light. Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
Y. Li, P. Sun, J. Chen, X. Zha, X. Tang et al., Colorful electrochromic displays with high visual quality based on porous metamaterials. Adv. Mater. 35(23), e2300116 (2023). https://doi.org/10.1002/adma.202300116
J. Chen, G. Song, S. Cong, Z. Zhao, Resonant-cavity-enhanced electrochromic materials and devices. Adv. Mater. 35(47), 2300179 (2023). https://doi.org/10.1002/adma.202300179
Z. Bai, X. Wu, R. Fang, Z. Lu, C. Hou et al., Divalent viologen cation-based ionogels facilitate reversible intercalation of anions in PProDOT-Me2 for flexible electrochromic displays. Adv. Funct. Mater. 34(12), 2312587 (2024). https://doi.org/10.1002/adfm.202312587
H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang et al., Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Mater. Horiz. 5(5), 1000–1007 (2018). https://doi.org/10.1039/C8MH00856F
H. Kai, W. Suda, Y. Ogawa, K. Nagamine, M. Nishizawa, Intrinsically stretchable electrochromic display by a composite film of poly(3, 4-ethylenedioxythiophene) and polyurethane. ACS Appl. Mater. Interfaces 9(23), 19513–19518 (2017). https://doi.org/10.1021/acsami.7b03124
Q. Chen, J. Zhao, J. Zheng, C. Xu, Antifreezing and self-healing organohydrogels regulated by ethylene glycol towards customizable electrochromic displays. Electrochim. Acta 431, 141156 (2022). https://doi.org/10.1016/j.electacta.2022.141156
H.-H. Chou, A. Nguyen, A. Chortos, J.W.F. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015). https://doi.org/10.1038/ncomms9011
J.M. Lee, S.W. Cho, C. Jo, S.H. Yang, J. Kim et al., Monolithically integrated neuromorphic electronic skin for biomimetic radiation shielding. Sci. Adv. 10(40), eadp9885 (2024). https://doi.org/10.1126/sciadv.adp9885
G. Fu, H. Gong, J. Xu, B. Zhuang, B. Rong et al., Highly integrated all-in-one electrochromic fabrics for unmanned environmental adaptive camouflage. J. Mater. Chem. A 12(11), 6351–6358 (2024). https://doi.org/10.1039/d3ta07562a
H. Peng, M. Pan, H. Jiang, W. Huang, X. Wang et al., Cobweb-inspired quintuple network structures toward high-performance wearable electrochromic devices with excellent bending resistance. ACS Appl. Mater. Interfaces 14(37), 42402–42411 (2022). https://doi.org/10.1021/acsami.2c10140
C. Yan, W. Kang, J. Wang, M. Cui, X. Wang et al., Stretchable and wearable electrochromic devices. ACS Nano 8(1), 316–322 (2014). https://doi.org/10.1021/nn404061g
Q. Fan, H. Fan, H. Han, Z. Bai, X. Wu et al., Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers. Adv. Funct. Mater. 34(16), 2310858 (2024). https://doi.org/10.1002/adfm.202310858
N. Wang, Y. Wang, Y. Si, J. Yu, P. Tang, Electrochromic covalent organic framework-assembled nanofibrous membranes with mimetic chameleon skin architectures for visible and near-infrared camouflage stealth. Nano Lett. 24(42), 13341–13348 (2024). https://doi.org/10.1021/acs.nanolett.4c03848
J. Koo, V. Amoli, S.Y. Kim, C. Lee, J. Kim et al., Low-power, deformable, dynamic multicolor electrochromic skin. Nano Energy 78, 105199 (2020). https://doi.org/10.1016/j.nanoen.2020.105199
R. Zheng, Y. Wang, C. Jia, Z. Wan, J. Luo et al., Intelligent biomimetic chameleon skin with excellent self-healing and electrochromic properties. ACS Appl. Mater. Interfaces 10(41), 35533–35538 (2018). https://doi.org/10.1021/acsami.8b13249
J. Li, P. Yang, X. Li, C. Jiang, J. Yun et al., Ultrathin smart energy-storage devices for skin-interfaced wearable electronics. ACS Energy Lett. 8(1), 1–8 (2023). https://doi.org/10.1021/acsenergylett.2c02029
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34(21), 2109357 (2022). https://doi.org/10.1002/adma.202109357
J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380(6646), 735–742 (2023). https://doi.org/10.1126/science.ade0086
J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15(1), 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou et al., High-stretchability, ultralow-hysteresis ConductingPolymer hydrogel strain sensors for soft machines. Adv. Mater. 34(32), e2203650 (2022). https://doi.org/10.1002/adma.202203650
Y. Ni, J. Liu, H. Han, Q. Yu, L. Yang et al., Visualized in-sensor computing. Nat. Commun. 15, 3454 (2024). https://doi.org/10.1038/s41467-024-47630-9
L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5(10), 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
C. Chen, M.-H. Wang, M.-H. Zhu, F.-X. Zhao, B. Yu et al., Electrochromic pressure-sensitive device for in situ and instantaneous pressure visualization. Nano Lett. 25(11), 4154–4162 (2025). https://doi.org/10.1021/acs.nanolett.4c05064
Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35(29), 2300855 (2023). https://doi.org/10.1002/adma.202300855