Dual-Mode Sensor with Saturated Mechanochromic Structural Color Enhanced by Black Conductive Hydrogel for Interactive Rehabilitation Monitoring
Corresponding Author: Qingdong Ou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 110
Abstract
Flexible and wearable sensors offer immense potential for rehabilitation medicine, but most rely solely on electrical signals, lacking real-time visual feedback and limiting trainee’s interactivity. Inspired by the structural coloration of Cyanocitta stelleri feathers, we developed a dual-mode sensor by utilizing black conductive polymer hydrogel (CPH)-enhanced structural color strategy. This sensor integrates a hydroxypropyl cellulose (HPC)-based structural color interface with a designed CPH sensing component. Highly visible light-absorbing CPH (absorption rate > 88%) serves as the critical substrate for enhancing structural color performance. By absorbing incoherent scattered light and suppressing background interference, it significantly enhances the saturation of structural color, thereby achieving a high contrast index of 4.92. Unlike the faint and hardly visible structural colors on non-black substrates, the HPC on CPH displays vivid, highly perceptible colors and desirable mechanochromic behavior. Moreover, the CPH acts as a flexible sensing element, fortified by hydrogen and coordination bond networks, and exhibits exceptional electromechanical properties, including 867.1 kPa tensile strength, strain sensitivity (gauge factor of 4.24), and outstanding durability (over 4400 cycles). Compared to traditional single-mode sensors, the integrated sensor provides real-time visual and digital dual feedback, enhancing the accuracy and interactivity of rehabilitation assessments. This technology holds promise for advancing next-generation rehabilitation medicine.
Highlights:
1 Mimicking Cyanocitta stelleri feathers, we developed a dual-mode sensor with strain-sensing and mechanochromic functions by using black conductive polymer hydrogel (CPH) substrate to enhance hydroxypropyl cellulose’s structural color.
2 The synthesized CPH, with >88% visible-light absorption, enhances color saturation by absorbing scattered light and suppressing background interference, enabling vivid mechanochromism. Fortified by noncovalent bonds, it also functions as a robust, sensitive sensor.
3 Unlike traditional single-mode sensors, this integrated sensor offers real-time visual and digital feedback, improving rehabilitation assessment accuracy and interactivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.L. Feigin, B.A. Stark, C.O. Johnson, G.A. Roth, C. Bisignano et al., Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20(10), 795–820 (2021). https://doi.org/10.1016/S1474-4422(21)00252-0
- C.O. Johnson, M. Nguyen, G.A. Roth, E. Nichols, T. Alam et al., Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 18(5), 439–458 (2019). https://doi.org/10.1016/S1474-4422(19)30034-1
- S.C. Cramer, M. Sur, B.H. Dobkin, C. O’Brien, T.D. Sanger et al., Harnessing neuroplasticity for clinical applications. Brain 134(6), 1591–1609 (2011). https://doi.org/10.1093/brain/awr039
- C.J. Winstein, J. Stein, R. Arena, B. Bates, L.R. Cherney et al., Guidelines for adult stroke rehabilitation and recovery. Stroke 47(6), e98 (2016). https://doi.org/10.1161/STR.0000000000000098
- B.H. Dobkin, A. Dorsch, New evidence for therapies in stroke rehabilitation. Curr. Atheroscler. Rep. 15(6), 331 (2013). https://doi.org/10.1007/s11883-013-0331-y
- T.S. Fu, C.-Y. Wu, K.-C. Lin, C.-J. Hsieh, J.-S. Liu et al., Psychometric comparison of the shortened Fugl-Meyer assessment and the streamlined Wolf Motor Function Test in stroke rehabilitation. Clin. Rehabil. 26(11), 1043–1047 (2012). https://doi.org/10.1177/0269215511431474
- D.J. Gladstone, C.J. Danells, S.E. Black, The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil. Neural Repair 16(3), 232–240 (2002). https://doi.org/10.1177/154596802401105171
- H. Wu, G. Yang, K. Zhu, S. Liu, W. Guo et al., Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. 8(2), 2001938 (2021). https://doi.org/10.1002/advs.202001938
- G. Yang, Y. Hu, W. Guo, W. Lei, W. Liu et al., Tunable hydrogel electronics for diagnosis of peripheral neuropathy. Adv. Mater. 36(18), e2308831 (2024). https://doi.org/10.1002/adma.202308831
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- S. Imani, A.J. Bandodkar, A.M. Vinu Mohan, R. Kumar, S. Yu et al., A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016). https://doi.org/10.1038/ncomms11650
- P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., Mxene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
- X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 201602790 (2017). https://doi.org/10.1002/smll.201602790
- J. Ji, W. Zhao, Y. Wang, Q. Li, G. Wang, Templated laser-induced-graphene-based tactile sensors enable wearable health monitoring and texture recognition via deep neural network. ACS Nano 17(20), 20153–20166 (2023). https://doi.org/10.1021/acsnano.3c05838
- Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
- B. Yao, Z. Ye, X. Lou, Q. Yan, Z. Han et al., Wireless rehabilitation training sensor arrays made with hot screen-imprinted conductive hydrogels with a low percolation threshold. ACS Appl. Mater. Interfaces 14(10), 12734–12747 (2022). https://doi.org/10.1021/acsami.2c01630
- Y. Zhao, X. Zhang, Y. Hao, Y. Zhao, P. Ding et al., Multifunctional PVA/PNIPAM conductive hydrogel sensors enabled human-machine interaction intelligent rehabilitation training. Adv. Compos. Hybrid Mater. 7(6), 245 (2024). https://doi.org/10.1007/s42114-024-01066-3
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- J. Shang, X. Ma, P. Zou, C. Huang, Z. Lao et al., A flexible catheter-based sensor array for upper airway soft tissues pressure monitoring. Nat. Commun. 16(1), 287 (2025). https://doi.org/10.1038/s41467-024-55088-y
- J. Lao, Y. Jiao, Y. Zhang, H. Xu, Y. Wang et al., Intrinsically adhesive and conductive hydrogel bridging the bioelectronic-tissue interface for biopotentials recording. ACS Nano 19(8), 7755–7766 (2025). https://doi.org/10.1021/acsnano.4c12823
- Y. Li, H. Zhou, H. Yang, K. Xu, Laser-induced highly stable conductive hydrogels for robust bioelectronics. Nano-Micro Lett. 17(1), 57 (2024). https://doi.org/10.1007/s40820-024-01519-w
- Z. Sun, Q. Ou, C. Dong, J. Zhou, H. Hu et al., Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. Exploration 4(5), 20220167 (2024). https://doi.org/10.1002/EXP.20220167
- D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7(6), 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
- T. Zhu, Y. Ni, G.M. Biesold, Y. Cheng, M. Ge et al., Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52(2), 473–509 (2023). https://doi.org/10.1039/D2CS00173J
- Z. Sun, C. Dong, B. Chen, W. Li, H. Hu et al., Strong, tough, and anti-swelling supramolecular conductive hydrogels for amphibious motion sensors. Small 19(44), e2303612 (2023). https://doi.org/10.1002/smll.202303612
- X. Zhou, X. Zhao, Y. Wang, P. Wang, X. Jiang et al., Gel-based strain/pressure sensors for underwater sensing: sensing mechanisms, design strategies and applications. Compos. B Eng. 255, 110631 (2023). https://doi.org/10.1016/j.compositesb.2023.110631
- J. Wang, Y. Lei, H.N. Jaleel, D. Dhanapal, D. Alfaran et al., Hydroxypropyl cellulose-based thermochromic hydrogels for smart passive cooling. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202420946
- Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. U.S.A. 119(23), e2204113119 (2022). https://doi.org/10.1073/pnas.220411311
- L. Bai, Y. Jin, X. Shang, H. Jin, Y. Zhou et al., Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. J. Mater. Chem. A 9(42), 23916–23928 (2021). https://doi.org/10.1039/D1TA06798B
- X. Hu, J. Wang, S. Song, W. Gan, W. Li et al., Ionic conductive konjac glucomannan/liquid crystal cellulose composite hydrogels with dual sensing of photo- and electro-signals capacities as wearable strain sensors. Int. J. Biol. Macromol. 258, 129038 (2024). https://doi.org/10.1016/j.ijbiomac.2023.129038
- L. Song, W. Chen, J. Huang, D. Hu, X. Ji et al., Conductive hydrogels with HPC additions for humidity sensing and temperature response. Chem. Eng. J. 506, 160000 (2025). https://doi.org/10.1016/j.cej.2025.160000
- E.S.A. Goerlitzer, R.N. Klupp Taylor, N. Vogel, Bioinspired photonic pigments from colloidal self-assembly. Adv. Mater. 30(28), 1706654 (2018). https://doi.org/10.1002/adma.201706654
- M. Tanzid, N.J. Hogan, H. Robatjazi, A. Veeraraghavan, N.J. Halas, Absorption-enhanced imaging through scattering media using carbon black nano-ps: from visible to near infrared wavelengths. J. Opt. 20(5), 054001 (2018). https://doi.org/10.1088/2040-8986/aab3a2
- B. Yu, Z. Chen, Z. Sun, C. Yu, Z. Lu et al., Synergistic dynamic pitch and incoherent scattering enabling programmable cellulose thermochromic hybrids with UV–Vis-NIR broad modulation and multifunctionality. Chem. Eng. J. 521, 166349 (2025). https://doi.org/10.1016/j.cej.2025.166349
- J. Dunning, C. Sheard, J.A. Endler, Viewing conditions predict evolutionary diversity in avian plumage colour. Proc. Biol. Sci. 292(2044), 20241728 (2025). https://doi.org/10.1098/rspb.2024.1728
- M.D. Shawkey, G.E. Hill, Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller’s jay (Cyanocitta stelleri). J. Exp. Biol. 209(Pt 7), 1245–1250 (2006). https://doi.org/10.1242/jeb.02115
- D.-J. Jeon, S. Paik, S. Ji, J.-S. Yeo, Melanin-based structural coloration of birds and its biomimetic applications. Appl. Microsc. 51(1), 14 (2021). https://doi.org/10.1186/s42649-021-00063-w
- G. Wang, K. Jiang, M. Xu, C. Min, B. Ma et al., A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer. J. Power. Sources 266, 222–225 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.020
- C.H. Yang, M.X. Wang, H. Haider, J.H. Yang, J.-Y. Sun et al., Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5(21), 10418–10422 (2013). https://doi.org/10.1021/am403966x
- G. Wang, Z. Chen, X. Jing, X. Yi, J. Zou et al., Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy. Carbohydr. Polym. 335, 122048 (2024). https://doi.org/10.1016/j.carbpol.2024.122048
- Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu et al., Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30(21), 8062–8069 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
- O. İsmail, Ö. Gökçe Kocabay, Absorption and adsorption studies of polyacrylamide/sodium alginate hydrogels. Colloid Polym. Sci. 299(5), 783–796 (2021). https://doi.org/10.1007/s00396-020-04796-0
- N.S. El-Sayed, A.H. Hashem, T.A. Khattab, S. Kamel, New antibacterial hydrogels based on sodium alginate. Int. J. Biol. Macromol. 248, 125872 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125872
- J. Chen, Q. Peng, T. Thundat, H. Zeng, Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 31(12), 4553–4563 (2019). https://doi.org/10.1021/acs.chemmater.9b01239
- X. Jin, L. Song, H. Yang, C. Dai, Y. Xiao et al., Stretchable supercapacitor at–30 ℃. Energy Environ. Sci. 14(5), 3075–3085 (2021). https://doi.org/10.1039/d0ee04066e
- M. Zhang, J. Chen, Z. Ling, B. Zhang, Y. Yan et al., Quantitative evaluation system of upper limb motor function of stroke patients based on desktop rehabilitation robot. Sensors 22(3), 1170 (2022). https://doi.org/10.3390/s22031170
- M. Zhou, Y. Tu, J. Cui, P. Gao, T. Yi et al., Effect of constraint-induced movement therapy on lower extremity motor dysfunction in post-stroke patients: a systematic review and meta-analysis. Front. Neurol. 13, 1028206 (2022). https://doi.org/10.3389/fneur.2022.1028206
References
V.L. Feigin, B.A. Stark, C.O. Johnson, G.A. Roth, C. Bisignano et al., Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20(10), 795–820 (2021). https://doi.org/10.1016/S1474-4422(21)00252-0
C.O. Johnson, M. Nguyen, G.A. Roth, E. Nichols, T. Alam et al., Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 18(5), 439–458 (2019). https://doi.org/10.1016/S1474-4422(19)30034-1
S.C. Cramer, M. Sur, B.H. Dobkin, C. O’Brien, T.D. Sanger et al., Harnessing neuroplasticity for clinical applications. Brain 134(6), 1591–1609 (2011). https://doi.org/10.1093/brain/awr039
C.J. Winstein, J. Stein, R. Arena, B. Bates, L.R. Cherney et al., Guidelines for adult stroke rehabilitation and recovery. Stroke 47(6), e98 (2016). https://doi.org/10.1161/STR.0000000000000098
B.H. Dobkin, A. Dorsch, New evidence for therapies in stroke rehabilitation. Curr. Atheroscler. Rep. 15(6), 331 (2013). https://doi.org/10.1007/s11883-013-0331-y
T.S. Fu, C.-Y. Wu, K.-C. Lin, C.-J. Hsieh, J.-S. Liu et al., Psychometric comparison of the shortened Fugl-Meyer assessment and the streamlined Wolf Motor Function Test in stroke rehabilitation. Clin. Rehabil. 26(11), 1043–1047 (2012). https://doi.org/10.1177/0269215511431474
D.J. Gladstone, C.J. Danells, S.E. Black, The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil. Neural Repair 16(3), 232–240 (2002). https://doi.org/10.1177/154596802401105171
H. Wu, G. Yang, K. Zhu, S. Liu, W. Guo et al., Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. 8(2), 2001938 (2021). https://doi.org/10.1002/advs.202001938
G. Yang, Y. Hu, W. Guo, W. Lei, W. Liu et al., Tunable hydrogel electronics for diagnosis of peripheral neuropathy. Adv. Mater. 36(18), e2308831 (2024). https://doi.org/10.1002/adma.202308831
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
S. Imani, A.J. Bandodkar, A.M. Vinu Mohan, R. Kumar, S. Yu et al., A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016). https://doi.org/10.1038/ncomms11650
P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., Mxene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 201602790 (2017). https://doi.org/10.1002/smll.201602790
J. Ji, W. Zhao, Y. Wang, Q. Li, G. Wang, Templated laser-induced-graphene-based tactile sensors enable wearable health monitoring and texture recognition via deep neural network. ACS Nano 17(20), 20153–20166 (2023). https://doi.org/10.1021/acsnano.3c05838
Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17(1), 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
B. Yao, Z. Ye, X. Lou, Q. Yan, Z. Han et al., Wireless rehabilitation training sensor arrays made with hot screen-imprinted conductive hydrogels with a low percolation threshold. ACS Appl. Mater. Interfaces 14(10), 12734–12747 (2022). https://doi.org/10.1021/acsami.2c01630
Y. Zhao, X. Zhang, Y. Hao, Y. Zhao, P. Ding et al., Multifunctional PVA/PNIPAM conductive hydrogel sensors enabled human-machine interaction intelligent rehabilitation training. Adv. Compos. Hybrid Mater. 7(6), 245 (2024). https://doi.org/10.1007/s42114-024-01066-3
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
J. Shang, X. Ma, P. Zou, C. Huang, Z. Lao et al., A flexible catheter-based sensor array for upper airway soft tissues pressure monitoring. Nat. Commun. 16(1), 287 (2025). https://doi.org/10.1038/s41467-024-55088-y
J. Lao, Y. Jiao, Y. Zhang, H. Xu, Y. Wang et al., Intrinsically adhesive and conductive hydrogel bridging the bioelectronic-tissue interface for biopotentials recording. ACS Nano 19(8), 7755–7766 (2025). https://doi.org/10.1021/acsnano.4c12823
Y. Li, H. Zhou, H. Yang, K. Xu, Laser-induced highly stable conductive hydrogels for robust bioelectronics. Nano-Micro Lett. 17(1), 57 (2024). https://doi.org/10.1007/s40820-024-01519-w
Z. Sun, Q. Ou, C. Dong, J. Zhou, H. Hu et al., Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. Exploration 4(5), 20220167 (2024). https://doi.org/10.1002/EXP.20220167
D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7(6), 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
T. Zhu, Y. Ni, G.M. Biesold, Y. Cheng, M. Ge et al., Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52(2), 473–509 (2023). https://doi.org/10.1039/D2CS00173J
Z. Sun, C. Dong, B. Chen, W. Li, H. Hu et al., Strong, tough, and anti-swelling supramolecular conductive hydrogels for amphibious motion sensors. Small 19(44), e2303612 (2023). https://doi.org/10.1002/smll.202303612
X. Zhou, X. Zhao, Y. Wang, P. Wang, X. Jiang et al., Gel-based strain/pressure sensors for underwater sensing: sensing mechanisms, design strategies and applications. Compos. B Eng. 255, 110631 (2023). https://doi.org/10.1016/j.compositesb.2023.110631
J. Wang, Y. Lei, H.N. Jaleel, D. Dhanapal, D. Alfaran et al., Hydroxypropyl cellulose-based thermochromic hydrogels for smart passive cooling. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202420946
Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. U.S.A. 119(23), e2204113119 (2022). https://doi.org/10.1073/pnas.220411311
L. Bai, Y. Jin, X. Shang, H. Jin, Y. Zhou et al., Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. J. Mater. Chem. A 9(42), 23916–23928 (2021). https://doi.org/10.1039/D1TA06798B
X. Hu, J. Wang, S. Song, W. Gan, W. Li et al., Ionic conductive konjac glucomannan/liquid crystal cellulose composite hydrogels with dual sensing of photo- and electro-signals capacities as wearable strain sensors. Int. J. Biol. Macromol. 258, 129038 (2024). https://doi.org/10.1016/j.ijbiomac.2023.129038
L. Song, W. Chen, J. Huang, D. Hu, X. Ji et al., Conductive hydrogels with HPC additions for humidity sensing and temperature response. Chem. Eng. J. 506, 160000 (2025). https://doi.org/10.1016/j.cej.2025.160000
E.S.A. Goerlitzer, R.N. Klupp Taylor, N. Vogel, Bioinspired photonic pigments from colloidal self-assembly. Adv. Mater. 30(28), 1706654 (2018). https://doi.org/10.1002/adma.201706654
M. Tanzid, N.J. Hogan, H. Robatjazi, A. Veeraraghavan, N.J. Halas, Absorption-enhanced imaging through scattering media using carbon black nano-ps: from visible to near infrared wavelengths. J. Opt. 20(5), 054001 (2018). https://doi.org/10.1088/2040-8986/aab3a2
B. Yu, Z. Chen, Z. Sun, C. Yu, Z. Lu et al., Synergistic dynamic pitch and incoherent scattering enabling programmable cellulose thermochromic hybrids with UV–Vis-NIR broad modulation and multifunctionality. Chem. Eng. J. 521, 166349 (2025). https://doi.org/10.1016/j.cej.2025.166349
J. Dunning, C. Sheard, J.A. Endler, Viewing conditions predict evolutionary diversity in avian plumage colour. Proc. Biol. Sci. 292(2044), 20241728 (2025). https://doi.org/10.1098/rspb.2024.1728
M.D. Shawkey, G.E. Hill, Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller’s jay (Cyanocitta stelleri). J. Exp. Biol. 209(Pt 7), 1245–1250 (2006). https://doi.org/10.1242/jeb.02115
D.-J. Jeon, S. Paik, S. Ji, J.-S. Yeo, Melanin-based structural coloration of birds and its biomimetic applications. Appl. Microsc. 51(1), 14 (2021). https://doi.org/10.1186/s42649-021-00063-w
G. Wang, K. Jiang, M. Xu, C. Min, B. Ma et al., A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer. J. Power. Sources 266, 222–225 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.020
C.H. Yang, M.X. Wang, H. Haider, J.H. Yang, J.-Y. Sun et al., Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5(21), 10418–10422 (2013). https://doi.org/10.1021/am403966x
G. Wang, Z. Chen, X. Jing, X. Yi, J. Zou et al., Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy. Carbohydr. Polym. 335, 122048 (2024). https://doi.org/10.1016/j.carbpol.2024.122048
Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu et al., Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 30(21), 8062–8069 (2018). https://doi.org/10.1021/acs.chemmater.8b03999
O. İsmail, Ö. Gökçe Kocabay, Absorption and adsorption studies of polyacrylamide/sodium alginate hydrogels. Colloid Polym. Sci. 299(5), 783–796 (2021). https://doi.org/10.1007/s00396-020-04796-0
N.S. El-Sayed, A.H. Hashem, T.A. Khattab, S. Kamel, New antibacterial hydrogels based on sodium alginate. Int. J. Biol. Macromol. 248, 125872 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125872
J. Chen, Q. Peng, T. Thundat, H. Zeng, Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 31(12), 4553–4563 (2019). https://doi.org/10.1021/acs.chemmater.9b01239
X. Jin, L. Song, H. Yang, C. Dai, Y. Xiao et al., Stretchable supercapacitor at–30 ℃. Energy Environ. Sci. 14(5), 3075–3085 (2021). https://doi.org/10.1039/d0ee04066e
M. Zhang, J. Chen, Z. Ling, B. Zhang, Y. Yan et al., Quantitative evaluation system of upper limb motor function of stroke patients based on desktop rehabilitation robot. Sensors 22(3), 1170 (2022). https://doi.org/10.3390/s22031170
M. Zhou, Y. Tu, J. Cui, P. Gao, T. Yi et al., Effect of constraint-induced movement therapy on lower extremity motor dysfunction in post-stroke patients: a systematic review and meta-analysis. Front. Neurol. 13, 1028206 (2022). https://doi.org/10.3389/fneur.2022.1028206