W/V Dual-Atom Doping MoS2-Mediated Phase Transition for Efficient Polysulfide Adsorption/Conversion Kinetics in Lithium–Sulfur Battery
Corresponding Author: Mingkai Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 134
Abstract
The dissolvable polysulfides and sluggish Li2S conversion kinetics are acknowledged as two significant challenges in the application lithium–sulfur (Li–S) batteries. Herein, we introduce a dual-doping strategy to modulate the electronic structure of MoS2, thereby obtaining a multifunctional catalyst that serves as an efficient sulfur host. The W/V dual single-atom-doped MoS2 grown on carbon nanofibers (CMWVS) demonstrates a strong adsorption ability for lithium polysulfides, suppressing the shuttle effects. Additionally, the doping process also results in the phase transition from 2H-MoS2 to 1T-MoS2 and generates sufficient edge sulfur atoms, promoting the charge/electron transfer and enriching the reaction sites. All these merits contribute to the superior conversion reaction kinetics, leading to the outstanding Li–S battery performance. When fabricated as cathodes by compositing with sulfur, the CMWVS/S cathode delivers a high capacity of 1481.7 mAh g−1 at 0.1 C (1 C = 1672 mAh g−1) and maintains 816.3 mAh g−1 after 1000 cycles at 1.0 C, indicating outstanding cycling stability. Even under a high sulfur loading of 7.9 mg cm−2 and lean electrolyte conditions (E/S ratio of 9.0 μL mg−1), the cathode achieves a high areal capacity of 8.2 mAh cm−2, showing great promise for practical Li–S battery applications. This work broadens the scope of doping strategies in transition-metal dichalcogenides by tailoring their electronic structures, providing insightful direction for the rational development of high-efficiency electrocatalysts for advanced Li–S battery applications.
Highlights:
1 W/V dual single-atom doping induces 2H−1T phase transition and boosts sulfur conversion kinetics.
2 Strong polysulfide adsorption effectively suppresses the shuttle effect.
3 CMWVS/S cathode delivers high specific discharge capacity (1481.7 mAh g−1 at 0.1 C) and excellent stability (816.3 mAh g−1 after 1000 cycles at 1.0 C), even under high sulfur loading.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
- H. Song, K. Münch, X. Liu, K. Shen, R. Zhang et al., All-solid-state Li–S batteries with fast solid–solid sulfur reaction. Nature 637(8047), 846–853 (2025). https://doi.org/10.1038/s41586-024-08298-9
- S. Zhou, J. Shi, S. Liu, G. Li, F. Pei et al., Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 621(7977), 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8
- G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- Z. Han, R. Gao, T. Wang, S. Tao, Y. Jia et al., Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat. Catal. 6(11), 1073–1086 (2023). https://doi.org/10.1038/s41929-023-01041-z
- D. Wang, B. Gwalani, D. Wierzbicki, V. Singh, L.-J. Jhang et al., Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li-S batteries. Nat. Mater. 24(2), 243–251 (2025). https://doi.org/10.1038/s41563-024-02057-x
- J. Zhang, Z. Xie, W. Xi, Y. Zhang, R. Wang et al., 3D printing of tungstate anion modulated 1T-MoS2 composite cathodes for high-performance lithium–sulfur batteries. Adv. Energy Mater. 14(39), 2401792 (2024). https://doi.org/10.1002/aenm.202401792
- Q. Jiang, H. Xu, K.S. Hui, Y. Wei, L. Liu et al., Inner-layer indium doping achieved highly active and stable sulfur vacancies in MoS2 for superior sulfur redox kinetics. Adv. Mater. 37(34), 2415986 (2025). https://doi.org/10.1002/adma.202415986
- H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 9(38), 1902096 (2019). https://doi.org/10.1002/aenm.201902096
- S. Liao, Y. Xie, W. Zheng, Z. Huang, H. Zhang et al., Enhancing rate performance in lithium-sulfur batteries via synergistic bidirectional catalysis and improved conductivity. Chem. Eng. J. 506, 160022 (2025). https://doi.org/10.1016/j.cej.2025.160022
- Y. Xie, W. Zheng, J. Ao, Y. Shao, X. Huang et al., Multifunctional Ni-doped CoSe2 nanops decorated bilayer carbon structures for polysulfide conversion and dendrite-free lithium toward high-performance Li-S full cell. Energy Storage Mater. 62, 102925 (2023). https://doi.org/10.1016/j.ensm.2023.102925
- Y. Xin, M. Zhu, H. Zhang, X. Wang, High-entropy materials: a new paradigm in the design of advanced batteries. Nano-Micro Lett. 18(1), 1 (2025). https://doi.org/10.1007/s40820-025-01842-w
- R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
- C. Lin, P. Feng, D. Wang, X. Chen, Y. Fang et al., Safe, facile, and straightforward fabrication of poly(N-vinyl imidazole)/polyacrylonitrile nanofiber modified separator as efficient polysulfide barrier toward durable lithium–sulfur batteries. Adv. Funct. Mater. 35(1), 2411872 (2025). https://doi.org/10.1002/adfm.202411872
- Z. Han, A. Chen, Z. Li, M. Zhang, Z. Wang et al., Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development. Nat. Commun. 15(1), 8433 (2024). https://doi.org/10.1038/s41467-024-52550-9
- J. He, A. Bhargav, L. Su, H. Charalambous, A. Manthiram, Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries. Nat. Commun. 14(1), 6568 (2023). https://doi.org/10.1038/s41467-023-42383-3
- X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
- R. Yang, Y. Chen, Y. Pan, M. Kim, H. Liu et al., Single-step laser-printed integrated sulfur cathode toward high-performance lithium-sulfur batteries. Nat. Commun. 16(1), 2386 (2025). https://doi.org/10.1038/s41467-025-57755-0
- F. Liu, Y. Hu, Z. Qu, X. Ma, Z. Li et al., Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy. Proc. Natl. Acad. Sci. U. S. A. 120(26), e2303262120 (2023). https://doi.org/10.1073/pnas.2303262120
- C. Ye, H. Li, Y. Chen, J. Hao, J. Liu et al., The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries. Nat. Commun. 15(1), 4797 (2024). https://doi.org/10.1038/s41467-024-49164-6
- Q. Yang, J. Cai, G. Li, R. Gao, Z. Han et al., Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions. Nat. Commun. 15(1), 3231 (2024). https://doi.org/10.1038/s41467-024-47565-1
- W. Wang, X. Wang, J. Shan, L. Yue, Z. Shao et al., Atomic-level design rules of metal-cation-doped catalysts: manipulating electron affinity/ionic radius of doped cations for accelerating sulfur redox kinetics in Li–S batteries. Energy Environ. Sci. 16(6), 2669–2683 (2023). https://doi.org/10.1039/d2ee04131f
- C. Huang, J. Yu, C.Y. Zhang, Z. Cui, J. Chen et al., Electronic spin alignment within homologous NiS2/NiSe2 heterostructures to promote sulfur redox kinetics in lithium-sulfur batteries. Adv. Mater. 36(25), 2400810 (2024). https://doi.org/10.1002/adma.202400810
- N. Song, J. Ma, Y. Liang, P. Wang, J. Yuan et al., Phase and orbital engineering effectuating efficient adsorption and catalysis toward high-energy Lithium−Sulfur batteries. Adv. Mater. 37(18), 2420588 (2025). https://doi.org/10.1002/adma.202420588
- J. Wang, X. Zhang, J. Liu, X. Wang, Y. Nie et al., High-spin cobalt enables strong metal-sulfur orbital hybridization for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Mater. 37(30), 2502075 (2025). https://doi.org/10.1002/adma.202502075
- Q. Li, Z. Ma, M. Liu, Y. Jiang, M. Fu et al., High spin-state modulation of catalytic centers by weak ligand field for promoting sulfur redox reaction in lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(4), e202416176 (2025). https://doi.org/10.1002/anie.202416176
- Y. Yan, R. Yu, M. Liu, Z. Qu, J. Yang et al., General synthesis of neighboring dual-atomic sites with a specific pre-designed distance via an interfacial-fixing strategy. Nat. Commun. 16(1), 334 (2025). https://doi.org/10.1038/s41467-024-55630-y
- Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Ed. 57(3), 626–646 (2018). https://doi.org/10.1002/anie.201706426
- S. Zhao, M. Liu, Z. Qu, Y. Yan, Z. Zhang et al., Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis. Angew. Chem. Int. Ed. 63(40), e202408914 (2024). https://doi.org/10.1002/anie.202408914
- Z. Cui, S.-A. He, Q. Liu, G. Guan, W. Zhang et al., Graphene-like carbon film wrapped tin (II) sulfide nanosheet arrays on porous carbon fibers with enhanced electrochemical kinetics as high-performance Li and Na ion battery anodes. Adv. Sci. 7(18), 1903045 (2020). https://doi.org/10.1002/advs.201903045
- C. Li, L. Zhu, Z. Wu, Q. Chen, R. Zheng et al., Phase engineering of W-doped MoS2 by magneto-hydrothermal synthesis for hydrogen evolution reaction. Small 19(48), e2303646 (2023). https://doi.org/10.1002/smll.202303646
- T. Zhou, X. Li, J. Zhao, L. Luo, Y. Wang et al., Ultrafine metal nanops isolated on oxide nano-islands as exceptional sintering-resistant catalysts. Nat. Mater. 24(6), 891–899 (2025). https://doi.org/10.1038/s41563-025-02134-9
- L. Wang, W. Zhang, X. Zheng, Y. Chen, W. Wu et al., Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2(11), 869–876 (2017). https://doi.org/10.1038/s41560-017-0015-x
- L. Mei, Z. Gao, R. Yang, Z. Zhang, M. Sun et al., Phase-switchable preparation of solution-processable WS2 mono- or bilayers. Nat. Synth. 4(3), 303–313 (2025). https://doi.org/10.1038/s44160-024-00679-2
- F. Liu, M. Yuan, P. Feng, S. Yu, Z. Hu et al., Synthesis of nitrogen-doped carbon nanotubes from biomass polysaccharides and lignin in waste corn stalk as host materials for lithium-sulfur batteries. Int. J. Biol. Macromol. 304, 140813 (2025). https://doi.org/10.1016/j.ijbiomac.2025.140813
- Y. Zhang, T. Yang, J. Li, Q. Zhang, B. Li et al., Construction of Ru, O co-doping MoS2 for hydrogen evolution reaction electrocatalyst and surface-enhanced raman scattering substrate: high-performance, recyclable, and durability improvement. Adv. Funct. Mater. 33(3), 2210939 (2023). https://doi.org/10.1002/adfm.202210939
- N. Al-Ansi, A. Salah, Q.A. Drmosh, G.-D. Yang, A. Hezam et al., Carbonized polymer dots for controlling construction of MoS2 flower-like nanospheres to achieve high-performance Li/Na storage devices. Small 19(52), 2304459 (2023). https://doi.org/10.1002/smll.202304459
- S. Zhu, C. Wang, H. Shou, P. Zhang, P. Wan et al., In situ architecting endogenous heterojunction of MoS2 coupling with Mo2CTx MXenes for optimized Li+ storage. Adv. Mater. 34(5), 2270036 (2022). https://doi.org/10.1002/adma.202270036
- J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17(1), 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
- X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao et al., Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. Int. Ed. 60(39), 21310–21318 (2021). https://doi.org/10.1002/anie.202104167
- Z. Chen, Y. Zhao, H. Huang, G. Liu, H. Zhang et al., Isolated copper atoms boost *NO3 adsorption and active hydrogen retention over zinc oxide for ammonia electrosynthesis at ampere-level current densities. J. Am. Chem. Soc. 147(22), 18737–18746 (2025). https://doi.org/10.1021/jacs.5c01863
- P. Feng, K. Dong, Y. Xu, X. Zhang, H. Jia et al., Efficient and homogenous precipitation of sulfur within a 3D electrospun heterocatalytic rutile/anatase TiO2−x framework in lithium–sulfur batteries. Adv. Fiber Mater. 6(3), 810–824 (2024). https://doi.org/10.1007/s42765-024-00380-1
- Q. Wu, K. Chen, Z. Shadike, C. Li, Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li–S batteries. ACS Nano 18(21), 13468–13483 (2024). https://doi.org/10.1021/acsnano.3c09919
- P. Feng, Q. Wu, Y. Rodriguez Ayllon, Y. Lu, Precisely designed ultra-small CoP nanops-decorated hollow carbon nanospheres as highly efficient host in lithium−sulfur batteries. Chem. Eur. J. 30(47), e202401345 (2024). https://doi.org/10.1002/chem.202401345
- D. Xie, Y. Xu, E. Härk, Z. Kochovski, X. Pan et al., Carbon-coated mesoporous Fe3O4 nanospindles with interconnected porosities as polysulfide mediator for lithium–sulfur batteries. Mater. Today Energy 36, 101344 (2023). https://doi.org/10.1016/j.mtener.2023.101344
- Q. Wu, Z. Shadike, J. Xu, F. Cao, C. Li, Integrated reactor architecture of conductive network and catalytic nodes to accelerate polysulfide conversion for durable and high-loading Li-S batteries. Energy Storage Mater. 55, 73–83 (2023). https://doi.org/10.1016/j.ensm.2022.11.037
- X. Yu, T. Liao, J. Tang, K. Zhang, S. Tang et al., Edge engineering in 2D molybdenum disulfide: simultaneous regulation of lithium and polysulfides for stable lithium–sulfur batteries. Adv. Energy Sustain. Res. 2(9), 2100053 (2021). https://doi.org/10.1002/aesr.202100053
- D. Liu, W. Xu, Q. Liu, Q. He, Y.A. Haleem et al., Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: synthesis, characterization and electrocatalytic application. Nano Res. 9(7), 2079–2087 (2016). https://doi.org/10.1007/s12274-016-1098-6
- Y. Liu, H. Wang, X. Yuan, Y. Wu, H. Wang et al., Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem. Catal. 1(1), 44–68 (2021). https://doi.org/10.1016/j.checat.2021.01.002
- J. Ao, Y. Xie, Y. Lai, M. Yang, J. Xu et al., CoSe2 nanops-decorated carbon nanofibers as a hierarchical self-supported sulfur host for high-energy lithium-sulfur batteries. Sci. China Mater. 66(8), 3075–3083 (2023). https://doi.org/10.1007/s40843-022-2462-x
- Z. Yang, W. Lu, C. Sun, M. Yao, N. Chen et al., Bifunctional NiCoP nanofiber arrayed on carbon cloth for fast polysulfide conversion and uniform lithium deposition in lithium sulfur batteries. J. Colloid Interface Sci. 685, 235–243 (2025). https://doi.org/10.1016/j.jcis.2025.01.095
- C. Zhou, H. Wang, Q. Li, F. Wu, S. Cao et al., An Ag/C core–shell composite functionalized carbon nanofiber film as freestanding bifunctional host for advanced lithium–sulfur batteries. Adv. Fiber Mater. 6(1), 181–194 (2024). https://doi.org/10.1007/s42765-023-00341-0
- R. Saroha, Y.H. Seon, B. Jin, Y.C. Kang, D.-W. Kang et al., Self-supported hierarchically porous 3D carbon nanofiber network comprising Ni/Co/NiCo2O4 nanocrystals and hollow N-doped C nanocages as sulfur host for highly reversible Li–S batteries. Chem. Eng. J. 446, 137141 (2022). https://doi.org/10.1016/j.cej.2022.137141
- X. Lin, W. Li, V. Nguyen, S. Wang, S. Yang et al., Fe-single-atom catalyst nanocages linked by bacterial cellulose-derived carbon nanofiber aerogel for Li-S batteries. Chem. Eng. J. 477, 146977 (2023). https://doi.org/10.1016/j.cej.2023.146977
- K. Kong, Z. Cheng, X. Meng, F. Cui, J. Huang et al., Vanadium nitride nanowires array on carbon nanofiber paper for regulating polysulfides toward stable freestanding sulfur cathode. Small 21(18), 2412586 (2025). https://doi.org/10.1002/smll.202412586
- R. Saroha, J.S. Cho, Nanofibers comprising interconnected chain-like hollow N-doped C nanocages as 3D free-standing cathodes for Li–S batteries with super-high sulfur content and lean electrolyte/sulfur ratio. Small Meth. 6(5), 2270030 (2022). https://doi.org/10.1002/smtd.202270030
References
R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar et al., Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626(7997), 98–104 (2024). https://doi.org/10.1038/s41586-023-06918-4
H. Song, K. Münch, X. Liu, K. Shen, R. Zhang et al., All-solid-state Li–S batteries with fast solid–solid sulfur reaction. Nature 637(8047), 846–853 (2025). https://doi.org/10.1038/s41586-024-08298-9
S. Zhou, J. Shi, S. Liu, G. Li, F. Pei et al., Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 621(7977), 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8
G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
Z. Han, R. Gao, T. Wang, S. Tao, Y. Jia et al., Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat. Catal. 6(11), 1073–1086 (2023). https://doi.org/10.1038/s41929-023-01041-z
D. Wang, B. Gwalani, D. Wierzbicki, V. Singh, L.-J. Jhang et al., Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li-S batteries. Nat. Mater. 24(2), 243–251 (2025). https://doi.org/10.1038/s41563-024-02057-x
J. Zhang, Z. Xie, W. Xi, Y. Zhang, R. Wang et al., 3D printing of tungstate anion modulated 1T-MoS2 composite cathodes for high-performance lithium–sulfur batteries. Adv. Energy Mater. 14(39), 2401792 (2024). https://doi.org/10.1002/aenm.202401792
Q. Jiang, H. Xu, K.S. Hui, Y. Wei, L. Liu et al., Inner-layer indium doping achieved highly active and stable sulfur vacancies in MoS2 for superior sulfur redox kinetics. Adv. Mater. 37(34), 2415986 (2025). https://doi.org/10.1002/adma.202415986
H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 9(38), 1902096 (2019). https://doi.org/10.1002/aenm.201902096
S. Liao, Y. Xie, W. Zheng, Z. Huang, H. Zhang et al., Enhancing rate performance in lithium-sulfur batteries via synergistic bidirectional catalysis and improved conductivity. Chem. Eng. J. 506, 160022 (2025). https://doi.org/10.1016/j.cej.2025.160022
Y. Xie, W. Zheng, J. Ao, Y. Shao, X. Huang et al., Multifunctional Ni-doped CoSe2 nanops decorated bilayer carbon structures for polysulfide conversion and dendrite-free lithium toward high-performance Li-S full cell. Energy Storage Mater. 62, 102925 (2023). https://doi.org/10.1016/j.ensm.2023.102925
Y. Xin, M. Zhu, H. Zhang, X. Wang, High-entropy materials: a new paradigm in the design of advanced batteries. Nano-Micro Lett. 18(1), 1 (2025). https://doi.org/10.1007/s40820-025-01842-w
R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
C. Lin, P. Feng, D. Wang, X. Chen, Y. Fang et al., Safe, facile, and straightforward fabrication of poly(N-vinyl imidazole)/polyacrylonitrile nanofiber modified separator as efficient polysulfide barrier toward durable lithium–sulfur batteries. Adv. Funct. Mater. 35(1), 2411872 (2025). https://doi.org/10.1002/adfm.202411872
Z. Han, A. Chen, Z. Li, M. Zhang, Z. Wang et al., Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development. Nat. Commun. 15(1), 8433 (2024). https://doi.org/10.1038/s41467-024-52550-9
J. He, A. Bhargav, L. Su, H. Charalambous, A. Manthiram, Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries. Nat. Commun. 14(1), 6568 (2023). https://doi.org/10.1038/s41467-023-42383-3
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
R. Yang, Y. Chen, Y. Pan, M. Kim, H. Liu et al., Single-step laser-printed integrated sulfur cathode toward high-performance lithium-sulfur batteries. Nat. Commun. 16(1), 2386 (2025). https://doi.org/10.1038/s41467-025-57755-0
F. Liu, Y. Hu, Z. Qu, X. Ma, Z. Li et al., Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy. Proc. Natl. Acad. Sci. U. S. A. 120(26), e2303262120 (2023). https://doi.org/10.1073/pnas.2303262120
C. Ye, H. Li, Y. Chen, J. Hao, J. Liu et al., The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries. Nat. Commun. 15(1), 4797 (2024). https://doi.org/10.1038/s41467-024-49164-6
Q. Yang, J. Cai, G. Li, R. Gao, Z. Han et al., Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions. Nat. Commun. 15(1), 3231 (2024). https://doi.org/10.1038/s41467-024-47565-1
W. Wang, X. Wang, J. Shan, L. Yue, Z. Shao et al., Atomic-level design rules of metal-cation-doped catalysts: manipulating electron affinity/ionic radius of doped cations for accelerating sulfur redox kinetics in Li–S batteries. Energy Environ. Sci. 16(6), 2669–2683 (2023). https://doi.org/10.1039/d2ee04131f
C. Huang, J. Yu, C.Y. Zhang, Z. Cui, J. Chen et al., Electronic spin alignment within homologous NiS2/NiSe2 heterostructures to promote sulfur redox kinetics in lithium-sulfur batteries. Adv. Mater. 36(25), 2400810 (2024). https://doi.org/10.1002/adma.202400810
N. Song, J. Ma, Y. Liang, P. Wang, J. Yuan et al., Phase and orbital engineering effectuating efficient adsorption and catalysis toward high-energy Lithium−Sulfur batteries. Adv. Mater. 37(18), 2420588 (2025). https://doi.org/10.1002/adma.202420588
J. Wang, X. Zhang, J. Liu, X. Wang, Y. Nie et al., High-spin cobalt enables strong metal-sulfur orbital hybridization for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Mater. 37(30), 2502075 (2025). https://doi.org/10.1002/adma.202502075
Q. Li, Z. Ma, M. Liu, Y. Jiang, M. Fu et al., High spin-state modulation of catalytic centers by weak ligand field for promoting sulfur redox reaction in lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(4), e202416176 (2025). https://doi.org/10.1002/anie.202416176
Y. Yan, R. Yu, M. Liu, Z. Qu, J. Yang et al., General synthesis of neighboring dual-atomic sites with a specific pre-designed distance via an interfacial-fixing strategy. Nat. Commun. 16(1), 334 (2025). https://doi.org/10.1038/s41467-024-55630-y
Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Ed. 57(3), 626–646 (2018). https://doi.org/10.1002/anie.201706426
S. Zhao, M. Liu, Z. Qu, Y. Yan, Z. Zhang et al., Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis. Angew. Chem. Int. Ed. 63(40), e202408914 (2024). https://doi.org/10.1002/anie.202408914
Z. Cui, S.-A. He, Q. Liu, G. Guan, W. Zhang et al., Graphene-like carbon film wrapped tin (II) sulfide nanosheet arrays on porous carbon fibers with enhanced electrochemical kinetics as high-performance Li and Na ion battery anodes. Adv. Sci. 7(18), 1903045 (2020). https://doi.org/10.1002/advs.201903045
C. Li, L. Zhu, Z. Wu, Q. Chen, R. Zheng et al., Phase engineering of W-doped MoS2 by magneto-hydrothermal synthesis for hydrogen evolution reaction. Small 19(48), e2303646 (2023). https://doi.org/10.1002/smll.202303646
T. Zhou, X. Li, J. Zhao, L. Luo, Y. Wang et al., Ultrafine metal nanops isolated on oxide nano-islands as exceptional sintering-resistant catalysts. Nat. Mater. 24(6), 891–899 (2025). https://doi.org/10.1038/s41563-025-02134-9
L. Wang, W. Zhang, X. Zheng, Y. Chen, W. Wu et al., Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2(11), 869–876 (2017). https://doi.org/10.1038/s41560-017-0015-x
L. Mei, Z. Gao, R. Yang, Z. Zhang, M. Sun et al., Phase-switchable preparation of solution-processable WS2 mono- or bilayers. Nat. Synth. 4(3), 303–313 (2025). https://doi.org/10.1038/s44160-024-00679-2
F. Liu, M. Yuan, P. Feng, S. Yu, Z. Hu et al., Synthesis of nitrogen-doped carbon nanotubes from biomass polysaccharides and lignin in waste corn stalk as host materials for lithium-sulfur batteries. Int. J. Biol. Macromol. 304, 140813 (2025). https://doi.org/10.1016/j.ijbiomac.2025.140813
Y. Zhang, T. Yang, J. Li, Q. Zhang, B. Li et al., Construction of Ru, O co-doping MoS2 for hydrogen evolution reaction electrocatalyst and surface-enhanced raman scattering substrate: high-performance, recyclable, and durability improvement. Adv. Funct. Mater. 33(3), 2210939 (2023). https://doi.org/10.1002/adfm.202210939
N. Al-Ansi, A. Salah, Q.A. Drmosh, G.-D. Yang, A. Hezam et al., Carbonized polymer dots for controlling construction of MoS2 flower-like nanospheres to achieve high-performance Li/Na storage devices. Small 19(52), 2304459 (2023). https://doi.org/10.1002/smll.202304459
S. Zhu, C. Wang, H. Shou, P. Zhang, P. Wan et al., In situ architecting endogenous heterojunction of MoS2 coupling with Mo2CTx MXenes for optimized Li+ storage. Adv. Mater. 34(5), 2270036 (2022). https://doi.org/10.1002/adma.202270036
J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17(1), 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao et al., Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. Int. Ed. 60(39), 21310–21318 (2021). https://doi.org/10.1002/anie.202104167
Z. Chen, Y. Zhao, H. Huang, G. Liu, H. Zhang et al., Isolated copper atoms boost *NO3 adsorption and active hydrogen retention over zinc oxide for ammonia electrosynthesis at ampere-level current densities. J. Am. Chem. Soc. 147(22), 18737–18746 (2025). https://doi.org/10.1021/jacs.5c01863
P. Feng, K. Dong, Y. Xu, X. Zhang, H. Jia et al., Efficient and homogenous precipitation of sulfur within a 3D electrospun heterocatalytic rutile/anatase TiO2−x framework in lithium–sulfur batteries. Adv. Fiber Mater. 6(3), 810–824 (2024). https://doi.org/10.1007/s42765-024-00380-1
Q. Wu, K. Chen, Z. Shadike, C. Li, Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li–S batteries. ACS Nano 18(21), 13468–13483 (2024). https://doi.org/10.1021/acsnano.3c09919
P. Feng, Q. Wu, Y. Rodriguez Ayllon, Y. Lu, Precisely designed ultra-small CoP nanops-decorated hollow carbon nanospheres as highly efficient host in lithium−sulfur batteries. Chem. Eur. J. 30(47), e202401345 (2024). https://doi.org/10.1002/chem.202401345
D. Xie, Y. Xu, E. Härk, Z. Kochovski, X. Pan et al., Carbon-coated mesoporous Fe3O4 nanospindles with interconnected porosities as polysulfide mediator for lithium–sulfur batteries. Mater. Today Energy 36, 101344 (2023). https://doi.org/10.1016/j.mtener.2023.101344
Q. Wu, Z. Shadike, J. Xu, F. Cao, C. Li, Integrated reactor architecture of conductive network and catalytic nodes to accelerate polysulfide conversion for durable and high-loading Li-S batteries. Energy Storage Mater. 55, 73–83 (2023). https://doi.org/10.1016/j.ensm.2022.11.037
X. Yu, T. Liao, J. Tang, K. Zhang, S. Tang et al., Edge engineering in 2D molybdenum disulfide: simultaneous regulation of lithium and polysulfides for stable lithium–sulfur batteries. Adv. Energy Sustain. Res. 2(9), 2100053 (2021). https://doi.org/10.1002/aesr.202100053
D. Liu, W. Xu, Q. Liu, Q. He, Y.A. Haleem et al., Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: synthesis, characterization and electrocatalytic application. Nano Res. 9(7), 2079–2087 (2016). https://doi.org/10.1007/s12274-016-1098-6
Y. Liu, H. Wang, X. Yuan, Y. Wu, H. Wang et al., Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem. Catal. 1(1), 44–68 (2021). https://doi.org/10.1016/j.checat.2021.01.002
J. Ao, Y. Xie, Y. Lai, M. Yang, J. Xu et al., CoSe2 nanops-decorated carbon nanofibers as a hierarchical self-supported sulfur host for high-energy lithium-sulfur batteries. Sci. China Mater. 66(8), 3075–3083 (2023). https://doi.org/10.1007/s40843-022-2462-x
Z. Yang, W. Lu, C. Sun, M. Yao, N. Chen et al., Bifunctional NiCoP nanofiber arrayed on carbon cloth for fast polysulfide conversion and uniform lithium deposition in lithium sulfur batteries. J. Colloid Interface Sci. 685, 235–243 (2025). https://doi.org/10.1016/j.jcis.2025.01.095
C. Zhou, H. Wang, Q. Li, F. Wu, S. Cao et al., An Ag/C core–shell composite functionalized carbon nanofiber film as freestanding bifunctional host for advanced lithium–sulfur batteries. Adv. Fiber Mater. 6(1), 181–194 (2024). https://doi.org/10.1007/s42765-023-00341-0
R. Saroha, Y.H. Seon, B. Jin, Y.C. Kang, D.-W. Kang et al., Self-supported hierarchically porous 3D carbon nanofiber network comprising Ni/Co/NiCo2O4 nanocrystals and hollow N-doped C nanocages as sulfur host for highly reversible Li–S batteries. Chem. Eng. J. 446, 137141 (2022). https://doi.org/10.1016/j.cej.2022.137141
X. Lin, W. Li, V. Nguyen, S. Wang, S. Yang et al., Fe-single-atom catalyst nanocages linked by bacterial cellulose-derived carbon nanofiber aerogel for Li-S batteries. Chem. Eng. J. 477, 146977 (2023). https://doi.org/10.1016/j.cej.2023.146977
K. Kong, Z. Cheng, X. Meng, F. Cui, J. Huang et al., Vanadium nitride nanowires array on carbon nanofiber paper for regulating polysulfides toward stable freestanding sulfur cathode. Small 21(18), 2412586 (2025). https://doi.org/10.1002/smll.202412586
R. Saroha, J.S. Cho, Nanofibers comprising interconnected chain-like hollow N-doped C nanocages as 3D free-standing cathodes for Li–S batteries with super-high sulfur content and lean electrolyte/sulfur ratio. Small Meth. 6(5), 2270030 (2022). https://doi.org/10.1002/smtd.202270030