Flexible High-Aspect-Ratio COF Nanofibers: Defect-Engineered Synthesis, Superelastic Aerogels, and Uranium Extraction Applications
Corresponding Author: Peixin Tang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 142
Abstract
The lack of macro-continuity and mechanical strength of covalent organic frameworks (COFs) has significantly limited their practical applications. Here, we propose an “alcohol-triggered defect cleavage” strategy to precisely regulate the growth and stacking of COF grains through a moderate reversed Schiff base reaction, realizing the direct synthesis of COF nanofibers (CNFs) with high aspect ratio (L/D = 103.05) and long length (> 20 μm). An individual CNF exhibits a biomimetic scale-like architecture, achieving superior flexibility and fatigue resistance under dynamic bending via a multiscale stress dissipation mechanism. Taking advantages of these structural features, we engineer CNF aerogels (CNF-As) with programmable porous structures (e.g., honeycomb, lamellar, isotropic) via directional ice-template methodology. CNF-As demonstrate 100% COF content, high specific surface area (396.15 m2 g−1) and superelasticity (~ 0% elastic deformation after 500 compression cycles at 50% strain), outperforming most COF-based counterparts. Compared with the conventional COF aerogels, the unique structural features of CNF-A enable it to perform outstandingly in uranium extraction, with an 11.72-fold increment in adsorption capacity (920.12 mg g−1) and adsorption rate (89.9%), and a 2.48-fold improvement in selectivity (U/V = 2.31). This study provides a direct strategy for the development of next-generation COF materials with outstanding functionality and structural robustness.
Highlights:
1 Covalent organic framework nanofibers (CNFs) with biomimetic scale-like architecture, record-high aspect ratio (L/D = 103.05), and superior flexibility were directly synthesized via defect engineering.
2 Self-standing membranes and nanofibrous aerogels (CNF-As) with designable micro-topological structures were fabricated with 100% CNFs.
3 CNF-As perform photo-induced uranium extraction with an adsorption capacity and adsorption rate of 920.12 mg g−1 and 89.9%, respectively.
4 CNF-As exhibit superior underwater stability (> 180 days) and superelasticity (~ 0% deformation after 500 compression cycles), making them promising for practical application in marine systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Di, X. Sun, L. Hu, L. Gao, J. Liu et al., Hollow COF selective layer based flexible composite membranes constructed by an integrated “casting-precipitation-evaporation” strategy. Adv. Funct. Mater. 32(22), 2111594 (2022). https://doi.org/10.1002/adfm.202111594
- B. Fan, Y. Si, J. Yu, X. Wang, P. Tang, Multi-interfacial interaction engineered underwater superelastic covalent organic framework aerogels for photoinduced uranium extraction. Chem. Eng. J. 498, 155756 (2024). https://doi.org/10.1016/j.cej.2024.155756
- J. Meng, M. Yin, K. Guo, X. Zhou, Z. Xue, In situ polymerization in COF boosts Li-ion conduction in solid polymer electrolytes for Li metal batteries. Nano-Micro Lett. 17(1), 248 (2025). https://doi.org/10.1007/s40820-025-01768-3
- X. Liu, D. Zhao, J. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16(1), 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
- Y. Yu, Y. Tang, L. Liu, Q. Wang, C. Yin et al., In situ synthesis of TpPa COFs in mixed matrix membranes for enhanced CO2 separation. Ind. Eng. Chem. Res. 64(16), 8414–8424 (2025). https://doi.org/10.1021/acs.iecr.5c00266
- J. Chang, C. Li, X. Wang, D. Li, J. Zhang et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nano-Micro Lett. 15(1), 159 (2023). https://doi.org/10.1007/s40820-023-01111-8
- C. Xiao, Y. Yao, X. Guo, J. Qi, Z. Zhu et al., Ultralight and robust covalent organic framework fiber aerogels. Small 20(32), e2311881 (2024). https://doi.org/10.1002/smll.202311881
- G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15(1), 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
- X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass”-induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15(1), 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
- D. Yan, L. Song, F. Kang, X. Mo, Y. Lv et al., In situ growth of covalent organic frameworks on carbon nanotubes for high-performance potassium-ion batteries. Angew. Chem. Int. Ed. 64(12), e202422851 (2025). https://doi.org/10.1002/anie.202422851
- K. Xu, Y. Zheng, J. Zhou, Y. Zhao, X. Pang et al., Microwave-assisted fabrication of highly crystalline, robust COF membrane for organic solvent nanofiltration. Adv. Funct. Mater. 35(12), 2417383 (2025). https://doi.org/10.1002/adfm.202417383
- F. Yang, J. Guo, C. Han, J. Huang, Z. Zhou et al., Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration. Sci. Adv. 10(50), eadr9260 (2024). https://doi.org/10.1126/sciadv.adr9260
- Y. Kong, X. He, H. Wu, Y. Yang, L. Cao et al., Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering. Angew. Chem. Int. Ed. 60(32), 17638–17646 (2021). https://doi.org/10.1002/anie.202105190
- S. Ai, Y. Xu, H. Zhou, Z. Cui, T. Wu et al., Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chin. Chem. Lett. 36(10), 110761 (2025). https://doi.org/10.1016/j.cclet.2024.110761
- G. Shao, X. Huang, X. Shen, C. Li, A. Thomas, Metal-organic framework and covalent-organic framework-based aerogels: synthesis, functionality, and applications. Adv. Sci. 11(48), 2409290 (2024). https://doi.org/10.1002/advs.202409290
- J.Á. Martín-Illán, J.A. Suárez, J. Gómez-Herrero, P. Ares, D. Gallego-Fuente et al., Ultralarge free-standing imine-based covalent organic framework membranes fabricated via compression. Adv. Sci. 9(7), 2104643 (2022). https://doi.org/10.1002/advs.202104643
- Y. Zhang, S. Liu, J. Yan, X. Zhang, S. Xia et al., Superior flexibility in oxide ceramic crystal nanofibers. Adv. Mater. 33(44), 2105011 (2021). https://doi.org/10.1002/adma.202105011
- X. Ma, K.R. Meihaus, Y. Yang, Y. Zheng, F. Cui et al., Photocatalytic extraction of uranium from seawater using covalent organic framework nanowires. J. Am. Chem. Soc. 146(33), 23566–23573 (2024). https://doi.org/10.1021/jacs.4c07699
- H. Yang, L. Yang, H. Wang, Z. Xu, Y. Zhao et al., Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10(1), 2101 (2019). https://doi.org/10.1038/s41467-019-10157-5
- S. Wang, Z. Zhang, H. Zhang, A.G. Rajan, N. Xu et al., Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films. Matter 1(6), 1592–1605 (2019). https://doi.org/10.1016/j.matt.2019.08.019
- S. Daliran, A.R. Oveisi, A. Dhakshinamoorthy, H. Garcia, Probing defects in covalent organic frameworks. ACS Appl. Mater. Interfaces 16(38), 50096–50114 (2024). https://doi.org/10.1021/acsami.4c12069
- K. Du, L. Xiong, C. Fu, X. Ni, J.-L. Bredas et al., Impact of structural defects on the electronic properties of two-dimensional covalent organic frameworks. ACS Mater. Lett. 6(2), 335–344 (2024). https://doi.org/10.1021/acsmaterialslett.3c01429
- S. Daliran, M. Blanco, A. Dhakshinamoorthy, A.R. Oveisi, J. Alemán et al., Defects and disorder in covalent organic frameworks for advanced applications. Adv. Funct. Mater. 34(18), 2312912 (2024). https://doi.org/10.1002/adfm.202312912
- Z. Li, Z.-W. Liu, Z. Li, T.-X. Wang, F. Zhao et al., Defective 2D covalent organic frameworks for postfunctionalization. Adv. Funct. Mater. 30(10), 1909267 (2020). https://doi.org/10.1002/adfm.201909267
- Z. Guo, H. Wu, Y. Chen, S. Zhu, H. Jiang et al., Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew. Chem. Int. Ed. 61(41), e202210466 (2022). https://doi.org/10.1002/anie.202210466
- T. Ma, E.A. Kapustin, S.X. Yin, L. Liang, Z. Zhou et al., Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361(6397), 48–52 (2018). https://doi.org/10.1126/science.aat7679
- J. Zhang, Z. Wang, J. Suo, C. Tuo, F. Chen et al., Morphological tuning of covalent organic framework single crystals. J. Am. Chem. Soc. 146(51), 35090–35097 (2024). https://doi.org/10.1021/jacs.4c10071
- G. Zhan, B. Koek, Y. Yuan, Y. Liu, V. Mishra et al., Moiré two-dimensional covalent organic framework superlattices. Nat. Chem. 17(4), 518–524 (2025). https://doi.org/10.1038/s41557-025-01748-5
- S. Chen, D.M. Koshy, Y. Tsao, R. Pfattner, X. Yan et al., Highly tunable and facile synthesis of uniform carbon flower ps. J. Am. Chem. Soc. 140(32), 10297–10304 (2018). https://doi.org/10.1021/jacs.8b05825
- S.-A. Chen, Polymer miscibility in organic solvents and in plasticizers: a two-dimensional approach. J. Appl. Polym. Sci. 15(5), 1247–1266 (1971). https://doi.org/10.1002/app.1971.070150519
- C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García et al., Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 19(27), 17928–17936 (2017). https://doi.org/10.1039/C7CP02110K
- Z. Yan, X. Liu, B. Ding, J. Yu, Y. Si, Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat. Commun. 14(1), 2116 (2023). https://doi.org/10.1038/s41467-023-37693-5
- Z. Zhang, B. Yang, B. Zhang, M. Cui, J. Tang et al., Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification. Nat. Commun. 13(1), 2353 (2022). https://doi.org/10.1038/s41467-022-30092-2
- G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, A model for the inverse Hall–Petch relation of nanocrystalline materials. Mater. Sci. Eng. A 409(1–2), 243–248 (2005). https://doi.org/10.1016/j.msea.2005.06.073
- Q. Li, Y. Zhu, T. Pan, G. Zhang, H. Pang, Covalent organic framework nanomaterials: syntheses, architectures, and applications. Adv. Colloid Interface Sci. 339, 103427 (2025). https://doi.org/10.1016/j.cis.2025.103427
- K. Liu, C. Yin, J. Gao, Y. Wang, Temperature-swing synthesis of highly crystalline covalent organic framework films for fast and precise molecular separations. Angew. Chem. Int. Ed. 64(12), e202422333 (2025). https://doi.org/10.1002/anie.202422333
- S. Kandambeth, K. Dey, R. Banerjee, Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141(5), 1807–1822 (2019). https://doi.org/10.1021/jacs.8b10334
- C. Fan, H. Wu, J. Guan, X. You, C. Yang et al., Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021). https://doi.org/10.1002/anie.202102965
- P.N. Anjana, A.K. Pulikkal, Synthesis, derivation, and applications of imine-linked covalent organic frameworks: a comprehensive review. Microporous Mesoporous Mater. 387, 113516 (2025). https://doi.org/10.1016/j.micromeso.2025.113516
- S. Xiong, Y. Wang, X. Wang, J. Chu, R. Zhang et al., Schiff base type conjugated organic framework nanofibers: solvothermal synthesis and electrochromic properties. Sol. Energy Mater. Sol. Cells 209, 110438 (2020). https://doi.org/10.1016/j.solmat.2020.110438
- X. Wang, H. Liu, S. Chen, J. Zhang, S. Chen, In situ construction of covalent organic framework membranes on polyacrylonitrile nanofibers for carbon dioxide capture. ACS Appl. Nano Mater. 7(9), 10911–10920 (2024). https://doi.org/10.1021/acsanm.4c01174
- M. Zhang, Y. Wang, Y. Zhang, J. Song, Y. Si et al., Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem. Int. Ed. 59(51), 23252–23260 (2020). https://doi.org/10.1002/anie.202010110
- B. Ding, S. Huang, K. Pang, Y. Duan, J. Zhang, Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation. ACS Sustainable Chem. Eng. 6(1), 177–185 (2018). https://doi.org/10.1021/acssuschemeng.7b02164
- M. Cho, J. Yiu, L.-T. Lin, Q. Hua, M.A. Karaaslan et al., Lignin nanofiber flexible carbon aerogels for self-standing supercapacitors. Chemsuschem 18(3), e202400932 (2025). https://doi.org/10.1002/cssc.202400932
- W.M. Saleh, M.I. Ahmad, E.B. Yahya, H.P.S. Abdul Khalil, Nanostructured bioaerogels as a potential solution for particulate matter pollution. Gels 9(7), 575 (2023). https://doi.org/10.3390/gels9070575
- X. Li, X. Ba, Y. Dai, Y. Feng, S. Yan et al., Silk nanofibrillar aerogel as sustainable filters for environmental purification. Small 21(12), e2500226 (2025). https://doi.org/10.1002/smll.202500226
- F. Wang, J. Dai, L. Huang, Y. Si, J. Yu et al., Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14(7), 8975–8984 (2020). https://doi.org/10.1021/acsnano.0c03793
- P. Tang, B. Fan, Y. Wang, Y. Si, J. Yu et al., Interfacial engineered, hierarchically porous, and underwater superelastic nanofibrous aerogels with rime-mimetic structure for superior micropollutant extraction. Chem. Eng. J. 475, 146290 (2023). https://doi.org/10.1016/j.cej.2023.146290
- J. Lin, J. Li, Y. Song, W. Chu, W. Li et al., Carbon nanofibrous aerogels derived from electrospun polyimide for multifunctional piezoresistive sensors. ACS Appl. Mater. Interfaces 16(13), 16712–16723 (2024). https://doi.org/10.1021/acsami.4c00452
- J. Lin, J. Li, W. Li, S. Chen, Y. Lu et al., Multifunctional polyimide nanofibrous aerogel sensor for motion monitoring and airflow perception. Compos. Part A Appl. Sci. Manuf. 178, 108003 (2024). https://doi.org/10.1016/j.compositesa.2023.108003
- Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
- J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
- J. Li, H. Li, J. Lin, Y. Lu, J. Qin et al., Multilayer polyimide nanofibrous aerogels for efficient thermal insulation and piezoelectric sensor. Chem. Eng. J. 507, 160807 (2025). https://doi.org/10.1016/j.cej.2025.160807
- X. Fu, L. Si, Z. Zhang, T. Yang, Q. Feng et al., Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat. Commun. 16(1), 2357 (2025). https://doi.org/10.1038/s41467-025-57646-4
- J. Qiu, W. Zheng, R. Yuan, C. Yue, D. Li et al., A novel 3D nanofibrous aerogel-based MoS2@Co3S4 heterojunction photocatalyst for water remediation and hydrogen evolution under simulated solar irradiation. Appl. Catal. B Environ. 264, 118514 (2020). https://doi.org/10.1016/j.apcatb.2019.118514
- G. Jiang, J. Wang, Y. Song, W. Chen, Y. Ye et al., Facile synthesis of ZIF-67@PVA/CA nanofibrous aerogel as efficient and recyclable catalyst for the degradation of organic pollutants through peroxymonosulfate activation. J. Appl. Polym. Sci. 140(28), e54033 (2023). https://doi.org/10.1002/app.54033
- D.B. Jung, Y. Song, Y.-R. Lee, M.J. Cha, K. Jeong et al., Quaternarized chitosan nanofiber and ZIF aerogel composites for synergetic CO2 cycloaddition catalysis. Carbohydr. Polym. 347, 122685 (2025). https://doi.org/10.1016/j.carbpol.2024.122685
- D. Zhu, Y. Zhu, Q. Yan, M. Barnes, F. Liu et al., Pure crystalline covalent organic framework aerogels. Chem. Mater. 33(11), 4216–4224 (2021). https://doi.org/10.1021/acs.chemmater.1c01122
- Z. Sheng, Z. Liu, Y. Hou, H. Jiang, Y. Li et al., The rising aerogel fibers: status, challenges, and opportunities. Adv. Sci. 10(9), 2205762 (2023). https://doi.org/10.1002/advs.202205762
- Q. Wang, P. Wang, Y. Wang, Y. Xu, H. Xu et al., Design of high-performance formyl-functionalized COF aerogels as quasi-solid lithium battery electrolyte by a solvent substitution strategy. ACS Appl. Mater. Interfaces 16(28), 37052–37062 (2024). https://doi.org/10.1021/acsami.4c07017
- W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang et al., A photocatalytic redox cycle over a polyimide catalyst drives efficient solar-to-H2O2 conversion. Nat. Commun. 15(1), 5316 (2024). https://doi.org/10.1038/s41467-024-49663-6
- M. Zhang, M. Lu, Z.-L. Lang, J. Liu, M. Liu et al., Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem. Int. Ed. 59(16), 6500–6506 (2020). https://doi.org/10.1002/anie.202000929
- J.H.C. Ng, P. Vyawahare, P.T. Benavides, Y. Gan, P. Sun et al., Life-cycle greenhouse gas emissions associated with nuclear power generation in the United States. J. Ind. Ecol. 29(3), 719–732 (2025). https://doi.org/10.1111/jiec.70008
- F. Pomponi, J. Hart, The greenhouse gas emissions of nuclear energy–life cycle assessment of a European pressurised reactor. Appl. Energy 290, 116743 (2021). https://doi.org/10.1016/j.apenergy.2021.116743
- M.D. Mathew, Nuclear energy: a pathway towards mitigation of global warming. Prog. Nucl. Energy 143, 104080 (2022). https://doi.org/10.1016/j.pnucene.2021.104080
- M.Y. Mehboob, B. Ma, M. Sadiq, Y. Zhang, Does nuclear energy reduce consumption-based carbon emissions: the role of environmental taxes and trade globalization in highest carbon emitting countries. Nucl. Eng. Technol. 56(1), 180–188 (2024). https://doi.org/10.1016/j.net.2023.09.022
- D. Zhang, L. Fang, L. Liu, B. Zhao, B. Hu et al., Uranium extraction from seawater by novel materials: a review. Sep. Purif. Technol. 320, 124204 (2023). https://doi.org/10.1016/j.seppur.2023.124204
- Y. Yuan, Q. Yu, M. Cao, L. Feng, S. Feng et al., Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat. Sustain. 4(8), 708–714 (2021). https://doi.org/10.1038/s41893-021-00709-3
- D. Chen, X. Zhao, M. Shi, X. Fu, W. Hu et al., Enhanced and selective uranium extraction onto electrospun nanofibers by regulating the functional groups and photothermal conversion performance. Chem. Eng. J. 480, 148108 (2024). https://doi.org/10.1016/j.cej.2023.148108
- W. Zhang, M. Wu, Y. Xin, H. Liu, F. Li et al., Comparative analysis of seawater uranium extraction materials: toward the development of bio-based and biomimetic materials. Coord. Chem. Rev. 534, 216589 (2025). https://doi.org/10.1016/j.ccr.2025.216589
- Y. Yuan, S. Feng, L. Feng, Q. Yu, T. Liu et al., A bio-inspired nano-pocket spatial structure for targeting uranyl capture. Angew. Chem. Int. Ed. 59(11), 4262–4268 (2020). https://doi.org/10.1002/anie.201916450
- D. Zhang, L. Liu, B. Zhao, X. Wang, H. Pang et al., Highly efficient extraction of uranium from seawater by polyamide and amidoxime co-functionalized MXene. Environ. Pollut. 317, 120826 (2023). https://doi.org/10.1016/j.envpol.2022.120826
- Z. Li, Q. Meng, Y. Yang, X. Zou, Y. Yuan et al., Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction. Chem. Sci. 11(18), 4747–4752 (2020). https://doi.org/10.1039/d0sc00249f
- W. Zhang, Y. Xin, Y. Fa, F. Li, Y. Liu et al., SA-DNA hydrogel microspheres for ultra-selective uranyl (VI) extraction from seawater. Chem. Eng. J. 495, 153690 (2024). https://doi.org/10.1016/j.cej.2024.153690
- Y. Xie, Y. Wu, X. Liu, M. Hao, Z. Chen et al., Rational design of cooperative chelating sites on covalent organic frameworks for highly selective uranium extraction from seawater. Cell Rep. Phys. Sci. 4(1), 101220 (2023). https://doi.org/10.1016/j.xcrp.2022.101220
- Y. Zhang, Y. Wang, Z. Dong, Y. Wang, Y. Liu et al., Boosting uranium extraction from seawater by micro-redox reactors anchored in a seaweed-like adsorbent. Nat. Commun. 15(1), 9124 (2024). https://doi.org/10.1038/s41467-024-53366-3
- X. Xu, Y. Yue, D. Cai, J. Song, C. Han et al., Aqueous solution blow spinning of seawater-stable polyamidoxime nanofibers from water-soluble precursor for uranium extraction from seawater. Small Methods 4(12), 2000558 (2020). https://doi.org/10.1002/smtd.202000558
- L. Yang, H. Xiao, Y. Qian, X. Zhao, X.-Y. Kong et al., Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 5(1), 71–80 (2022). https://doi.org/10.1038/s41893-021-00792-6
- Y. Yuan, T. Liu, J. Xiao, Q. Yu, L. Feng et al., DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat. Commun. 11(1), 5708 (2020). https://doi.org/10.1038/s41467-020-19419-z
- B. Zhang, X. Shan, J. Yu, H. Zhang, K.T. Alali et al., Facile synthesis of TiO2-PAN photocatalytic membrane with excellent photocatalytic performance for uranium extraction from seawater. Sep. Purif. Technol. 328, 125026 (2024). https://doi.org/10.1016/j.seppur.2023.125026
- Y. Liao, B. Yuan, D. Zhang, J. Zhang, X. Wang et al., Fabrication of heterostructured metal oxide/TiO2 nanotube arrays prepared via thermal decomposition and crystallization. Inorg. Chem. 57(16), 10249–10256 (2018). https://doi.org/10.1021/acs.inorgchem.8b01483
- M. Fu, C. Huang, L. Ma, Y. Yao, J. Chen et al., Solar enhanced uranium extraction from seawater with the efficient strategy of MXene loaded nano-porous polyamidoxime membrane. Sep. Purif. Technol. 332, 125803 (2024). https://doi.org/10.1016/j.seppur.2023.125803
- W. Cui, C. Zhang, R. Liang, J. Qiu, Covalent organic framework hydrogels for synergistic seawater desalination and uranium extraction. J. Mater. Chem. A 9(45), 25611–25620 (2021). https://doi.org/10.1039/D1TA06732J
- T. Li, X. Lin, Z. Zhang, L. Yang, Y. Qian et al., Photothermal-enhanced uranium extraction from seawater: a biomass solar thermal collector with 3D ion-transport networks. Adv. Funct. Mater. 33(19), 2212819 (2023). https://doi.org/10.1002/adfm.202212819
- F. Yu, C. Li, W. Li, Z. Yu, Z. Xu et al., Π-skeleton tailoring of olefin-linked covalent organic frameworks achieving low exciton binding energy for photo-enhanced uranium extraction from seawater. Adv. Funct. Mater. 34(1), 2307230 (2024). https://doi.org/10.1002/adfm.202307230
- Z. Liu, K. Feng, X. Zhang, L. Fu, J. Ren et al., Enhanced uranium extraction using a nanostructured photothermal hydrogel membrane. Chem. Eng. J. 498, 155423 (2024). https://doi.org/10.1016/j.cej.2024.155423
- H. Yang, M. Hao, Y. Xie, X. Liu, Y. Liu et al., Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem. Int. Ed. 62(30), e202303129 (2023). https://doi.org/10.1002/anie.202303129
- M. Hao, Y. Xie, X. Liu, Z. Chen, H. Yang et al., Modulating uranium extraction performance of multivariate covalent organic frameworks through donor–acceptor linkers and amidoxime nanotraps. JACS Au 3(1), 239–251 (2023). https://doi.org/10.1021/jacsau.2c00614
- M. Chen, T. Liu, X. Zhang, R. Zhang, S. Tang et al., Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 31(22), 2100106 (2021). https://doi.org/10.1002/adfm.202100106
- T. Liu, S. Tang, T. Wei, M. Chen, Z. Xie et al., Defect-engineered metal-organic framework with enhanced photoreduction activity toward uranium extraction from seawater. Cell Rep. Phys. Sci. 3(5), 100892 (2022). https://doi.org/10.1016/j.xcrp.2022.100892
- Y. Zhao, S. Li, G. Fu, H. Yang, S. Li et al., Construction of layer-blocked covalent organic framework heterogenous films via surface-initiated polycondensations with strongly enhanced photocatalytic properties. ACS Cent. Sci. 10(4), 775–781 (2024). https://doi.org/10.1021/acscentsci.3c01195
- M. Li, B. Qing, H. Luo, W. Gao, Q. Shou et al., Recyclable covalent organic frameworks/cellulose aerogels for efficient uranium adsorption. Int. J. Biol. Macromol. 282(Pt 4), 137156 (2024). https://doi.org/10.1016/j.ijbiomac.2024.137156
- M. Li, L. Sun, W. Gao, B. Qing, H. Yao et al., In-situ bioprocessing of bacterial cellulose aerogel with covalent organic frameworks for enhanced uranium extraction. Sep. Purif. Technol. 355, 129654 (2025). https://doi.org/10.1016/j.seppur.2024.129654
- W. Cui, C. Zhang, R. Liang, J. Liu, J. Qiu, Covalent organic framework sponges for efficient solar desalination and selective uranium recovery. ACS Appl. Mater. Interfaces 13(27), 31561–31568 (2021). https://doi.org/10.1021/acsami.1c04419
References
M. Di, X. Sun, L. Hu, L. Gao, J. Liu et al., Hollow COF selective layer based flexible composite membranes constructed by an integrated “casting-precipitation-evaporation” strategy. Adv. Funct. Mater. 32(22), 2111594 (2022). https://doi.org/10.1002/adfm.202111594
B. Fan, Y. Si, J. Yu, X. Wang, P. Tang, Multi-interfacial interaction engineered underwater superelastic covalent organic framework aerogels for photoinduced uranium extraction. Chem. Eng. J. 498, 155756 (2024). https://doi.org/10.1016/j.cej.2024.155756
J. Meng, M. Yin, K. Guo, X. Zhou, Z. Xue, In situ polymerization in COF boosts Li-ion conduction in solid polymer electrolytes for Li metal batteries. Nano-Micro Lett. 17(1), 248 (2025). https://doi.org/10.1007/s40820-025-01768-3
X. Liu, D. Zhao, J. Wang, Challenges and opportunities in preserving key structural features of 3D-printed metal/covalent organic framework. Nano-Micro Lett. 16(1), 157 (2024). https://doi.org/10.1007/s40820-024-01373-w
Y. Yu, Y. Tang, L. Liu, Q. Wang, C. Yin et al., In situ synthesis of TpPa COFs in mixed matrix membranes for enhanced CO2 separation. Ind. Eng. Chem. Res. 64(16), 8414–8424 (2025). https://doi.org/10.1021/acs.iecr.5c00266
J. Chang, C. Li, X. Wang, D. Li, J. Zhang et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nano-Micro Lett. 15(1), 159 (2023). https://doi.org/10.1007/s40820-023-01111-8
C. Xiao, Y. Yao, X. Guo, J. Qi, Z. Zhu et al., Ultralight and robust covalent organic framework fiber aerogels. Small 20(32), e2311881 (2024). https://doi.org/10.1002/smll.202311881
G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15(1), 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
X. Xu, Z. Zhang, R. Xiong, G. Lu, J. Zhang et al., Bending resistance covalent organic framework superlattice: “nano-hourglass”-induced charge accumulation for flexible in-plane micro-supercapacitors. Nano-Micro Lett. 15(1), 25 (2022). https://doi.org/10.1007/s40820-022-00997-0
D. Yan, L. Song, F. Kang, X. Mo, Y. Lv et al., In situ growth of covalent organic frameworks on carbon nanotubes for high-performance potassium-ion batteries. Angew. Chem. Int. Ed. 64(12), e202422851 (2025). https://doi.org/10.1002/anie.202422851
K. Xu, Y. Zheng, J. Zhou, Y. Zhao, X. Pang et al., Microwave-assisted fabrication of highly crystalline, robust COF membrane for organic solvent nanofiltration. Adv. Funct. Mater. 35(12), 2417383 (2025). https://doi.org/10.1002/adfm.202417383
F. Yang, J. Guo, C. Han, J. Huang, Z. Zhou et al., Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration. Sci. Adv. 10(50), eadr9260 (2024). https://doi.org/10.1126/sciadv.adr9260
Y. Kong, X. He, H. Wu, Y. Yang, L. Cao et al., Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering. Angew. Chem. Int. Ed. 60(32), 17638–17646 (2021). https://doi.org/10.1002/anie.202105190
S. Ai, Y. Xu, H. Zhou, Z. Cui, T. Wu et al., Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chin. Chem. Lett. 36(10), 110761 (2025). https://doi.org/10.1016/j.cclet.2024.110761
G. Shao, X. Huang, X. Shen, C. Li, A. Thomas, Metal-organic framework and covalent-organic framework-based aerogels: synthesis, functionality, and applications. Adv. Sci. 11(48), 2409290 (2024). https://doi.org/10.1002/advs.202409290
J.Á. Martín-Illán, J.A. Suárez, J. Gómez-Herrero, P. Ares, D. Gallego-Fuente et al., Ultralarge free-standing imine-based covalent organic framework membranes fabricated via compression. Adv. Sci. 9(7), 2104643 (2022). https://doi.org/10.1002/advs.202104643
Y. Zhang, S. Liu, J. Yan, X. Zhang, S. Xia et al., Superior flexibility in oxide ceramic crystal nanofibers. Adv. Mater. 33(44), 2105011 (2021). https://doi.org/10.1002/adma.202105011
X. Ma, K.R. Meihaus, Y. Yang, Y. Zheng, F. Cui et al., Photocatalytic extraction of uranium from seawater using covalent organic framework nanowires. J. Am. Chem. Soc. 146(33), 23566–23573 (2024). https://doi.org/10.1021/jacs.4c07699
H. Yang, L. Yang, H. Wang, Z. Xu, Y. Zhao et al., Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10(1), 2101 (2019). https://doi.org/10.1038/s41467-019-10157-5
S. Wang, Z. Zhang, H. Zhang, A.G. Rajan, N. Xu et al., Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films. Matter 1(6), 1592–1605 (2019). https://doi.org/10.1016/j.matt.2019.08.019
S. Daliran, A.R. Oveisi, A. Dhakshinamoorthy, H. Garcia, Probing defects in covalent organic frameworks. ACS Appl. Mater. Interfaces 16(38), 50096–50114 (2024). https://doi.org/10.1021/acsami.4c12069
K. Du, L. Xiong, C. Fu, X. Ni, J.-L. Bredas et al., Impact of structural defects on the electronic properties of two-dimensional covalent organic frameworks. ACS Mater. Lett. 6(2), 335–344 (2024). https://doi.org/10.1021/acsmaterialslett.3c01429
S. Daliran, M. Blanco, A. Dhakshinamoorthy, A.R. Oveisi, J. Alemán et al., Defects and disorder in covalent organic frameworks for advanced applications. Adv. Funct. Mater. 34(18), 2312912 (2024). https://doi.org/10.1002/adfm.202312912
Z. Li, Z.-W. Liu, Z. Li, T.-X. Wang, F. Zhao et al., Defective 2D covalent organic frameworks for postfunctionalization. Adv. Funct. Mater. 30(10), 1909267 (2020). https://doi.org/10.1002/adfm.201909267
Z. Guo, H. Wu, Y. Chen, S. Zhu, H. Jiang et al., Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew. Chem. Int. Ed. 61(41), e202210466 (2022). https://doi.org/10.1002/anie.202210466
T. Ma, E.A. Kapustin, S.X. Yin, L. Liang, Z. Zhou et al., Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361(6397), 48–52 (2018). https://doi.org/10.1126/science.aat7679
J. Zhang, Z. Wang, J. Suo, C. Tuo, F. Chen et al., Morphological tuning of covalent organic framework single crystals. J. Am. Chem. Soc. 146(51), 35090–35097 (2024). https://doi.org/10.1021/jacs.4c10071
G. Zhan, B. Koek, Y. Yuan, Y. Liu, V. Mishra et al., Moiré two-dimensional covalent organic framework superlattices. Nat. Chem. 17(4), 518–524 (2025). https://doi.org/10.1038/s41557-025-01748-5
S. Chen, D.M. Koshy, Y. Tsao, R. Pfattner, X. Yan et al., Highly tunable and facile synthesis of uniform carbon flower ps. J. Am. Chem. Soc. 140(32), 10297–10304 (2018). https://doi.org/10.1021/jacs.8b05825
S.-A. Chen, Polymer miscibility in organic solvents and in plasticizers: a two-dimensional approach. J. Appl. Polym. Sci. 15(5), 1247–1266 (1971). https://doi.org/10.1002/app.1971.070150519
C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García et al., Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 19(27), 17928–17936 (2017). https://doi.org/10.1039/C7CP02110K
Z. Yan, X. Liu, B. Ding, J. Yu, Y. Si, Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat. Commun. 14(1), 2116 (2023). https://doi.org/10.1038/s41467-023-37693-5
Z. Zhang, B. Yang, B. Zhang, M. Cui, J. Tang et al., Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification. Nat. Commun. 13(1), 2353 (2022). https://doi.org/10.1038/s41467-022-30092-2
G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, A model for the inverse Hall–Petch relation of nanocrystalline materials. Mater. Sci. Eng. A 409(1–2), 243–248 (2005). https://doi.org/10.1016/j.msea.2005.06.073
Q. Li, Y. Zhu, T. Pan, G. Zhang, H. Pang, Covalent organic framework nanomaterials: syntheses, architectures, and applications. Adv. Colloid Interface Sci. 339, 103427 (2025). https://doi.org/10.1016/j.cis.2025.103427
K. Liu, C. Yin, J. Gao, Y. Wang, Temperature-swing synthesis of highly crystalline covalent organic framework films for fast and precise molecular separations. Angew. Chem. Int. Ed. 64(12), e202422333 (2025). https://doi.org/10.1002/anie.202422333
S. Kandambeth, K. Dey, R. Banerjee, Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141(5), 1807–1822 (2019). https://doi.org/10.1021/jacs.8b10334
C. Fan, H. Wu, J. Guan, X. You, C. Yang et al., Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021). https://doi.org/10.1002/anie.202102965
P.N. Anjana, A.K. Pulikkal, Synthesis, derivation, and applications of imine-linked covalent organic frameworks: a comprehensive review. Microporous Mesoporous Mater. 387, 113516 (2025). https://doi.org/10.1016/j.micromeso.2025.113516
S. Xiong, Y. Wang, X. Wang, J. Chu, R. Zhang et al., Schiff base type conjugated organic framework nanofibers: solvothermal synthesis and electrochromic properties. Sol. Energy Mater. Sol. Cells 209, 110438 (2020). https://doi.org/10.1016/j.solmat.2020.110438
X. Wang, H. Liu, S. Chen, J. Zhang, S. Chen, In situ construction of covalent organic framework membranes on polyacrylonitrile nanofibers for carbon dioxide capture. ACS Appl. Nano Mater. 7(9), 10911–10920 (2024). https://doi.org/10.1021/acsanm.4c01174
M. Zhang, Y. Wang, Y. Zhang, J. Song, Y. Si et al., Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem. Int. Ed. 59(51), 23252–23260 (2020). https://doi.org/10.1002/anie.202010110
B. Ding, S. Huang, K. Pang, Y. Duan, J. Zhang, Nitrogen-enriched carbon nanofiber aerogels derived from marine chitin for energy storage and environmental remediation. ACS Sustainable Chem. Eng. 6(1), 177–185 (2018). https://doi.org/10.1021/acssuschemeng.7b02164
M. Cho, J. Yiu, L.-T. Lin, Q. Hua, M.A. Karaaslan et al., Lignin nanofiber flexible carbon aerogels for self-standing supercapacitors. Chemsuschem 18(3), e202400932 (2025). https://doi.org/10.1002/cssc.202400932
W.M. Saleh, M.I. Ahmad, E.B. Yahya, H.P.S. Abdul Khalil, Nanostructured bioaerogels as a potential solution for particulate matter pollution. Gels 9(7), 575 (2023). https://doi.org/10.3390/gels9070575
X. Li, X. Ba, Y. Dai, Y. Feng, S. Yan et al., Silk nanofibrillar aerogel as sustainable filters for environmental purification. Small 21(12), e2500226 (2025). https://doi.org/10.1002/smll.202500226
F. Wang, J. Dai, L. Huang, Y. Si, J. Yu et al., Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14(7), 8975–8984 (2020). https://doi.org/10.1021/acsnano.0c03793
P. Tang, B. Fan, Y. Wang, Y. Si, J. Yu et al., Interfacial engineered, hierarchically porous, and underwater superelastic nanofibrous aerogels with rime-mimetic structure for superior micropollutant extraction. Chem. Eng. J. 475, 146290 (2023). https://doi.org/10.1016/j.cej.2023.146290
J. Lin, J. Li, Y. Song, W. Chu, W. Li et al., Carbon nanofibrous aerogels derived from electrospun polyimide for multifunctional piezoresistive sensors. ACS Appl. Mater. Interfaces 16(13), 16712–16723 (2024). https://doi.org/10.1021/acsami.4c00452
J. Lin, J. Li, W. Li, S. Chen, Y. Lu et al., Multifunctional polyimide nanofibrous aerogel sensor for motion monitoring and airflow perception. Compos. Part A Appl. Sci. Manuf. 178, 108003 (2024). https://doi.org/10.1016/j.compositesa.2023.108003
Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
J. Guo, S. Fu, Y. Deng, X. Xu, S. Laima et al., Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 606(7916), 909–916 (2022). https://doi.org/10.1038/s41586-022-04784-0
J. Li, H. Li, J. Lin, Y. Lu, J. Qin et al., Multilayer polyimide nanofibrous aerogels for efficient thermal insulation and piezoelectric sensor. Chem. Eng. J. 507, 160807 (2025). https://doi.org/10.1016/j.cej.2025.160807
X. Fu, L. Si, Z. Zhang, T. Yang, Q. Feng et al., Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat. Commun. 16(1), 2357 (2025). https://doi.org/10.1038/s41467-025-57646-4
J. Qiu, W. Zheng, R. Yuan, C. Yue, D. Li et al., A novel 3D nanofibrous aerogel-based MoS2@Co3S4 heterojunction photocatalyst for water remediation and hydrogen evolution under simulated solar irradiation. Appl. Catal. B Environ. 264, 118514 (2020). https://doi.org/10.1016/j.apcatb.2019.118514
G. Jiang, J. Wang, Y. Song, W. Chen, Y. Ye et al., Facile synthesis of ZIF-67@PVA/CA nanofibrous aerogel as efficient and recyclable catalyst for the degradation of organic pollutants through peroxymonosulfate activation. J. Appl. Polym. Sci. 140(28), e54033 (2023). https://doi.org/10.1002/app.54033
D.B. Jung, Y. Song, Y.-R. Lee, M.J. Cha, K. Jeong et al., Quaternarized chitosan nanofiber and ZIF aerogel composites for synergetic CO2 cycloaddition catalysis. Carbohydr. Polym. 347, 122685 (2025). https://doi.org/10.1016/j.carbpol.2024.122685
D. Zhu, Y. Zhu, Q. Yan, M. Barnes, F. Liu et al., Pure crystalline covalent organic framework aerogels. Chem. Mater. 33(11), 4216–4224 (2021). https://doi.org/10.1021/acs.chemmater.1c01122
Z. Sheng, Z. Liu, Y. Hou, H. Jiang, Y. Li et al., The rising aerogel fibers: status, challenges, and opportunities. Adv. Sci. 10(9), 2205762 (2023). https://doi.org/10.1002/advs.202205762
Q. Wang, P. Wang, Y. Wang, Y. Xu, H. Xu et al., Design of high-performance formyl-functionalized COF aerogels as quasi-solid lithium battery electrolyte by a solvent substitution strategy. ACS Appl. Mater. Interfaces 16(28), 37052–37062 (2024). https://doi.org/10.1021/acsami.4c07017
W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang et al., A photocatalytic redox cycle over a polyimide catalyst drives efficient solar-to-H2O2 conversion. Nat. Commun. 15(1), 5316 (2024). https://doi.org/10.1038/s41467-024-49663-6
M. Zhang, M. Lu, Z.-L. Lang, J. Liu, M. Liu et al., Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem. Int. Ed. 59(16), 6500–6506 (2020). https://doi.org/10.1002/anie.202000929
J.H.C. Ng, P. Vyawahare, P.T. Benavides, Y. Gan, P. Sun et al., Life-cycle greenhouse gas emissions associated with nuclear power generation in the United States. J. Ind. Ecol. 29(3), 719–732 (2025). https://doi.org/10.1111/jiec.70008
F. Pomponi, J. Hart, The greenhouse gas emissions of nuclear energy–life cycle assessment of a European pressurised reactor. Appl. Energy 290, 116743 (2021). https://doi.org/10.1016/j.apenergy.2021.116743
M.D. Mathew, Nuclear energy: a pathway towards mitigation of global warming. Prog. Nucl. Energy 143, 104080 (2022). https://doi.org/10.1016/j.pnucene.2021.104080
M.Y. Mehboob, B. Ma, M. Sadiq, Y. Zhang, Does nuclear energy reduce consumption-based carbon emissions: the role of environmental taxes and trade globalization in highest carbon emitting countries. Nucl. Eng. Technol. 56(1), 180–188 (2024). https://doi.org/10.1016/j.net.2023.09.022
D. Zhang, L. Fang, L. Liu, B. Zhao, B. Hu et al., Uranium extraction from seawater by novel materials: a review. Sep. Purif. Technol. 320, 124204 (2023). https://doi.org/10.1016/j.seppur.2023.124204
Y. Yuan, Q. Yu, M. Cao, L. Feng, S. Feng et al., Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat. Sustain. 4(8), 708–714 (2021). https://doi.org/10.1038/s41893-021-00709-3
D. Chen, X. Zhao, M. Shi, X. Fu, W. Hu et al., Enhanced and selective uranium extraction onto electrospun nanofibers by regulating the functional groups and photothermal conversion performance. Chem. Eng. J. 480, 148108 (2024). https://doi.org/10.1016/j.cej.2023.148108
W. Zhang, M. Wu, Y. Xin, H. Liu, F. Li et al., Comparative analysis of seawater uranium extraction materials: toward the development of bio-based and biomimetic materials. Coord. Chem. Rev. 534, 216589 (2025). https://doi.org/10.1016/j.ccr.2025.216589
Y. Yuan, S. Feng, L. Feng, Q. Yu, T. Liu et al., A bio-inspired nano-pocket spatial structure for targeting uranyl capture. Angew. Chem. Int. Ed. 59(11), 4262–4268 (2020). https://doi.org/10.1002/anie.201916450
D. Zhang, L. Liu, B. Zhao, X. Wang, H. Pang et al., Highly efficient extraction of uranium from seawater by polyamide and amidoxime co-functionalized MXene. Environ. Pollut. 317, 120826 (2023). https://doi.org/10.1016/j.envpol.2022.120826
Z. Li, Q. Meng, Y. Yang, X. Zou, Y. Yuan et al., Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction. Chem. Sci. 11(18), 4747–4752 (2020). https://doi.org/10.1039/d0sc00249f
W. Zhang, Y. Xin, Y. Fa, F. Li, Y. Liu et al., SA-DNA hydrogel microspheres for ultra-selective uranyl (VI) extraction from seawater. Chem. Eng. J. 495, 153690 (2024). https://doi.org/10.1016/j.cej.2024.153690
Y. Xie, Y. Wu, X. Liu, M. Hao, Z. Chen et al., Rational design of cooperative chelating sites on covalent organic frameworks for highly selective uranium extraction from seawater. Cell Rep. Phys. Sci. 4(1), 101220 (2023). https://doi.org/10.1016/j.xcrp.2022.101220
Y. Zhang, Y. Wang, Z. Dong, Y. Wang, Y. Liu et al., Boosting uranium extraction from seawater by micro-redox reactors anchored in a seaweed-like adsorbent. Nat. Commun. 15(1), 9124 (2024). https://doi.org/10.1038/s41467-024-53366-3
X. Xu, Y. Yue, D. Cai, J. Song, C. Han et al., Aqueous solution blow spinning of seawater-stable polyamidoxime nanofibers from water-soluble precursor for uranium extraction from seawater. Small Methods 4(12), 2000558 (2020). https://doi.org/10.1002/smtd.202000558
L. Yang, H. Xiao, Y. Qian, X. Zhao, X.-Y. Kong et al., Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 5(1), 71–80 (2022). https://doi.org/10.1038/s41893-021-00792-6
Y. Yuan, T. Liu, J. Xiao, Q. Yu, L. Feng et al., DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat. Commun. 11(1), 5708 (2020). https://doi.org/10.1038/s41467-020-19419-z
B. Zhang, X. Shan, J. Yu, H. Zhang, K.T. Alali et al., Facile synthesis of TiO2-PAN photocatalytic membrane with excellent photocatalytic performance for uranium extraction from seawater. Sep. Purif. Technol. 328, 125026 (2024). https://doi.org/10.1016/j.seppur.2023.125026
Y. Liao, B. Yuan, D. Zhang, J. Zhang, X. Wang et al., Fabrication of heterostructured metal oxide/TiO2 nanotube arrays prepared via thermal decomposition and crystallization. Inorg. Chem. 57(16), 10249–10256 (2018). https://doi.org/10.1021/acs.inorgchem.8b01483
M. Fu, C. Huang, L. Ma, Y. Yao, J. Chen et al., Solar enhanced uranium extraction from seawater with the efficient strategy of MXene loaded nano-porous polyamidoxime membrane. Sep. Purif. Technol. 332, 125803 (2024). https://doi.org/10.1016/j.seppur.2023.125803
W. Cui, C. Zhang, R. Liang, J. Qiu, Covalent organic framework hydrogels for synergistic seawater desalination and uranium extraction. J. Mater. Chem. A 9(45), 25611–25620 (2021). https://doi.org/10.1039/D1TA06732J
T. Li, X. Lin, Z. Zhang, L. Yang, Y. Qian et al., Photothermal-enhanced uranium extraction from seawater: a biomass solar thermal collector with 3D ion-transport networks. Adv. Funct. Mater. 33(19), 2212819 (2023). https://doi.org/10.1002/adfm.202212819
F. Yu, C. Li, W. Li, Z. Yu, Z. Xu et al., Π-skeleton tailoring of olefin-linked covalent organic frameworks achieving low exciton binding energy for photo-enhanced uranium extraction from seawater. Adv. Funct. Mater. 34(1), 2307230 (2024). https://doi.org/10.1002/adfm.202307230
Z. Liu, K. Feng, X. Zhang, L. Fu, J. Ren et al., Enhanced uranium extraction using a nanostructured photothermal hydrogel membrane. Chem. Eng. J. 498, 155423 (2024). https://doi.org/10.1016/j.cej.2024.155423
H. Yang, M. Hao, Y. Xie, X. Liu, Y. Liu et al., Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem. Int. Ed. 62(30), e202303129 (2023). https://doi.org/10.1002/anie.202303129
M. Hao, Y. Xie, X. Liu, Z. Chen, H. Yang et al., Modulating uranium extraction performance of multivariate covalent organic frameworks through donor–acceptor linkers and amidoxime nanotraps. JACS Au 3(1), 239–251 (2023). https://doi.org/10.1021/jacsau.2c00614
M. Chen, T. Liu, X. Zhang, R. Zhang, S. Tang et al., Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 31(22), 2100106 (2021). https://doi.org/10.1002/adfm.202100106
T. Liu, S. Tang, T. Wei, M. Chen, Z. Xie et al., Defect-engineered metal-organic framework with enhanced photoreduction activity toward uranium extraction from seawater. Cell Rep. Phys. Sci. 3(5), 100892 (2022). https://doi.org/10.1016/j.xcrp.2022.100892
Y. Zhao, S. Li, G. Fu, H. Yang, S. Li et al., Construction of layer-blocked covalent organic framework heterogenous films via surface-initiated polycondensations with strongly enhanced photocatalytic properties. ACS Cent. Sci. 10(4), 775–781 (2024). https://doi.org/10.1021/acscentsci.3c01195
M. Li, B. Qing, H. Luo, W. Gao, Q. Shou et al., Recyclable covalent organic frameworks/cellulose aerogels for efficient uranium adsorption. Int. J. Biol. Macromol. 282(Pt 4), 137156 (2024). https://doi.org/10.1016/j.ijbiomac.2024.137156
M. Li, L. Sun, W. Gao, B. Qing, H. Yao et al., In-situ bioprocessing of bacterial cellulose aerogel with covalent organic frameworks for enhanced uranium extraction. Sep. Purif. Technol. 355, 129654 (2025). https://doi.org/10.1016/j.seppur.2024.129654
W. Cui, C. Zhang, R. Liang, J. Liu, J. Qiu, Covalent organic framework sponges for efficient solar desalination and selective uranium recovery. ACS Appl. Mater. Interfaces 13(27), 31561–31568 (2021). https://doi.org/10.1021/acsami.1c04419