Unlocking Reversible Mn2+/MnO2 Chemistry in Semisolid Slurry Electrodes for High-Performance Aqueous Zn–Mn Batteries
Corresponding Author: Haiyan Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 148
Abstract
Electrolytic Zn–MnO2 batteries are promising candidates for safe and sustainable energy storage owing to their high voltage, environmental benignity, and cost-effectiveness. However, practical applications are hindered by the poor conductivity and the irreversible dissolution of conventional ε-MnO2 deposits. Herein, we report a scalable semisolid slurry electrode architecture that enables stable MnO2 deposition/dissolution using a three-dimensional percolating network of carbon nanotubes (CNTs) as both conductive matrix and deposition host. The slurry system promotes the formation of highly conductive γ-MnO2 owing to enhanced charge transfer kinetics, enabling overall dissolution rather than the localized separation typically seen in traditional electrodes. The Zn–MnO2 slurry cell exhibits a reversible areal capacity approaching 60 mAh cm−2. Moreover, the flowable nature of the slurry allows electrochemically inactive MnO2 formed during dissolution to be reconnected and reactivated by CNTs in the rheological network, ensuring deep utilization and cycling stability. This work establishes a slurry electrode strategy to improve electrolytic MnO2 reactions and offers a viable pathway toward renewable aqueous batteries for grid-scale applications.
Highlights:
1 A semisolid MnO2 slurry electrode enables reversible MnO2 deposition/dissolution within a CNT-percolated conductive network, achieving a high areal capacity of 60 mAh cm−2
2 The slurry system promotes the formation of highly conductive γ-MnO2 and achieves uniform MnO2 dissolution through enhanced charge transfer.
3 The MnO2 slurry electrode offers strong scalability and regenerability, retaining 100% capacity after 180 cycles and reactivating inactive MnO2 via percolation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- L. Chen, G. Msigwa, M. Yang, A.I. Osman, S. Fawzy et al., Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20(4), 2277–2310 (2022). https://doi.org/10.1007/s10311-022-01435-8
- Y. Yang, Y. Shi, W. Sun, J. Chang, J. Zhu et al., Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 65(5), 861–895 (2022). https://doi.org/10.1007/s11427-021-2045-5
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
- H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47(17), 6505–6602 (2018). https://doi.org/10.1039/c8cs00322j
- A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
- Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
- W. Li, K. Wang, K. Jiang, A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci. 7(23), 2000761 (2020). https://doi.org/10.1002/advs.202000761
- Y. Zhao, Y. Zhang, H. Sun, X. Dong, J. Cao et al., A self-healing aqueous lithium-ion battery. Angew. Chem. Int. Ed. 55(46), 14384–14388 (2016). https://doi.org/10.1002/anie.201607951
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at–20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), 2001894 (2020). https://doi.org/10.1002/adma.202001894
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58(23), 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
- X. Tao, J. Du, Y. Sun, S. Zhou, Y. Xia et al., Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv. Funct. Mater. 23(37), 4745–4751 (2013). https://doi.org/10.1002/adfm.201300359
- X. Zeng, J. Liu, J. Mao, J. Hao, Z. Wang et al., Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 10(32), 1904163 (2020). https://doi.org/10.1002/aenm.201904163
- M. Chuai, J. Yang, R. Tan, Z. Liu, Y. Yuan et al., Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2–Zn batteries. Adv. Mater. 34(33), 2203249 (2022). https://doi.org/10.1002/adma.202203249
- Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou, pH-buffer contained electrolyte for self-adjusted cathode-free Zn–MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2(11), 2100119 (2021). https://doi.org/10.1002/sstr.202100119
- X. Zheng, R. Luo, T. Ahmad, J. Sun, S. Liu et al., Development of high areal capacity electrolytic MnO2–Zn battery via an iodine mediator. Energy Environ. Mater. 6(6), e12433 (2023). https://doi.org/10.1002/eem2.12433
- X. Zheng, Y. Wang, Y. Xu, T. Ahmad, Y. Yuan et al., Boosting electrolytic MnO2-Zn batteries by a bromine mediator. Nano Lett. 21(20), 8863–8871 (2021). https://doi.org/10.1021/acs.nanolett.1c03319
- X. Xiao, Z. Zhang, Y. Wu, J. Xu, X. Gao et al., Ultrahigh-loading manganese-based electrodes for aqueous batteries via polymorph tuning. Adv. Mater. 35(33), e2211555 (2023). https://doi.org/10.1002/adma.202211555
- Q. Wang, W. Zhou, Y. Zhang, H. Jin, X. Li et al., Rescue of dead MnO2 for stable electrolytic Zn-Mn redox-flow battery: a metric of mediated and catalytic kinetics. Natl. Sci. Rev. 11(8), nwae230 (2024). https://doi.org/10.1093/nsr/nwae230
- W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3(5), 428–435 (2018). https://doi.org/10.1038/s41560-018-0147-7
- Y. Liu, C. Xie, X. Li, Carbon nanotube network induces porous deposited MnO2 for high-areal capacity Zn/Mn batteries. Small 20(35), 2402026 (2024). https://doi.org/10.1002/smll.202402026
- Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
- Y. Yuan, J. Yang, Z. Liu, R. Tan, M. Chuai et al., A proton-barrier separator induced via hofmeister effect for high-performance electrolytic MnO2–Zn batteries. Adv. Energy Mater. 12(16), 2103705 (2022). https://doi.org/10.1002/aenm.202103705
- Q. Zhang, Z. Yang, H. Ji, X. Zeng, Y. Tang et al., Issues and rational design of aqueous electrolyte for Zn-ion batteries. SusMat 1(3), 432–447 (2021). https://doi.org/10.1002/sus2.20
- H.J. Walls, S.B. Caines, A.M. Sanchez, S.A. Khan, Yield stress and wall slip phenomena in colloidal silica gels. J. Rheol. 47(4), 847–868 (2003). https://doi.org/10.1122/1.1574023
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- K. Refson, P.R. Tulip, S.J. Clark, Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 73(15), 155114 (2006). https://doi.org/10.1103/physrevb.73.155114
- E. Mattsson, J.O. Bockris, Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system. Trans. Faraday Soc. 55, 1586–1601 (1959). https://doi.org/10.1039/tf9595501586
- D.D. Atapattu, R.P. Chhabra, P.H.T. Uhlherr, Wall effect for spheres falling at small Reynolds number in a viscoplastic medium. J. Non-Newton. Fluid Mech. 38(1), 31–42 (1990). https://doi.org/10.1016/0377-0257(90)85031-S
- A.N. Beris, J.A. Tsamopoulos, R.C. Armstrong, R.A. Brown, Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219–244 (1985). https://doi.org/10.1017/s0022112085002622
- H. Emady, M. Caggioni, P. Spicer, Colloidal microstructure effects on p sedimentation in yield stress fluids. J. Rheol. 57(6), 1761–1772 (2013). https://doi.org/10.1122/1.4824471
- X. Xue, Z. Liu, S. Eisenberg, Q. Ren, D. Lin et al., Regulated interfacial proton and water activity enhances Mn2+/MnO2 platform voltage and energy efficiency. ACS Energy Lett. 8(11), 4658–4665 (2023). https://doi.org/10.1021/acsenergylett.3c01354
- Z. Zhang, H. Shang, X. Zhang, C. Liu, S. Li et al., Enhancing the electrochemical performances by wet ball milling to introduce structural water into an electrolytic MnO2/graphite nanocomposite cathode for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 5113–5122 (2021). https://doi.org/10.1021/acsaem.1c00665
- B.-R. Chen, W. Sun, D.A. Kitchaev, J.S. Mangum, V. Thampy et al., Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 9(1), 2553 (2018). https://doi.org/10.1038/s41467-018-04917-y
- W.M. Dose, N. Sharma, N.A.S. Webster, V.K. Peterson, S.W. Donne, Kinetics of the thermally-induced structural rearrangement of γ-MnO2. J. Phys. Chem. C 118(42), 24257–24265 (2014). https://doi.org/10.1021/jp506914j
- E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisit, XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485 (2016). https://doi.org/10.1016/j.apsusc.2015.12.159
- V. Di Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron Spectrosc. Relat. Phenom. 48(1), 117–123 (1989). https://doi.org/10.1016/0368-2048(89)80009-X
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
- H. Yang, T. Zhang, D. Chen, Y. Tan, W. Zhou et al., Protocol in evaluating capacity of Zn–Mn aqueous batteries: a clue of pH. Adv. Mater. 35(24), 2300053 (2023). https://doi.org/10.1002/adma.202300053
- Z. Liu, Y. Yang, B. Lu, S. Liang, H.J. Fan et al., Insights into complexing effects in acetate-based Zn-MnO2 batteries and performance enhancement by all-round strategies. Energy Storage Mater. 52, 104–110 (2022). https://doi.org/10.1016/j.ensm.2022.07.043
- C. Xie, Z. Yang, Q. Zhang, H. Ji, Y. Li et al., Designing zinc deposition substrate with fully preferred orientation to elude the interfacial inhomogeneous dendrite growth. Research 2022, 9841343 (2022). https://doi.org/10.34133/2022/9841343
- X. Xue, Z. Liu, S. Chandrasekaran, S. Eisenberg, C. Althaus et al., Interface-controlled redox chemistry in aqueous Mn2⁺/MnO₂ batteries. Adv. Mater. 37(28), e2419505 (2025). https://doi.org/10.1002/adma.202419505
- J. Lei, Y. Yao, Z. Wang, Y.-C. Lu, Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14(8), 4418–4426 (2021). https://doi.org/10.1039/D1EE01120K
- K. Ben Mabrouk, T.H. Kauffmann, H. Aroui, M.D. Fontana, Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions. J. Raman Spectrosc. 44(11), 1603–1608 (2013). https://doi.org/10.1002/jrs.4374
- Y. Li, Y. Li, Q. Liu, Y. Liu, T. Wang et al., Revealing the dominance of the dissolution-deposition mechanism in aqueous Zn−MnO2 batteries. Angew. Chem. Int. Ed. 136(6), e202318444 (2024). https://doi.org/10.1002/ange.202318444
- W.W. Rudolph, M.H. Brooker, P.R. Tremaine, Raman spectroscopy of aqueous ZnSO4 solutions under hydrothermal conditions: solubility, hydrolysis, and sulfate ion pairing. J. Solut. Chem. 28(5), 621–630 (1999). https://doi.org/10.1023/A:1022691117630
- Z. Yang, Q. Zhang, W. Li, C. Xie, T. Wu et al., A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(3), e202215306 (2023). https://doi.org/10.1002/anie.202215306
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
L. Chen, G. Msigwa, M. Yang, A.I. Osman, S. Fawzy et al., Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20(4), 2277–2310 (2022). https://doi.org/10.1007/s10311-022-01435-8
Y. Yang, Y. Shi, W. Sun, J. Chang, J. Zhu et al., Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 65(5), 861–895 (2022). https://doi.org/10.1007/s11427-021-2045-5
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47(17), 6505–6602 (2018). https://doi.org/10.1039/c8cs00322j
A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
W. Li, K. Wang, K. Jiang, A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci. 7(23), 2000761 (2020). https://doi.org/10.1002/advs.202000761
Y. Zhao, Y. Zhang, H. Sun, X. Dong, J. Cao et al., A self-healing aqueous lithium-ion battery. Angew. Chem. Int. Ed. 55(46), 14384–14388 (2016). https://doi.org/10.1002/anie.201607951
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at–20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), 2001894 (2020). https://doi.org/10.1002/adma.202001894
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58(23), 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
X. Tao, J. Du, Y. Sun, S. Zhou, Y. Xia et al., Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv. Funct. Mater. 23(37), 4745–4751 (2013). https://doi.org/10.1002/adfm.201300359
X. Zeng, J. Liu, J. Mao, J. Hao, Z. Wang et al., Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 10(32), 1904163 (2020). https://doi.org/10.1002/aenm.201904163
M. Chuai, J. Yang, R. Tan, Z. Liu, Y. Yuan et al., Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2–Zn batteries. Adv. Mater. 34(33), 2203249 (2022). https://doi.org/10.1002/adma.202203249
Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou, pH-buffer contained electrolyte for self-adjusted cathode-free Zn–MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2(11), 2100119 (2021). https://doi.org/10.1002/sstr.202100119
X. Zheng, R. Luo, T. Ahmad, J. Sun, S. Liu et al., Development of high areal capacity electrolytic MnO2–Zn battery via an iodine mediator. Energy Environ. Mater. 6(6), e12433 (2023). https://doi.org/10.1002/eem2.12433
X. Zheng, Y. Wang, Y. Xu, T. Ahmad, Y. Yuan et al., Boosting electrolytic MnO2-Zn batteries by a bromine mediator. Nano Lett. 21(20), 8863–8871 (2021). https://doi.org/10.1021/acs.nanolett.1c03319
X. Xiao, Z. Zhang, Y. Wu, J. Xu, X. Gao et al., Ultrahigh-loading manganese-based electrodes for aqueous batteries via polymorph tuning. Adv. Mater. 35(33), e2211555 (2023). https://doi.org/10.1002/adma.202211555
Q. Wang, W. Zhou, Y. Zhang, H. Jin, X. Li et al., Rescue of dead MnO2 for stable electrolytic Zn-Mn redox-flow battery: a metric of mediated and catalytic kinetics. Natl. Sci. Rev. 11(8), nwae230 (2024). https://doi.org/10.1093/nsr/nwae230
W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3(5), 428–435 (2018). https://doi.org/10.1038/s41560-018-0147-7
Y. Liu, C. Xie, X. Li, Carbon nanotube network induces porous deposited MnO2 for high-areal capacity Zn/Mn batteries. Small 20(35), 2402026 (2024). https://doi.org/10.1002/smll.202402026
Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
Y. Yuan, J. Yang, Z. Liu, R. Tan, M. Chuai et al., A proton-barrier separator induced via hofmeister effect for high-performance electrolytic MnO2–Zn batteries. Adv. Energy Mater. 12(16), 2103705 (2022). https://doi.org/10.1002/aenm.202103705
Q. Zhang, Z. Yang, H. Ji, X. Zeng, Y. Tang et al., Issues and rational design of aqueous electrolyte for Zn-ion batteries. SusMat 1(3), 432–447 (2021). https://doi.org/10.1002/sus2.20
H.J. Walls, S.B. Caines, A.M. Sanchez, S.A. Khan, Yield stress and wall slip phenomena in colloidal silica gels. J. Rheol. 47(4), 847–868 (2003). https://doi.org/10.1122/1.1574023
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
K. Refson, P.R. Tulip, S.J. Clark, Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 73(15), 155114 (2006). https://doi.org/10.1103/physrevb.73.155114
E. Mattsson, J.O. Bockris, Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system. Trans. Faraday Soc. 55, 1586–1601 (1959). https://doi.org/10.1039/tf9595501586
D.D. Atapattu, R.P. Chhabra, P.H.T. Uhlherr, Wall effect for spheres falling at small Reynolds number in a viscoplastic medium. J. Non-Newton. Fluid Mech. 38(1), 31–42 (1990). https://doi.org/10.1016/0377-0257(90)85031-S
A.N. Beris, J.A. Tsamopoulos, R.C. Armstrong, R.A. Brown, Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219–244 (1985). https://doi.org/10.1017/s0022112085002622
H. Emady, M. Caggioni, P. Spicer, Colloidal microstructure effects on p sedimentation in yield stress fluids. J. Rheol. 57(6), 1761–1772 (2013). https://doi.org/10.1122/1.4824471
X. Xue, Z. Liu, S. Eisenberg, Q. Ren, D. Lin et al., Regulated interfacial proton and water activity enhances Mn2+/MnO2 platform voltage and energy efficiency. ACS Energy Lett. 8(11), 4658–4665 (2023). https://doi.org/10.1021/acsenergylett.3c01354
Z. Zhang, H. Shang, X. Zhang, C. Liu, S. Li et al., Enhancing the electrochemical performances by wet ball milling to introduce structural water into an electrolytic MnO2/graphite nanocomposite cathode for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 5113–5122 (2021). https://doi.org/10.1021/acsaem.1c00665
B.-R. Chen, W. Sun, D.A. Kitchaev, J.S. Mangum, V. Thampy et al., Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 9(1), 2553 (2018). https://doi.org/10.1038/s41467-018-04917-y
W.M. Dose, N. Sharma, N.A.S. Webster, V.K. Peterson, S.W. Donne, Kinetics of the thermally-induced structural rearrangement of γ-MnO2. J. Phys. Chem. C 118(42), 24257–24265 (2014). https://doi.org/10.1021/jp506914j
E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisit, XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485 (2016). https://doi.org/10.1016/j.apsusc.2015.12.159
V. Di Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron Spectrosc. Relat. Phenom. 48(1), 117–123 (1989). https://doi.org/10.1016/0368-2048(89)80009-X
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10.1016/j.mtener.2020.100396
H. Yang, T. Zhang, D. Chen, Y. Tan, W. Zhou et al., Protocol in evaluating capacity of Zn–Mn aqueous batteries: a clue of pH. Adv. Mater. 35(24), 2300053 (2023). https://doi.org/10.1002/adma.202300053
Z. Liu, Y. Yang, B. Lu, S. Liang, H.J. Fan et al., Insights into complexing effects in acetate-based Zn-MnO2 batteries and performance enhancement by all-round strategies. Energy Storage Mater. 52, 104–110 (2022). https://doi.org/10.1016/j.ensm.2022.07.043
C. Xie, Z. Yang, Q. Zhang, H. Ji, Y. Li et al., Designing zinc deposition substrate with fully preferred orientation to elude the interfacial inhomogeneous dendrite growth. Research 2022, 9841343 (2022). https://doi.org/10.34133/2022/9841343
X. Xue, Z. Liu, S. Chandrasekaran, S. Eisenberg, C. Althaus et al., Interface-controlled redox chemistry in aqueous Mn2⁺/MnO₂ batteries. Adv. Mater. 37(28), e2419505 (2025). https://doi.org/10.1002/adma.202419505
J. Lei, Y. Yao, Z. Wang, Y.-C. Lu, Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14(8), 4418–4426 (2021). https://doi.org/10.1039/D1EE01120K
K. Ben Mabrouk, T.H. Kauffmann, H. Aroui, M.D. Fontana, Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions. J. Raman Spectrosc. 44(11), 1603–1608 (2013). https://doi.org/10.1002/jrs.4374
Y. Li, Y. Li, Q. Liu, Y. Liu, T. Wang et al., Revealing the dominance of the dissolution-deposition mechanism in aqueous Zn−MnO2 batteries. Angew. Chem. Int. Ed. 136(6), e202318444 (2024). https://doi.org/10.1002/ange.202318444
W.W. Rudolph, M.H. Brooker, P.R. Tremaine, Raman spectroscopy of aqueous ZnSO4 solutions under hydrothermal conditions: solubility, hydrolysis, and sulfate ion pairing. J. Solut. Chem. 28(5), 621–630 (1999). https://doi.org/10.1023/A:1022691117630
Z. Yang, Q. Zhang, W. Li, C. Xie, T. Wu et al., A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(3), e202215306 (2023). https://doi.org/10.1002/anie.202215306