Bright Sparks of Single-Atom and Nano-Islands in Catalysis: Breaking Activity-Stability Trade-Off
Corresponding Author: Bo Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 149
Abstract
Single-atom catalysts (SACs) are among the most cutting-edge catalysts in the multiphase catalysis track due to their unique geometrical and electronic properties, the highest atom utilization efficiency, and uniform active sites. SACs have been facing an unresolved problem in practical applications: the opposing contradiction of activity-stability. The successful development of single-atom nano-islands (SANIs) cleverly combines the ultra-high atom utilization efficiency of SACs with the confinement effect and structural stability of nano-island structures, realizing the “moving but not aggregation” of SACs, which fundamentally solves this inherent contradiction. Although research on the precise loading of single atoms on nano-islands continues to advance, existing reviews have not yet established a closed-loop cognitive framework encompassing “models-synthesis-high stability mechanisms-high activity essence-applications.” This work fills this critical gap by systematically integrating the basic conceptual models and cutting-edge synthesis strategies of SANIs, focusing on revealing the underlying mechanisms by which SANIs overcome the stability bottleneck of SACs, elucidating the role of nano-islands and their synergistic mechanisms to clarify the high activity essence, and establishing the structure–activity relationship between atomic confinement effects and macroscopic performance, ultimately achieving breakthrough validation across catalytic systems. This review aims to open new perspectives, drive a paradigm shift in understanding the multi-dimensional advantages of SANIs, and thereby spur breakthrough progress in this frontier field.
Highlights:
1 Single-atom nano-islands architecture enables “moving but not aggregation” of single atoms, fundamentally overcoming the inherent activity-stability trade-off in single-atom catalysts.
2 Systematic synthesis strategies and multi-scale stabilization mechanisms for single-atom nano-islands are detailed, including one-step and two-step approaches, alongside electronic structure modulation via nano-island interactions.
3 Single-atom nano-islands demonstrate exceptional performance across diverse catalytic applications, including batteries, clean energy production, chemical synthesis, and environmental catalysis, establishing robust structure-activity relationships.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
- Z. Wang, Z. Yi, L.W. Wong, X. Tang, H. Wang et al., Oxygen doping cooperated with coNFe dual-catalytic sites: synergistic mechanism for catalytic water purification within nanoconfined membrane. Adv. Mater. 36(30), 2404278 (2024). https://doi.org/10.1002/adma.202404278
- Y. Yang, H. Wang, X. Tan, K. Jiang, S. Zhai et al., Boosting electrochemical nitrogen reduction via axial coordination engineering on single-iron-atom catalysts. Adv. Funct. Mater. 34(39), 2403535 (2024). https://doi.org/10.1002/adfm.202403535
- H.-Y. Zhuo, X. Zhang, J.-X. Liang, Q. Yu, H. Xiao et al., Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 120(21), 12315–12341 (2020). https://doi.org/10.1021/acs.chemrev.0c00818
- B. Li, Z. Wang, L. Sun, J. Wu, L. Liu et al., Breaking through the oxygen hindrance effect in Fenton-like reactions to promote the generation of high-valent iron-oxo species within FeNxB/GCN single-atom catalysts. Appl. Catal. B Environ. Energy 372, 125280 (2025). https://doi.org/10.1016/j.apcatb.2025.125280
- H. Liu, S. Lei, H. Li, J. Wu, T. He et al., Refining single-atom catalytic kinetics for tumor homologous-targeted catalytic therapy. Nano-Micro Lett. 17(1), 253 (2025). https://doi.org/10.1007/s40820-025-01735-y
- G. Wu, S. Li, L. Luo, Y. Li, W. Zhang et al., Exploring single-atom nanozymes toward environmental pollutants: monitoring and control. Nano-Micro Lett. 17(1), 238 (2025). https://doi.org/10.1007/s40820-025-01734-z
- M.A. Deshmukh, A. Bakandritsos, R. Zbořil, Bimetallic single-atom catalysts for water splitting. Nano-Micro Lett. 17(1), 1 (2024). https://doi.org/10.1007/s40820-024-01505-2
- W. Quan, J. Shi, M. Zeng, W. Lv, X. Chen et al., Highly sensitive ammonia gas sensors at room temperature based on the catalytic mechanism of N, C coordinated Ni single-atom active center. Nano-Micro Lett. 16(1), 277 (2024). https://doi.org/10.1007/s40820-024-01484-4
- K. He, Z. Huang, C. Chen, C. Qiu, Y.L. Zhong et al., Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nano-Micro Lett. 16(1), 23 (2023). https://doi.org/10.1007/s40820-023-01231-1
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed FeN(4) by selective CN bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
- Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng et al., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119(3), 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
- M. Li, Z. Feng, X. Yuan, C. Guo, C. Qin et al., Innovative asymmetric CoSANTi3C2Tx catalysis: unleashing superoxide radicals for rapid self-coupling removal of phenolic pollutant. Angew. Chem. Int. Ed. 64(15), e202502307 (2025). https://doi.org/10.1002/anie.202502307
- H. Liu, M. Cheng, Y. Liu, J. Wang, G. Zhang et al., Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy Environ. Sci. 15(9), 3722–3749 (2022). https://doi.org/10.1039/d2ee01037b
- Y. Zhou, X. Tao, G. Chen, R. Lu, D. Wang et al., Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 11(1), 5892 (2020). https://doi.org/10.1038/s41467-020-19599-8
- J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33(19), 2002640 (2021). https://doi.org/10.1002/adma.202002640
- P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu et al., Electronic metal–support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53(13), 3418–3421 (2014). https://doi.org/10.1002/anie.201309248
- B. Li, C. Feng, T. Wang, M. Chen, P. Wu et al., Unveiling the overlooked role of structural heterogeneity within FeNC single atom catalysts for Fenton-like reactions: efficient decontamination of pharmaceuticals from wastewater and source-separated urine. Sep. Purif. Technol. 354, 128955 (2025). https://doi.org/10.1016/j.seppur.2024.128955
- S. Ji, Y. Wang, H. Liu, X. Lu, C. Guo et al., Regulating the electronic synergy of asymmetric atomic Fe sites with adjacent defects for boosting activity and durability toward oxygen reduction. Adv. Funct. Mater. 34(29), 2314621 (2024). https://doi.org/10.1002/adfm.202314621
- K. Jiang, H. Wang, Electrocatalysis over graphene-defect-coordinated transition-metal single-atom catalysts. Chem 4(2), 194–195 (2018). https://doi.org/10.1016/j.chempr.2018.01.013
- H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe–N–C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 35(14), 2210714 (2023). https://doi.org/10.1002/adma.202210714
- Z. Li, S. Ji, C. Xu, L. Leng, H. Liu et al., Engineering the electronic structure of single-atom iron sites with boosted oxygen bifunctional activity for zinc–air batteries. Adv. Mater. 35(9), 2209644 (2023). https://doi.org/10.1002/adma.202209644
- S. Ji, Y. Mou, H. Liu, X. Lu, Y. Zhang et al., Manipulating the electronic properties of an Fe single atom catalyst via secondary coordination sphere engineering to provide enhanced oxygen electrocatalytic activity in zinc-air batteries. Adv. Mater. 36(44), e2410121 (2024). https://doi.org/10.1002/adma.202410121
- Z. Li, H. Liu, A. Pang, S. Ji, X. Lu et al., Rutile TiO2 confined atomic palladium species boosts C−C coupling efficiency in sonogashira coupling reactions. Adv. Funct. Mater. e05655(2025). https://doi.org/10.1002/adfm.202505655
- W. Shao, Z. Xing, X. Xu, D. Ye, R. Yan et al., Bioinspired proton pump on ferroelectric HfO(2)-coupled Ir catalysts with bidirectional hydrogen spillover for pH-universal and superior hydrogen production. J. Am. Chem. Soc. 146(40), 27486–27498 (2024). https://doi.org/10.1021/jacs.4c08100
- Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
- M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15(1), 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
- J. Xu, B. Li, Z. Ma, X. Zhang, C. Zhu et al., Multifunctional film assembled from N-doped carbon nanofiber with coN(4)O single atoms for highly efficient electromagnetic energy attenuation. Nano-Micro Lett. 16(1), 240 (2024). https://doi.org/10.1007/s40820-024-01440-2
- R. Lang, W. Xi, J.-C. Liu, Y.-T. Cui, T. Li et al., Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10(1), 234 (2019). https://doi.org/10.1038/s41467-018-08136-3
- L. Gloag, S.V. Somerville, J.J. Gooding, R.D. Tilley, Co-catalytic metal–support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 9(3), 173–189 (2024). https://doi.org/10.1038/s41578-023-00633-2
- J. Yang, W. Li, D. Wang, Y. Li, Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32(49), e2003300 (2020). https://doi.org/10.1002/adma.202003300
- J. Liu, F.R. Lucci, M. Yang, S. Lee, M.D. Marcinkowski et al., Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138(20), 6396–6399 (2016). https://doi.org/10.1021/jacs.6b03339
- Q. Sun, N. Wang, T. Zhang, R. Bai, A. Mayoral et al., Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58(51), 18570–18576 (2019). https://doi.org/10.1002/anie.201912367
- X. Li, X.I. Pereira-Hernández, Y. Chen, J. Xu, J. Zhao et al., Functional CeO(x) nanoglues for robust atomically dispersed catalysts. Nature 611(7935), 284–288 (2022). https://doi.org/10.1038/s41586-022-05251-6
- Z.-Q. Zhang, P.-J. Duan, J.-X. Zheng, Y.-Q. Xie, C.-W. Bai et al., Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in fenton-like reactions. Nat. Commun. 16(1), 115 (2025). https://doi.org/10.1038/s41467-024-55622-y
- M. Chen, C. Guo, L. Qin, L. Wang, L. Qiao et al., Atomically precise Cu nanoclusters: recent advances, challenges, and perspectives in synthesis and catalytic applications. Nano-Micro Lett. 17(1), 83 (2024). https://doi.org/10.1007/s40820-024-01555-6
- Z. Li, H. Liu, Y.-H. Wang, S. Ji, Y. Zhang et al., Electronic structure modulation induced by the synergy of cobalt low-nuclearity clusters and mononuclear sites for efficient oxygen electrocatalysis. ACS Nano 19(1), 1600–1610 (2025). https://doi.org/10.1021/acsnano.4c15035
- S. Zhao, M. Liu, Z. Qu, Y. Yan, Z. Zhang et al., Cascade synthesis of FeN2Fe dual-atom catalysts for superior oxygen catalysis. Angew. Chem. Int. Ed. 63(40), e202408914 (2024). https://doi.org/10.1002/anie.202408914
- Y. Li, Z. Li, N. Wang, Y. Zha, K. Zheng et al., Strong activity-based volcano-type relationship for dry reforming of methane through modulating Ni-CeO2 interaction over Ni/CeO2SiO2 catalysts. Chem. Catal. 5(2), 101189 (2025). https://doi.org/10.1016/j.checat.2024.101189
- L. Wu, Y. Zhang, C. Li, C. Hua, C. Chu et al., Ir/CeO2 single-atom nanoislands as an atomic-nano system for highly efficient self-cascade glucose oxidase and peroxidase mimics. Adv. Funct. Mater. 35(35), 2504434 (2025). https://doi.org/10.1002/adfm.202504434
- Z. Li, B. Li, Q. Li, Single-atom nano-islands (SANIs): a robust atomic–nano system for versatile heterogeneous catalysis applications. Adv. Mater. 35(20), 2211103 (2023). https://doi.org/10.1002/adma.202211103
- P. Wang, Q. Shi, Y. Gao, Y. Wan, J. Zhang et al., Single-atom nano-islands: unlocking new horizons in catalytic activity and stability. Adv. Mater. 37(35), 2503361 (2025). https://doi.org/10.1002/adma.202503361
- J.T. Yates, S.D. Worley, T.M. Duncan, R.W. Vaughan, Catalytic decomposition of formaldehyde on single rhodium atoms. J. Chem. Phys. 70(3), 1225–1230 (1979). https://doi.org/10.1063/1.437604
- J. Fang, H. Wang, Q. Dang, H. Wang, X. Wang et al., Atomically dispersed iridium on Mo(2)C as an efficient and stable alkaline hydrogen oxidation reaction catalyst. Nat. Commun. 15(1), 4236 (2024). https://doi.org/10.1038/s41467-024-48672-9
- X. Chen, C. Chen, M.M. Amjad, D. Sun, B. Sun et al., Competitive adsorption: inhibiting the hydroxyl poisoning effect on lattice-confined Ru atoms in metal carbides nanoislands for boosting hydrogen production. Appl. Catal. B Environ. Energy 344, 123644 (2024). https://doi.org/10.1016/j.apcatb.2023.123644
- H. Wu, Q. Wang, Y. Zhao, Z. Gao, Y. Lin et al., Coupling cross-dimensional Ru1–Run sites in confined nanoislands to overcome the limitation of coadsorption and diffusion in tandem reactions. ACS Catal. 14(3), 1584–1594 (2024). https://doi.org/10.1021/acscatal.3c05112
- J. Sui, H. Liu, S. Hu, K. Sun, G. Wan et al., A general strategy to immobilize single-atom catalysts in metal–organic frameworks for enhanced photocatalysis. Adv. Mater. 34(6), 2109203 (2022). https://doi.org/10.1002/adma.202109203
- J. Zhang, G. Chen, Q. Liu, C. Fan, D. Sun et al., Competitive adsorption: reducing the poisoning effect of adsorbed hydroxyl on Ru single-atom site with SnO2 for efficient hydrogen evolution. Angew. Chem. Int. Ed. 61(39), e202209486 (2022). https://doi.org/10.1002/anie.202209486
- M. Li, J. Xu, D. Liu, J. Yang, J. Lin et al., Atomic-level precision engineering: Single-atom catalysts with controlled loading density for efficient hydrogen evolution reaction. Appl. Surf. Sci. 667, 160384 (2024). https://doi.org/10.1016/j.apsusc.2024.160384
- W. Feng, Y. Hou, J. Yan, G. Li, H. Zhang et al., Preparation of highly dispersed Pt catalyst by CeOx ‘islands’ modification of dendritic mesoporous SiO2: CO as a probe molecule. Catal. Today 437, 114721 (2024). https://doi.org/10.1016/j.cattod.2024.114721
- C. Yue, C. Feng, G. Sun, N. Liu, H. Hao et al., Hierarchically stabilized Pt single-atom catalysts induced by an atomic substitution strategy for an efficient hydrogen evolution reaction. Energy Environ. Sci. 17(14), 5227–5240 (2024). https://doi.org/10.1039/d3ee04457b
- M. Ma, W. Xia, X. Guo, W. Liu, D. Cao et al., Constructing Ni3Se2-nanoisland-confined Pt1Mo1 dual-atom catalyst for efficient hydrogen evolution in basic media. Small Struct. 5(1), 2300284 (2024). https://doi.org/10.1002/sstr.202300284
- C. Ye, M. Zheng, Z. Li, Q. Fan, H. Ma et al., Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61(51), e202213366 (2022). https://doi.org/10.1002/anie.202213366
- L. Hui, X. Zhang, Y. Xue, X. Chen, Y. Fang et al., Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 144(4), 1921–1928 (2022). https://doi.org/10.1021/jacs.1c12310
- Y. Liang, Q. Tang, L. Liu, D. Wang, J. Dong, Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Appl. Catal. B Environ. Energy 333, 122783 (2023). https://doi.org/10.1016/j.apcatb.2023.122783
- P. Wang, H. Liao, Y. Chen, X. Tao, Y. Gan et al., Enhanced PtIn catalyst via Ce-assisted confinement effect in propane dehydrogenation. ACS Catal. 14(11), 8116–8129 (2024). https://doi.org/10.1021/acscatal.4c02517
- L. Liu, J. Liu, G. Li, X. Shi, J. Yin et al., Exceptional CO2 hydrogenation to ethanol via precise single-atom Ir deposition on functional P islands. Angew. Chem. Int. Ed. 64(17), e202422744 (2025). https://doi.org/10.1002/anie.202422744
- Y. Yan, J. Du, C. Li, J. Yang, Y. Xu et al., H-buffer effects boosting H-spillover for efficient hydrogen evolution reaction. Energy Environ. Sci. 17(16), 6024–6033 (2024). https://doi.org/10.1039/d4ee01858c
- X. Liu, Y. Zhou, J. Lin, X. Xiao, Z. Wang et al., Directional growth and density modulation of single-atom platinum for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 63(34), e202406650 (2024). https://doi.org/10.1002/anie.202406650
- N. Zhang, Y. Chen, X. Li, C.-W. Pao, J. Zhao et al., Contrasting atomically dispersed metal catalysts supported on CeOx nanoislands with various ligand environments including chloride. Angew. Chem. Int. Ed. 64(32), e202507545 (2025). https://doi.org/10.1002/anie.202507545
- N. Zhang, J. Zhao, J. Wei, H. Li, W. Wu et al., Crystallinity of cerium oxide dictates reactivity of platinum catalysts. Nano Lett. 25(10), 4046–4053 (2025). https://doi.org/10.1021/acs.nanolett.5c00189
- Y. Chen, J. Zhao, X. Zhao, D. Wu, N. Zhang et al., Stabilizing supported atom-precise low-nuclearity platinum cluster catalysts by nanoscale confinement. Nat. Chem. Eng. 2(1), 38–49 (2025). https://doi.org/10.1038/s44286-024-00162-x
- J. Yang, B. Chen, X. Liu, W. Liu, Z. Li et al., Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem. Int. Ed. 57(30), 9495–9500 (2018). https://doi.org/10.1002/anie.201804854
- Y. Zhang, L. Jiao, W. Yang, C. Xie, H.-L. Jiang, Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60(14), 7607–7611 (2021). https://doi.org/10.1002/anie.202016219
- J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang et al., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135(41), 15314–15317 (2013). https://doi.org/10.1021/ja408574m
- Y. Liao, W. Chen, Y. Ding, L. Xie, Q. Yang et al., Boosting alcohol oxidation electrocatalysis with multifactorial engineered Pd(1)/Pt single-atom alloy-BiO(x) adatoms surface. Nano-Micro Lett. 17(1), 172 (2025). https://doi.org/10.1007/s40820-025-01678-4
- Z.-K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao et al., Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 12, 1833 (2021). https://doi.org/10.1038/s41467-021-22048-9
- H. Xiang, H. Yan, J. Liu, R. Cheng, C.-Q. Xu et al., Identifying the real chemistry of the synthesis and reversible transformation of AuCd bimetallic clusters. J. Am. Chem. Soc. 144(31), 14248–14257 (2022). https://doi.org/10.1021/jacs.2c05053
- Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan et al., Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nat. Catal. 7(6), 678–688 (2024). https://doi.org/10.1038/s41929-024-01156-x
- X. Li, Chemical tailoring and stitching. Nat. Rev. Chem. 7(6), 381–382 (2023). https://doi.org/10.1038/s41570-023-00504-y
- S. Xiang, P. Huang, J. Li, Y. Liu, N. Marcella et al., Solving the structure of “single-atom” catalysts using machine learning–assisted XANES analysis. Phys. Chem. Chem. Phys. 24(8), 5116–5124 (2022). https://doi.org/10.1039/d1cp05513e
- T. Zhou, X. Li, J. Zhao, L. Luo, Y. Wang et al., Ultrafine metal nanops isolated on oxide nano-islands as exceptional sintering-resistant catalysts. Nat. Mater. 24(6), 891–899 (2025). https://doi.org/10.1038/s41563-025-02134-9
- X. Wang, Y. Wang, H. Xu, D. Cheng, Revisits the selectivity toward C2+ products for CO2 electroreduction over subnano-copper clusters based on structural descriptors. ACS Catal. 15(9), 7390–7402 (2025). https://doi.org/10.1021/acscatal.4c07759
- D. Karapinar, N.T. Huan, N.R. Sahraie, J. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58(42), 15098–15103 (2019). https://doi.org/10.1002/anie.201907994
- H. Liu, L. Jiang, J. Khan, X. Wang, J. Xiao et al., Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. Int. Ed. 62(3), e202214988 (2023). https://doi.org/10.1002/anie.202214988
- B.-B. Xu, X.-B. Fu, X.-M. You, E. Zhao, F.-F. Li et al., Synergistic promotion of single-atom co surrounding a PtCo alloy based on a gC3N4 nanosheet for overall water splitting. ACS Catal. 12(12), 6958–6967 (2022). https://doi.org/10.1021/acscatal.2c00751
- S. Li, X. Lu, Y. Li, H. Wang, Y. Sun et al., Dynamic lock-and-release mechanism enables reduced ΔG at low temperatures for high-performance polyanionic cathode in sodium-ion batteries. Adv. Mater. 36(49), e2413013 (2024). https://doi.org/10.1002/adma.202413013
- B.M. Tackett, W. Sheng, J.G. Chen, Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 1(2), 253–263 (2017). https://doi.org/10.1016/j.joule.2017.07.002
- S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic et al., Self-assembly of noble metal monolayers on transition metal carbide nanop catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
- H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15(1), 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
- S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16(1), 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
- L. Zhang, N. Jin, Y. Yang, X.-Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15(1), 228 (2023). https://doi.org/10.1007/s40820-023-01196-1
- X. Jia, P. Qiao, X. Wang, M. Yan, Y. Chen et al., Building feedback-regulation system through atomic design for highly active SO2 sensing. Nano-Micro Lett. 16(1), 136 (2024). https://doi.org/10.1007/s40820-024-01350-3
- X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- X.I. Pereira-Hernández, A. DeLaRiva, V. Muravev, D. Kunwar, H. Xiong et al., Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10(1), 1358 (2019). https://doi.org/10.1038/s41467-019-09308-5
- G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16(1), 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
- Y. Huang, C. Zhang, X. Wang, Y. Wu, J. Lv et al., Synergistic single-atom and clustered cobalt sites on N/S Co-doped defect nano-carbon for efficient H2O2 electrosynthesis. Nano-Micro Lett. 17(1), 142 (2025). https://doi.org/10.1007/s40820-025-01657-9
- J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
- J. Mahmood, F. Li, S.-M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
- Q. Sun, N. Wang, Q. Fan, L. Zeng, A. Mayoral et al., Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. 59(44), 19450–19459 (2020). https://doi.org/10.1002/anie.202003349
- S. Chen, Z.-J. Zhao, R. Mu, X. Chang, J. Luo et al., Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7(2), 387–405 (2021). https://doi.org/10.1016/j.chempr.2020.10.008
- N. Denisov, S. Qin, J. Will, B.N. Vasiljevic, N.V. Skorodumova et al., Light-induced agglomeration of single-atom platinum in photocatalysis. Adv. Mater. 35(5), e2206569 (2023). https://doi.org/10.1002/adma.202206569
- H. Xiong, A.K. Datye, Y. Wang, Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 33(50), 2004319 (2021). https://doi.org/10.1002/adma.202004319
- F. Chen, L.-L. Liu, J.-H. Wu, X.-H. Rui, J.-J. Chen et al., Single-atom iron anchored tubular g-C3N4 catalysts for ultrafast Fenton-like reaction: roles of high-valency iron-oxo species and organic radicals. Adv. Mater. 34(31), 2202891 (2022). https://doi.org/10.1002/adma.202202891
- Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50(8), 5281–5322 (2021). https://doi.org/10.1039/d0cs01032d
- G. Zhang, X. Li, K. Chen, Y. Guo, D. Ma et al., Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem. Int. Ed. 62(13), e202300054 (2023). https://doi.org/10.1002/anie.202300054
- H.-L. Zhu, J.-R. Huang, M.-D. Zhang, C. Yu, P.-Q. Liao et al., Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. J. Am. Chem. Soc. 146(1), 1144–1152 (2024). https://doi.org/10.1021/jacs.3c12423
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
- X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium-oxygen batteries. Nano-Micro Lett. 16(1), 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
- T. Zhao, M. Li, D. Xiao, X. Yang, Q. Li et al., Pseudo-Pt monolayer for robust hydrogen oxidation. J. Am. Chem. Soc. 145(7), 4088–4097 (2023). https://doi.org/10.1021/jacs.2c11907
- D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic et al., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5(4), 300–306 (2013). https://doi.org/10.1038/nchem.1574
- X. Yang, Y. Wang, X. Wang, B. Mei, E. Luo et al., CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanops. Angew. Chem. Int. Ed. 60(50), 26177–26183 (2021). https://doi.org/10.1002/anie.202110900
- X. Wang, L. Zhao, X. Li, Y. Liu, Y. Wang et al., Atomic-precision Pt(6) nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 13(1), 1596 (2022). https://doi.org/10.1038/s41467-022-29276-7
- X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang et al., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366(6467), 850–856 (2019). https://doi.org/10.1126/science.aaw7493
- B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 134(34), 13934–13937 (2012). https://doi.org/10.1021/ja3051662
- Z. Zhang, J. Liu, J. Wang, Q. Wang, Y. Wang et al., Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 12, 5235 (2021). https://doi.org/10.1038/s41467-021-25562-y
- P.N. Duchesne, Z.Y. Li, C.P. Deming, V. Fung, X. Zhao et al., Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17(11), 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5
- K. Zhang, Y. Yan, Z. Wang, G. Ma, D. Jia et al., Integration of electrical properties and polarization loss modulation on atomic Fe-N-RGO for boosting electromagnetic wave absorption. Nano-Micro Lett. 17(1), 46 (2024). https://doi.org/10.1007/s40820-024-01518-x
- S. Chen, F. Huang, L. Mao, Z. Zhang, H. Lin et al., High Fe-loading single-atom catalyst boosts ROS production by density effect for efficient antibacterial therapy. Nano-Micro Lett. 17(1), 32 (2024). https://doi.org/10.1007/s40820-024-01522-1
- J. Zhao, C. Li, Q. Yu, Y. Zhu, X. Liu et al., Interface engineering of Mn(3)O(4)/Co3O4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene. J. Hazard. Mater. 452, 131249 (2023). https://doi.org/10.1016/j.jhazmat.2023.131249
- M.A. Hoque, J.B. Gerken, S.S. Stahl, Synthetic dioxygenase reactivity by pairing electrochemical oxygen reduction and water oxidation. Science 383(6679), 173–178 (2024). https://doi.org/10.1126/science.adk5097
- J. Yang, X. Zeng, M. Tebyetekerwa, Z. Wang, C. Bie et al., Engineering 2D photocatalysts for solar hydrogen peroxide production. Adv. Energy Mater. 14(23), 2400740 (2024). https://doi.org/10.1002/aenm.202400740
- X. Lan, T. Wang, Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catal. 10(4), 2764–2790 (2020). https://doi.org/10.1021/acscatal.9b04331
- L. Zhong, X. Liao, H. Cui, H. Luo, Y. Lv et al., Highly efficient hydrogenation of α, β-unsaturated aldehydes to unsaturated alcohols over defective MOF-808 with constructed frustrated lewis pairs. ACS Catal. 14(2), 857–873 (2024). https://doi.org/10.1021/acscatal.3c03624
- X. Chen, S. Song, H. Li, G. Gözaydın, N. Yan, Expanding the boundary of biorefinery: organonitrogen chemicals from biomass. Acc. Chem. Res. 54(7), 1711–1722 (2021). https://doi.org/10.1021/acs.accounts.0c00842
- T. Irrgang, R. Kempe, Transition-metal-catalyzed reductive amination employing hydrogen. Chem. Rev. 120(17), 9583–9674 (2020). https://doi.org/10.1021/acs.chemrev.0c00248
- H. Qi, J. Yang, F. Liu, L. Zhang, J. Yang et al., Highly selective and robust single-atom catalyst Ru(1)/NC for reductive amination of aldehydes/ketones. Nat. Commun. 12(1), 3295 (2021). https://doi.org/10.1038/s41467-021-23429-w
- H. Qi, F. Liu, L. Zhang, L. Li, Y. Su et al., Modulating trans-imination and hydrogenation towards the highly selective production of primary diamines from dialdehydes. Green Chem. 22(20), 6897–6901 (2020). https://doi.org/10.1039/d0gc02280b
- Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin et al., Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11(1), 1215 (2020). https://doi.org/10.1038/s41467-020-14917-6
- Y. Shi, W.-M. Huang, J. Li, Y. Zhou, Z.-Q. Li et al., Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat. Commun. 11(1), 4558 (2020). https://doi.org/10.1038/s41467-020-18430-8
- Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
- S. Hu, W.-X. Li, Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 374(6573), 1360–1365 (2021). https://doi.org/10.1126/science.abi9828
References
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
Z. Wang, Z. Yi, L.W. Wong, X. Tang, H. Wang et al., Oxygen doping cooperated with coNFe dual-catalytic sites: synergistic mechanism for catalytic water purification within nanoconfined membrane. Adv. Mater. 36(30), 2404278 (2024). https://doi.org/10.1002/adma.202404278
Y. Yang, H. Wang, X. Tan, K. Jiang, S. Zhai et al., Boosting electrochemical nitrogen reduction via axial coordination engineering on single-iron-atom catalysts. Adv. Funct. Mater. 34(39), 2403535 (2024). https://doi.org/10.1002/adfm.202403535
H.-Y. Zhuo, X. Zhang, J.-X. Liang, Q. Yu, H. Xiao et al., Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 120(21), 12315–12341 (2020). https://doi.org/10.1021/acs.chemrev.0c00818
B. Li, Z. Wang, L. Sun, J. Wu, L. Liu et al., Breaking through the oxygen hindrance effect in Fenton-like reactions to promote the generation of high-valent iron-oxo species within FeNxB/GCN single-atom catalysts. Appl. Catal. B Environ. Energy 372, 125280 (2025). https://doi.org/10.1016/j.apcatb.2025.125280
H. Liu, S. Lei, H. Li, J. Wu, T. He et al., Refining single-atom catalytic kinetics for tumor homologous-targeted catalytic therapy. Nano-Micro Lett. 17(1), 253 (2025). https://doi.org/10.1007/s40820-025-01735-y
G. Wu, S. Li, L. Luo, Y. Li, W. Zhang et al., Exploring single-atom nanozymes toward environmental pollutants: monitoring and control. Nano-Micro Lett. 17(1), 238 (2025). https://doi.org/10.1007/s40820-025-01734-z
M.A. Deshmukh, A. Bakandritsos, R. Zbořil, Bimetallic single-atom catalysts for water splitting. Nano-Micro Lett. 17(1), 1 (2024). https://doi.org/10.1007/s40820-024-01505-2
W. Quan, J. Shi, M. Zeng, W. Lv, X. Chen et al., Highly sensitive ammonia gas sensors at room temperature based on the catalytic mechanism of N, C coordinated Ni single-atom active center. Nano-Micro Lett. 16(1), 277 (2024). https://doi.org/10.1007/s40820-024-01484-4
K. He, Z. Huang, C. Chen, C. Qiu, Y.L. Zhong et al., Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nano-Micro Lett. 16(1), 23 (2023). https://doi.org/10.1007/s40820-023-01231-1
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed FeN(4) by selective CN bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng et al., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 119(3), 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
M. Li, Z. Feng, X. Yuan, C. Guo, C. Qin et al., Innovative asymmetric CoSANTi3C2Tx catalysis: unleashing superoxide radicals for rapid self-coupling removal of phenolic pollutant. Angew. Chem. Int. Ed. 64(15), e202502307 (2025). https://doi.org/10.1002/anie.202502307
H. Liu, M. Cheng, Y. Liu, J. Wang, G. Zhang et al., Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy Environ. Sci. 15(9), 3722–3749 (2022). https://doi.org/10.1039/d2ee01037b
Y. Zhou, X. Tao, G. Chen, R. Lu, D. Wang et al., Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 11(1), 5892 (2020). https://doi.org/10.1038/s41467-020-19599-8
J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33(19), 2002640 (2021). https://doi.org/10.1002/adma.202002640
P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu et al., Electronic metal–support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53(13), 3418–3421 (2014). https://doi.org/10.1002/anie.201309248
B. Li, C. Feng, T. Wang, M. Chen, P. Wu et al., Unveiling the overlooked role of structural heterogeneity within FeNC single atom catalysts for Fenton-like reactions: efficient decontamination of pharmaceuticals from wastewater and source-separated urine. Sep. Purif. Technol. 354, 128955 (2025). https://doi.org/10.1016/j.seppur.2024.128955
S. Ji, Y. Wang, H. Liu, X. Lu, C. Guo et al., Regulating the electronic synergy of asymmetric atomic Fe sites with adjacent defects for boosting activity and durability toward oxygen reduction. Adv. Funct. Mater. 34(29), 2314621 (2024). https://doi.org/10.1002/adfm.202314621
K. Jiang, H. Wang, Electrocatalysis over graphene-defect-coordinated transition-metal single-atom catalysts. Chem 4(2), 194–195 (2018). https://doi.org/10.1016/j.chempr.2018.01.013
H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe–N–C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 35(14), 2210714 (2023). https://doi.org/10.1002/adma.202210714
Z. Li, S. Ji, C. Xu, L. Leng, H. Liu et al., Engineering the electronic structure of single-atom iron sites with boosted oxygen bifunctional activity for zinc–air batteries. Adv. Mater. 35(9), 2209644 (2023). https://doi.org/10.1002/adma.202209644
S. Ji, Y. Mou, H. Liu, X. Lu, Y. Zhang et al., Manipulating the electronic properties of an Fe single atom catalyst via secondary coordination sphere engineering to provide enhanced oxygen electrocatalytic activity in zinc-air batteries. Adv. Mater. 36(44), e2410121 (2024). https://doi.org/10.1002/adma.202410121
Z. Li, H. Liu, A. Pang, S. Ji, X. Lu et al., Rutile TiO2 confined atomic palladium species boosts C−C coupling efficiency in sonogashira coupling reactions. Adv. Funct. Mater. e05655(2025). https://doi.org/10.1002/adfm.202505655
W. Shao, Z. Xing, X. Xu, D. Ye, R. Yan et al., Bioinspired proton pump on ferroelectric HfO(2)-coupled Ir catalysts with bidirectional hydrogen spillover for pH-universal and superior hydrogen production. J. Am. Chem. Soc. 146(40), 27486–27498 (2024). https://doi.org/10.1021/jacs.4c08100
Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15(1), 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
J. Xu, B. Li, Z. Ma, X. Zhang, C. Zhu et al., Multifunctional film assembled from N-doped carbon nanofiber with coN(4)O single atoms for highly efficient electromagnetic energy attenuation. Nano-Micro Lett. 16(1), 240 (2024). https://doi.org/10.1007/s40820-024-01440-2
R. Lang, W. Xi, J.-C. Liu, Y.-T. Cui, T. Li et al., Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10(1), 234 (2019). https://doi.org/10.1038/s41467-018-08136-3
L. Gloag, S.V. Somerville, J.J. Gooding, R.D. Tilley, Co-catalytic metal–support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 9(3), 173–189 (2024). https://doi.org/10.1038/s41578-023-00633-2
J. Yang, W. Li, D. Wang, Y. Li, Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32(49), e2003300 (2020). https://doi.org/10.1002/adma.202003300
J. Liu, F.R. Lucci, M. Yang, S. Lee, M.D. Marcinkowski et al., Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138(20), 6396–6399 (2016). https://doi.org/10.1021/jacs.6b03339
Q. Sun, N. Wang, T. Zhang, R. Bai, A. Mayoral et al., Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58(51), 18570–18576 (2019). https://doi.org/10.1002/anie.201912367
X. Li, X.I. Pereira-Hernández, Y. Chen, J. Xu, J. Zhao et al., Functional CeO(x) nanoglues for robust atomically dispersed catalysts. Nature 611(7935), 284–288 (2022). https://doi.org/10.1038/s41586-022-05251-6
Z.-Q. Zhang, P.-J. Duan, J.-X. Zheng, Y.-Q. Xie, C.-W. Bai et al., Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in fenton-like reactions. Nat. Commun. 16(1), 115 (2025). https://doi.org/10.1038/s41467-024-55622-y
M. Chen, C. Guo, L. Qin, L. Wang, L. Qiao et al., Atomically precise Cu nanoclusters: recent advances, challenges, and perspectives in synthesis and catalytic applications. Nano-Micro Lett. 17(1), 83 (2024). https://doi.org/10.1007/s40820-024-01555-6
Z. Li, H. Liu, Y.-H. Wang, S. Ji, Y. Zhang et al., Electronic structure modulation induced by the synergy of cobalt low-nuclearity clusters and mononuclear sites for efficient oxygen electrocatalysis. ACS Nano 19(1), 1600–1610 (2025). https://doi.org/10.1021/acsnano.4c15035
S. Zhao, M. Liu, Z. Qu, Y. Yan, Z. Zhang et al., Cascade synthesis of FeN2Fe dual-atom catalysts for superior oxygen catalysis. Angew. Chem. Int. Ed. 63(40), e202408914 (2024). https://doi.org/10.1002/anie.202408914
Y. Li, Z. Li, N. Wang, Y. Zha, K. Zheng et al., Strong activity-based volcano-type relationship for dry reforming of methane through modulating Ni-CeO2 interaction over Ni/CeO2SiO2 catalysts. Chem. Catal. 5(2), 101189 (2025). https://doi.org/10.1016/j.checat.2024.101189
L. Wu, Y. Zhang, C. Li, C. Hua, C. Chu et al., Ir/CeO2 single-atom nanoislands as an atomic-nano system for highly efficient self-cascade glucose oxidase and peroxidase mimics. Adv. Funct. Mater. 35(35), 2504434 (2025). https://doi.org/10.1002/adfm.202504434
Z. Li, B. Li, Q. Li, Single-atom nano-islands (SANIs): a robust atomic–nano system for versatile heterogeneous catalysis applications. Adv. Mater. 35(20), 2211103 (2023). https://doi.org/10.1002/adma.202211103
P. Wang, Q. Shi, Y. Gao, Y. Wan, J. Zhang et al., Single-atom nano-islands: unlocking new horizons in catalytic activity and stability. Adv. Mater. 37(35), 2503361 (2025). https://doi.org/10.1002/adma.202503361
J.T. Yates, S.D. Worley, T.M. Duncan, R.W. Vaughan, Catalytic decomposition of formaldehyde on single rhodium atoms. J. Chem. Phys. 70(3), 1225–1230 (1979). https://doi.org/10.1063/1.437604
J. Fang, H. Wang, Q. Dang, H. Wang, X. Wang et al., Atomically dispersed iridium on Mo(2)C as an efficient and stable alkaline hydrogen oxidation reaction catalyst. Nat. Commun. 15(1), 4236 (2024). https://doi.org/10.1038/s41467-024-48672-9
X. Chen, C. Chen, M.M. Amjad, D. Sun, B. Sun et al., Competitive adsorption: inhibiting the hydroxyl poisoning effect on lattice-confined Ru atoms in metal carbides nanoislands for boosting hydrogen production. Appl. Catal. B Environ. Energy 344, 123644 (2024). https://doi.org/10.1016/j.apcatb.2023.123644
H. Wu, Q. Wang, Y. Zhao, Z. Gao, Y. Lin et al., Coupling cross-dimensional Ru1–Run sites in confined nanoislands to overcome the limitation of coadsorption and diffusion in tandem reactions. ACS Catal. 14(3), 1584–1594 (2024). https://doi.org/10.1021/acscatal.3c05112
J. Sui, H. Liu, S. Hu, K. Sun, G. Wan et al., A general strategy to immobilize single-atom catalysts in metal–organic frameworks for enhanced photocatalysis. Adv. Mater. 34(6), 2109203 (2022). https://doi.org/10.1002/adma.202109203
J. Zhang, G. Chen, Q. Liu, C. Fan, D. Sun et al., Competitive adsorption: reducing the poisoning effect of adsorbed hydroxyl on Ru single-atom site with SnO2 for efficient hydrogen evolution. Angew. Chem. Int. Ed. 61(39), e202209486 (2022). https://doi.org/10.1002/anie.202209486
M. Li, J. Xu, D. Liu, J. Yang, J. Lin et al., Atomic-level precision engineering: Single-atom catalysts with controlled loading density for efficient hydrogen evolution reaction. Appl. Surf. Sci. 667, 160384 (2024). https://doi.org/10.1016/j.apsusc.2024.160384
W. Feng, Y. Hou, J. Yan, G. Li, H. Zhang et al., Preparation of highly dispersed Pt catalyst by CeOx ‘islands’ modification of dendritic mesoporous SiO2: CO as a probe molecule. Catal. Today 437, 114721 (2024). https://doi.org/10.1016/j.cattod.2024.114721
C. Yue, C. Feng, G. Sun, N. Liu, H. Hao et al., Hierarchically stabilized Pt single-atom catalysts induced by an atomic substitution strategy for an efficient hydrogen evolution reaction. Energy Environ. Sci. 17(14), 5227–5240 (2024). https://doi.org/10.1039/d3ee04457b
M. Ma, W. Xia, X. Guo, W. Liu, D. Cao et al., Constructing Ni3Se2-nanoisland-confined Pt1Mo1 dual-atom catalyst for efficient hydrogen evolution in basic media. Small Struct. 5(1), 2300284 (2024). https://doi.org/10.1002/sstr.202300284
C. Ye, M. Zheng, Z. Li, Q. Fan, H. Ma et al., Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61(51), e202213366 (2022). https://doi.org/10.1002/anie.202213366
L. Hui, X. Zhang, Y. Xue, X. Chen, Y. Fang et al., Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 144(4), 1921–1928 (2022). https://doi.org/10.1021/jacs.1c12310
Y. Liang, Q. Tang, L. Liu, D. Wang, J. Dong, Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Appl. Catal. B Environ. Energy 333, 122783 (2023). https://doi.org/10.1016/j.apcatb.2023.122783
P. Wang, H. Liao, Y. Chen, X. Tao, Y. Gan et al., Enhanced PtIn catalyst via Ce-assisted confinement effect in propane dehydrogenation. ACS Catal. 14(11), 8116–8129 (2024). https://doi.org/10.1021/acscatal.4c02517
L. Liu, J. Liu, G. Li, X. Shi, J. Yin et al., Exceptional CO2 hydrogenation to ethanol via precise single-atom Ir deposition on functional P islands. Angew. Chem. Int. Ed. 64(17), e202422744 (2025). https://doi.org/10.1002/anie.202422744
Y. Yan, J. Du, C. Li, J. Yang, Y. Xu et al., H-buffer effects boosting H-spillover for efficient hydrogen evolution reaction. Energy Environ. Sci. 17(16), 6024–6033 (2024). https://doi.org/10.1039/d4ee01858c
X. Liu, Y. Zhou, J. Lin, X. Xiao, Z. Wang et al., Directional growth and density modulation of single-atom platinum for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 63(34), e202406650 (2024). https://doi.org/10.1002/anie.202406650
N. Zhang, Y. Chen, X. Li, C.-W. Pao, J. Zhao et al., Contrasting atomically dispersed metal catalysts supported on CeOx nanoislands with various ligand environments including chloride. Angew. Chem. Int. Ed. 64(32), e202507545 (2025). https://doi.org/10.1002/anie.202507545
N. Zhang, J. Zhao, J. Wei, H. Li, W. Wu et al., Crystallinity of cerium oxide dictates reactivity of platinum catalysts. Nano Lett. 25(10), 4046–4053 (2025). https://doi.org/10.1021/acs.nanolett.5c00189
Y. Chen, J. Zhao, X. Zhao, D. Wu, N. Zhang et al., Stabilizing supported atom-precise low-nuclearity platinum cluster catalysts by nanoscale confinement. Nat. Chem. Eng. 2(1), 38–49 (2025). https://doi.org/10.1038/s44286-024-00162-x
J. Yang, B. Chen, X. Liu, W. Liu, Z. Li et al., Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem. Int. Ed. 57(30), 9495–9500 (2018). https://doi.org/10.1002/anie.201804854
Y. Zhang, L. Jiao, W. Yang, C. Xie, H.-L. Jiang, Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60(14), 7607–7611 (2021). https://doi.org/10.1002/anie.202016219
J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang et al., Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135(41), 15314–15317 (2013). https://doi.org/10.1021/ja408574m
Y. Liao, W. Chen, Y. Ding, L. Xie, Q. Yang et al., Boosting alcohol oxidation electrocatalysis with multifactorial engineered Pd(1)/Pt single-atom alloy-BiO(x) adatoms surface. Nano-Micro Lett. 17(1), 172 (2025). https://doi.org/10.1007/s40820-025-01678-4
Z.-K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao et al., Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 12, 1833 (2021). https://doi.org/10.1038/s41467-021-22048-9
H. Xiang, H. Yan, J. Liu, R. Cheng, C.-Q. Xu et al., Identifying the real chemistry of the synthesis and reversible transformation of AuCd bimetallic clusters. J. Am. Chem. Soc. 144(31), 14248–14257 (2022). https://doi.org/10.1021/jacs.2c05053
Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan et al., Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nat. Catal. 7(6), 678–688 (2024). https://doi.org/10.1038/s41929-024-01156-x
X. Li, Chemical tailoring and stitching. Nat. Rev. Chem. 7(6), 381–382 (2023). https://doi.org/10.1038/s41570-023-00504-y
S. Xiang, P. Huang, J. Li, Y. Liu, N. Marcella et al., Solving the structure of “single-atom” catalysts using machine learning–assisted XANES analysis. Phys. Chem. Chem. Phys. 24(8), 5116–5124 (2022). https://doi.org/10.1039/d1cp05513e
T. Zhou, X. Li, J. Zhao, L. Luo, Y. Wang et al., Ultrafine metal nanops isolated on oxide nano-islands as exceptional sintering-resistant catalysts. Nat. Mater. 24(6), 891–899 (2025). https://doi.org/10.1038/s41563-025-02134-9
X. Wang, Y. Wang, H. Xu, D. Cheng, Revisits the selectivity toward C2+ products for CO2 electroreduction over subnano-copper clusters based on structural descriptors. ACS Catal. 15(9), 7390–7402 (2025). https://doi.org/10.1021/acscatal.4c07759
D. Karapinar, N.T. Huan, N.R. Sahraie, J. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58(42), 15098–15103 (2019). https://doi.org/10.1002/anie.201907994
H. Liu, L. Jiang, J. Khan, X. Wang, J. Xiao et al., Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. Int. Ed. 62(3), e202214988 (2023). https://doi.org/10.1002/anie.202214988
B.-B. Xu, X.-B. Fu, X.-M. You, E. Zhao, F.-F. Li et al., Synergistic promotion of single-atom co surrounding a PtCo alloy based on a gC3N4 nanosheet for overall water splitting. ACS Catal. 12(12), 6958–6967 (2022). https://doi.org/10.1021/acscatal.2c00751
S. Li, X. Lu, Y. Li, H. Wang, Y. Sun et al., Dynamic lock-and-release mechanism enables reduced ΔG at low temperatures for high-performance polyanionic cathode in sodium-ion batteries. Adv. Mater. 36(49), e2413013 (2024). https://doi.org/10.1002/adma.202413013
B.M. Tackett, W. Sheng, J.G. Chen, Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 1(2), 253–263 (2017). https://doi.org/10.1016/j.joule.2017.07.002
S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic et al., Self-assembly of noble metal monolayers on transition metal carbide nanop catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15(1), 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16(1), 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
L. Zhang, N. Jin, Y. Yang, X.-Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15(1), 228 (2023). https://doi.org/10.1007/s40820-023-01196-1
X. Jia, P. Qiao, X. Wang, M. Yan, Y. Chen et al., Building feedback-regulation system through atomic design for highly active SO2 sensing. Nano-Micro Lett. 16(1), 136 (2024). https://doi.org/10.1007/s40820-024-01350-3
X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
X.I. Pereira-Hernández, A. DeLaRiva, V. Muravev, D. Kunwar, H. Xiong et al., Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10(1), 1358 (2019). https://doi.org/10.1038/s41467-019-09308-5
G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16(1), 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
Y. Huang, C. Zhang, X. Wang, Y. Wu, J. Lv et al., Synergistic single-atom and clustered cobalt sites on N/S Co-doped defect nano-carbon for efficient H2O2 electrosynthesis. Nano-Micro Lett. 17(1), 142 (2025). https://doi.org/10.1007/s40820-025-01657-9
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
J. Mahmood, F. Li, S.-M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
Q. Sun, N. Wang, Q. Fan, L. Zeng, A. Mayoral et al., Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. 59(44), 19450–19459 (2020). https://doi.org/10.1002/anie.202003349
S. Chen, Z.-J. Zhao, R. Mu, X. Chang, J. Luo et al., Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7(2), 387–405 (2021). https://doi.org/10.1016/j.chempr.2020.10.008
N. Denisov, S. Qin, J. Will, B.N. Vasiljevic, N.V. Skorodumova et al., Light-induced agglomeration of single-atom platinum in photocatalysis. Adv. Mater. 35(5), e2206569 (2023). https://doi.org/10.1002/adma.202206569
H. Xiong, A.K. Datye, Y. Wang, Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 33(50), 2004319 (2021). https://doi.org/10.1002/adma.202004319
F. Chen, L.-L. Liu, J.-H. Wu, X.-H. Rui, J.-J. Chen et al., Single-atom iron anchored tubular g-C3N4 catalysts for ultrafast Fenton-like reaction: roles of high-valency iron-oxo species and organic radicals. Adv. Mater. 34(31), 2202891 (2022). https://doi.org/10.1002/adma.202202891
Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50(8), 5281–5322 (2021). https://doi.org/10.1039/d0cs01032d
G. Zhang, X. Li, K. Chen, Y. Guo, D. Ma et al., Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem. Int. Ed. 62(13), e202300054 (2023). https://doi.org/10.1002/anie.202300054
H.-L. Zhu, J.-R. Huang, M.-D. Zhang, C. Yu, P.-Q. Liao et al., Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. J. Am. Chem. Soc. 146(1), 1144–1152 (2024). https://doi.org/10.1021/jacs.3c12423
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium-oxygen batteries. Nano-Micro Lett. 16(1), 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
T. Zhao, M. Li, D. Xiao, X. Yang, Q. Li et al., Pseudo-Pt monolayer for robust hydrogen oxidation. J. Am. Chem. Soc. 145(7), 4088–4097 (2023). https://doi.org/10.1021/jacs.2c11907
D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic et al., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5(4), 300–306 (2013). https://doi.org/10.1038/nchem.1574
X. Yang, Y. Wang, X. Wang, B. Mei, E. Luo et al., CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanops. Angew. Chem. Int. Ed. 60(50), 26177–26183 (2021). https://doi.org/10.1002/anie.202110900
X. Wang, L. Zhao, X. Li, Y. Liu, Y. Wang et al., Atomic-precision Pt(6) nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 13(1), 1596 (2022). https://doi.org/10.1038/s41467-022-29276-7
X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang et al., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366(6467), 850–856 (2019). https://doi.org/10.1126/science.aaw7493
B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 134(34), 13934–13937 (2012). https://doi.org/10.1021/ja3051662
Z. Zhang, J. Liu, J. Wang, Q. Wang, Y. Wang et al., Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 12, 5235 (2021). https://doi.org/10.1038/s41467-021-25562-y
P.N. Duchesne, Z.Y. Li, C.P. Deming, V. Fung, X. Zhao et al., Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17(11), 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5
K. Zhang, Y. Yan, Z. Wang, G. Ma, D. Jia et al., Integration of electrical properties and polarization loss modulation on atomic Fe-N-RGO for boosting electromagnetic wave absorption. Nano-Micro Lett. 17(1), 46 (2024). https://doi.org/10.1007/s40820-024-01518-x
S. Chen, F. Huang, L. Mao, Z. Zhang, H. Lin et al., High Fe-loading single-atom catalyst boosts ROS production by density effect for efficient antibacterial therapy. Nano-Micro Lett. 17(1), 32 (2024). https://doi.org/10.1007/s40820-024-01522-1
J. Zhao, C. Li, Q. Yu, Y. Zhu, X. Liu et al., Interface engineering of Mn(3)O(4)/Co3O4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene. J. Hazard. Mater. 452, 131249 (2023). https://doi.org/10.1016/j.jhazmat.2023.131249
M.A. Hoque, J.B. Gerken, S.S. Stahl, Synthetic dioxygenase reactivity by pairing electrochemical oxygen reduction and water oxidation. Science 383(6679), 173–178 (2024). https://doi.org/10.1126/science.adk5097
J. Yang, X. Zeng, M. Tebyetekerwa, Z. Wang, C. Bie et al., Engineering 2D photocatalysts for solar hydrogen peroxide production. Adv. Energy Mater. 14(23), 2400740 (2024). https://doi.org/10.1002/aenm.202400740
X. Lan, T. Wang, Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catal. 10(4), 2764–2790 (2020). https://doi.org/10.1021/acscatal.9b04331
L. Zhong, X. Liao, H. Cui, H. Luo, Y. Lv et al., Highly efficient hydrogenation of α, β-unsaturated aldehydes to unsaturated alcohols over defective MOF-808 with constructed frustrated lewis pairs. ACS Catal. 14(2), 857–873 (2024). https://doi.org/10.1021/acscatal.3c03624
X. Chen, S. Song, H. Li, G. Gözaydın, N. Yan, Expanding the boundary of biorefinery: organonitrogen chemicals from biomass. Acc. Chem. Res. 54(7), 1711–1722 (2021). https://doi.org/10.1021/acs.accounts.0c00842
T. Irrgang, R. Kempe, Transition-metal-catalyzed reductive amination employing hydrogen. Chem. Rev. 120(17), 9583–9674 (2020). https://doi.org/10.1021/acs.chemrev.0c00248
H. Qi, J. Yang, F. Liu, L. Zhang, J. Yang et al., Highly selective and robust single-atom catalyst Ru(1)/NC for reductive amination of aldehydes/ketones. Nat. Commun. 12(1), 3295 (2021). https://doi.org/10.1038/s41467-021-23429-w
H. Qi, F. Liu, L. Zhang, L. Li, Y. Su et al., Modulating trans-imination and hydrogenation towards the highly selective production of primary diamines from dialdehydes. Green Chem. 22(20), 6897–6901 (2020). https://doi.org/10.1039/d0gc02280b
Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin et al., Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11(1), 1215 (2020). https://doi.org/10.1038/s41467-020-14917-6
Y. Shi, W.-M. Huang, J. Li, Y. Zhou, Z.-Q. Li et al., Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat. Commun. 11(1), 4558 (2020). https://doi.org/10.1038/s41467-020-18430-8
Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
S. Hu, W.-X. Li, Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 374(6573), 1360–1365 (2021). https://doi.org/10.1126/science.abi9828