Sensilla Trichoidea-Inspired, High-Temperature, and Omnidirectional Vibration Perception Based on Monolayer Graphene
Corresponding Author: Tao Deng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 190
Abstract
With the convergence of sensor technology, artificial intelligence, and the Internet of Things, intelligent vibration monitoring systems are undergoing transformative development. This evolution imposes stringent demands on the miniaturization, low power consumption, high integration, and environmental adaptability of transducers. Graphene, renowned for its superlative physicochemical attributes, holds significant promise for application in micro- and nanoelectromechanical systems (M/NEMS). However, the inherent central symmetry of graphene restricts its utility in piezoelectric devices. Inspired by the sensilla trichoidea of spiders, a three-dimensional (3D) cilia-like monolayer graphene omnidirectional vibration transducer (CGVT) based on a stress-induced self-assembly mechanism is fabricated, demonstrating notable performance and high-temperature resistance. Furthermore, 3D vibration vector decoding is realized via an omnidirectional decoupling algorithm based on one-dimensional convolutional neural networks (1DCNN) to achieve precise discrimination of vibration directions. The 3D bionic vibration-sensing system incorporates a spider web structure into a bionic cilia MEMS chip through a gold wire bonding process, enabling the realization of three distinct mechanisms for vibration detection and recognition. In particular, these devices are manufactured using silicon-based semiconductor processing techniques and MEMS fabrication methodologies, leading to a substantial reduction in the dimensions of individual components compared to traditional counterparts.
Highlights:
1 Bioinspired MEMS vibration perception: The monolithic integration of three-dimensional semicircular biomimetic ‘cilia’-structured vibration transducer arrays based on monolayer graphene was achieved by a controlled stress-driven self-assembly technique.
2 High Performance: The 3D vibration transducer array enables real-time, high-performance (87.95 pC g−1), and wide-range vibration monitoring (1 Hz–10 kHz, 0–1120 g) under dynamic loading, while achieving omnidirectional vibration signal acquisition and decoupling.
3 Resistant to high temperatures: Stable vibration responses at ultrahigh temperatures up to 800 °C are achieved with merely a 20-nm-thick Si3N4 protective coating.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhong, J. Hao, Q. Lliu, Y. Li, X. Li et al., Novel diagnosis method for GIS mechanical defects based on an improved lightweight CNN model with load adaptive matching. IEEE Trans. Ind. Inform. 19(11), 11041–11051 (2023). https://doi.org/10.1109/TII.2023.3242805
- A.S. Azhar, S.A. Kudus, A. Jamadin, N.K. Mustaffa, K. Sugiura, Recent vibration-based structural health monitoring on steel bridges: systematic literature review. Ain Shams Eng. J. 15(3), 102501 (2024). https://doi.org/10.1016/j.asej.2023.102501
- H. Li, J. Xu, Q. Gong, Y. Teng, F. Pang et al., A study on the dynamic characteristics of the stiffened coupled plate with the effect of the dynamic vibration absorbers. Comput. Math. Appl. 168, 120–132 (2024). https://doi.org/10.1016/j.camwa.2024.04.026
- G. Zhou, K. Zhou, J. Zhang, M. Yuan, X. Wang et al., Digital modeling-driven chatter suppression for thin-walled part manufacturing. J. Intell. Manuf. 35(1), 289–305 (2024). https://doi.org/10.1007/s10845-022-02045-5
- G. Li, F. Liu, S. Yang, J.-T. Liu, W. Li et al., High-sensitivity MEMS force and acceleration sensor based on graphene-induced non-radiative transition. Carbon 209, 118001 (2023). https://doi.org/10.1016/j.carbon.2023.118001
- X. Fan, C. He, J. Ding, Q. Gao, H. Ma et al., Graphene mems and nems. Microsyst. Nanoeng. 10, 154 (2024). https://doi.org/10.1038/s41378-024-00791-5
- H. Chen, F. Zhuo, J. Zhou, Y. Liu, J. Zhang et al., Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 464, 142576 (2023). https://doi.org/10.1016/j.cej.2023.142576
- P.C. Sherrell, M. Fronzi, N.A. Shepelin, A. Corletto, D.A. Winkler et al., A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 51(2), 650–671 (2022). https://doi.org/10.1039/d1cs00844g
- X. Liang, H. Dong, Y. Wang, Q. Ma, H. Shang et al., Advancements of flexoelectric materials and their implementations in flexoelectric devices. Adv. Funct. Mater. 34(51), 2409906 (2024). https://doi.org/10.1002/adfm.202409906
- S. Das, B. Wang, T.R. Paudel, S.M. Park, E.Y. Tsymbal et al., Enhanced flexoelectricity at reduced dimensions revealed by mechanically tunable quantum tunnelling. Nat. Commun. 10(1), 537 (2019). https://doi.org/10.1038/s41467-019-08462-0
- B. Wang, Y. Gu, S. Zhang, L.-Q. Chen, Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019). https://doi.org/10.1016/j.pmatsci.2019.05.003
- S.I. Kundalwal, S.A. Meguid, G.J. Weng, Strain gradient polarization in graphene. Carbon 117, 462–472 (2017). https://doi.org/10.1016/j.carbon.2017.03.013
- X. Wang, H. Tian, W. Xie, Y. Shu, W.-T. Mi et al., Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Mater. 7(1), e154 (2015). https://doi.org/10.1038/am.2014.124
- T. Pandey, L. Covaci, F.M. Peeters, Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization. Carbon 171, 551–559 (2021). https://doi.org/10.1016/j.carbon.2020.09.028
- K. Won, C. Lee, J. Jung, S. Kwon, Y. Gebredingle et al., Raman scattering measurement of suspended graphene under extreme strain induced by nanoindentation. Adv. Mater. 34(30), e2200946 (2022). https://doi.org/10.1002/adma.202200946
- X. Fan, F. Forsberg, A.D. Smith, S. Schröder, S. Wagner et al., Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat. Electron. 2(9), 394–404 (2019). https://doi.org/10.1038/s41928-019-0287-1
- X. Yang, L. Han, H. Ning, S. Xu, B. Hao et al., Ultralow-pressure-driven polarization switching in ferroelectric membranes. Nat. Commun. 15(1), 9281 (2024). https://doi.org/10.1038/s41467-024-53436-6
- M. Deng, X. Wang, X. Xu, A. Cui, K. Jiang et al., Directly measuring flexoelectric coefficients μ(11) of the van der Waals materials. Mater. Horiz. 10(4), 1309–1323 (2023). https://doi.org/10.1039/d2mh00984f
- V. Chiara, P. Arrufat, R. Jeanson, A variable refractory period increases collective performance in noisy environments. Proc. Natl. Acad. Sci. U. S. A. 119(12), e2115103119 (2022). https://doi.org/10.1073/pnas.2115103119
- P. Szymkowiak, P. Grabowski, Morphological differentiation of ventral tarsal setae and surface sculpturing of theraphosids (Araneae: Theraphosidae) with different types of lifestyles. Ann. Entomol. Soc. Am. 115(3), 314–323 (2022). https://doi.org/10.1093/aesa/saac001
- C. Zhang, J. Zhang, D. Chen, X. Meng, L. Liu et al., Crack-based and hair-like sensors inspired from arthropods: a review. J. Bionic Eng. 17(5), 867–898 (2020). https://doi.org/10.1007/s42235-020-0092-6
- K. Kim, S. Zhang, W. Huang, F. Yu, X. Jiang, YCa4O(BO3)3 (YCOB) high temperature vibration sensor. J. Appl. Phys. 109(12), 126103 (2011). https://doi.org/10.1063/1.3598115
- H. Wei, W. Geng, K. Bi, T. Li, X. Li et al., High-performance piezoelectric-type MEMS vibration sensor based on LiNbO3 single-crystal cantilever beams. Micromachines 13(2), 329 (2022). https://doi.org/10.3390/mi13020329
- H. Kim, S. Kerrigan, M. Bourham, X. Jiang, AlN single crystal accelerometer for nuclear power plants. IEEE Trans. Ind. Electron. 68(6), 5346–5354 (2021). https://doi.org/10.1109/TIE.2020.2992002
- Z.-H. Chen, C.-Y. Li, S.-Y. Chu, C.-C. Tsai, Y.-H. Wang et al., The design of aluminum nitride-based lead-free piezoelectric MEMS accelerometer system. IEEE Trans. Electron Devices 67(10), 4399–4404 (2020). https://doi.org/10.1109/ted.2020.3019230
- A.L. Gesing, F.D.P. Alves, S. Paul, J.A. Cordioli, On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci. Rep. 8(1), 3920 (2018). https://doi.org/10.1038/s41598-018-22219-7
- G.-D. Wu, X.-L. Liu, F.-P. Yu, F.-L. Li, S.-W. Tian et al., The accelerometer utilizing the transverse vibration mode of LGT piezoelectric crystal, in 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). January 11–14, 2019. Harbin, China (IEEE, 2019), pp. 1–5. https://doi.org/10.1109/spawda.2019.8681812
- S. Li, X. Liang, W. Cheng, C. Zhen, D. Hu et al., Design and prototyping of a combined sensor for vibration and temperature measurement in high-temperature environments. IEEE Trans. Instrum. Meas. 73, 1–9 (2024). https://doi.org/10.1109/tim.2024.3406773
- Z. Zhang, L. Zhang, Z. Wu, Y. Gao, L. Lou, A high-sensitivity MEMS accelerometer using a Sc(0.8)Al(0.2)N-based four beam structure. Micromachines 14(5), 1069 (2023). https://doi.org/10.3390/mi14051069
- C. Jiang, X. Liu, F. Yu, S. Zhang, H. Fang et al., High-temperature vibration sensor based on Ba2TiSi2O8 piezoelectric crystal with ultra-stable sensing performance up to 650 ℃. IEEE Trans. Ind. Electron. 68(12), 12850–12859 (2021). https://doi.org/10.1109/TIE.2020.3044792
- Y. Liu, B. Hu, Y. Cai, W. Liu, A. Tovstopyat et al., A novel tri-axial piezoelectric MEMS accelerometer with folded beams. Sensors 21(2), 453 (2021). https://doi.org/10.3390/s21020453
- J. Zhao, P. Ji, Y. Li, R. Li, K. Zhang et al., Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 625(7993), 60–65 (2024). https://doi.org/10.1038/s41586-023-06811-0
- N.N. Hewa-Kasakarage, D. Kim, M.L. Kuntzman, N.A. Hall, Micromachined piezoelectric accelerometers via epitaxial silicon cantilevers and bulk silicon proof masses. J. Microelectromech. Syst. 22(6), 1438–1446 (2013). https://doi.org/10.1109/JMEMS.2013.2262581
- R. Schulze, M. Heinrich, P. Nossol, R. Forke, M. Sborikas et al., Piezoelectric P(VDF-TrFE) transducers assembled with micro injection molded polymers. Sens. Actuators A 208, 159–165 (2014). https://doi.org/10.1016/j.sna.2013.12.032
- X. Gong, Y.-C. Kuo, G. Zhou, W.-J. Wu, W.-H. Liao, An aerosol deposition based MEMS piezoelectric accelerometer for low noise measurement. Microsyst. Nanoeng. 9, 23 (2023). https://doi.org/10.1038/s41378-023-00484-5
- A. Dabrowski, K. Elkjaer, L. Borregaard, T. Zawada, L. Golonka, LTCC/PZT accelerometer in SMD package. Microelectron. Int. 31(3), 186–192 (2014). https://doi.org/10.1108/mi-10-2013-0052
- R. Schulze, T. Gessner, M. Heinrich, M. Schueller, R. Forke et al., Integration of piezoelectric polymer transducers into microsystems for sensing applications, in Proceedings of ISAF-ECAPD-PFM 2012. July 9–13, 2012. Aveiro, Portugal (IEEE, 2012), pp. 1–4. https://doi.org/10.1109/isaf.2012.6297771
- L.-P. Wang, R.A. Wolf, Y. Wang, K.K. Deng, L. Zou et al., Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. J. Microelectromech. Syst. 12(4), 433–439 (2003). https://doi.org/10.1109/JMEMS.2003.811749
- F. Gerfers, M. Kohlstadt, H. Bar, M.Y. He, Y. Manoli et al., Sub-μg ultra-low-noise MEMS accelerometers based on CMOS-compatible piezoelectric AlN thin films, in TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2007), p. 1191–1194. https://doi.org/10.1109/SENSOR.2007.4300349
- C.C. Hindrichsen, N.S. Almind, S.H. Brodersen, R. Lou-Møller, K. Hansen et al., Triaxial MEMS accelerometer with screen printed PZT thick film. J. Electroceram. 25(2), 108–115 (2010). https://doi.org/10.1007/s10832-010-9597-4
- C.C. Hindrichsen, J. Larsen, E.V. Thomsen, K. Hansen, R. Lou-Møller, Circular piezoelectric accelerometer for high band width application, in SENSORS, 2009 (IEEE, 2010), p. 475–478.
- G. Wu, M. Fan, L. Sun, Y. Li, X. Cheng et al., Ultrahigh-temperature piezoelectric crystal YbBa3(PO4)3 for vibration sensing application. Adv. Sens. Res. 2(11), 2200090 (2023). https://doi.org/10.1002/adsr.202200090
- S. Zhang, X. Jiang, M. Lapsley, P. Moses, T.R. Shrout, Piezoelectric accelerometers for ultrahigh temperature application. Appl. Phys. Lett. 96, 013506 (2010). https://doi.org/10.1063/1.3290251
- K. Kim, X. Jiang, S. Zhang, A high temperature piezoelectric sensor for structure health monitoring, in Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011. San Diego, California, USA (SPIE, 2011), p. 79832V. https://doi.org/10.1117/12.880163
- W.B. Huang, S.R. Kwon, F.-G. Yuan, S.J. Zhang, X.N, Jiang, A flexoelectric micro-accelerometer, in ASME 2012 International Mechanical Engineering Congress and Exposition November 9–15, 2012, Houston, Texas, USA, pp. 597–603 (2013). https://doi.org/10.1115/IMECE2012-89818
- C. Ge, E. Cretu, A polymeric piezoelectric MEMS accelerometer with high sensitivity, low noise density, and an innovative manufacturing approach. Microsyst. Nanoeng. 9, 151 (2023). https://doi.org/10.1038/s41378-023-00628-7
- C. Ge, E. Cretu, Polymeric piezoelectric accelerometers with high sensitivity, broad bandwidth, and low noise density for organic electronics and wearable microsystems. Microsyst. Nanoeng. 10, 61 (2024). https://doi.org/10.1038/s41378-024-00704-6
- X. Zhang, C. Wang, X. Pi, B. Li, Y. Ding et al., Bionic recognition technologies inspired by biological mechanosensory systems. Adv. Mater. (2025). https://doi.org/10.1002/adma.202418108
References
Y. Zhong, J. Hao, Q. Lliu, Y. Li, X. Li et al., Novel diagnosis method for GIS mechanical defects based on an improved lightweight CNN model with load adaptive matching. IEEE Trans. Ind. Inform. 19(11), 11041–11051 (2023). https://doi.org/10.1109/TII.2023.3242805
A.S. Azhar, S.A. Kudus, A. Jamadin, N.K. Mustaffa, K. Sugiura, Recent vibration-based structural health monitoring on steel bridges: systematic literature review. Ain Shams Eng. J. 15(3), 102501 (2024). https://doi.org/10.1016/j.asej.2023.102501
H. Li, J. Xu, Q. Gong, Y. Teng, F. Pang et al., A study on the dynamic characteristics of the stiffened coupled plate with the effect of the dynamic vibration absorbers. Comput. Math. Appl. 168, 120–132 (2024). https://doi.org/10.1016/j.camwa.2024.04.026
G. Zhou, K. Zhou, J. Zhang, M. Yuan, X. Wang et al., Digital modeling-driven chatter suppression for thin-walled part manufacturing. J. Intell. Manuf. 35(1), 289–305 (2024). https://doi.org/10.1007/s10845-022-02045-5
G. Li, F. Liu, S. Yang, J.-T. Liu, W. Li et al., High-sensitivity MEMS force and acceleration sensor based on graphene-induced non-radiative transition. Carbon 209, 118001 (2023). https://doi.org/10.1016/j.carbon.2023.118001
X. Fan, C. He, J. Ding, Q. Gao, H. Ma et al., Graphene mems and nems. Microsyst. Nanoeng. 10, 154 (2024). https://doi.org/10.1038/s41378-024-00791-5
H. Chen, F. Zhuo, J. Zhou, Y. Liu, J. Zhang et al., Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 464, 142576 (2023). https://doi.org/10.1016/j.cej.2023.142576
P.C. Sherrell, M. Fronzi, N.A. Shepelin, A. Corletto, D.A. Winkler et al., A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 51(2), 650–671 (2022). https://doi.org/10.1039/d1cs00844g
X. Liang, H. Dong, Y. Wang, Q. Ma, H. Shang et al., Advancements of flexoelectric materials and their implementations in flexoelectric devices. Adv. Funct. Mater. 34(51), 2409906 (2024). https://doi.org/10.1002/adfm.202409906
S. Das, B. Wang, T.R. Paudel, S.M. Park, E.Y. Tsymbal et al., Enhanced flexoelectricity at reduced dimensions revealed by mechanically tunable quantum tunnelling. Nat. Commun. 10(1), 537 (2019). https://doi.org/10.1038/s41467-019-08462-0
B. Wang, Y. Gu, S. Zhang, L.-Q. Chen, Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019). https://doi.org/10.1016/j.pmatsci.2019.05.003
S.I. Kundalwal, S.A. Meguid, G.J. Weng, Strain gradient polarization in graphene. Carbon 117, 462–472 (2017). https://doi.org/10.1016/j.carbon.2017.03.013
X. Wang, H. Tian, W. Xie, Y. Shu, W.-T. Mi et al., Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Mater. 7(1), e154 (2015). https://doi.org/10.1038/am.2014.124
T. Pandey, L. Covaci, F.M. Peeters, Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization. Carbon 171, 551–559 (2021). https://doi.org/10.1016/j.carbon.2020.09.028
K. Won, C. Lee, J. Jung, S. Kwon, Y. Gebredingle et al., Raman scattering measurement of suspended graphene under extreme strain induced by nanoindentation. Adv. Mater. 34(30), e2200946 (2022). https://doi.org/10.1002/adma.202200946
X. Fan, F. Forsberg, A.D. Smith, S. Schröder, S. Wagner et al., Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat. Electron. 2(9), 394–404 (2019). https://doi.org/10.1038/s41928-019-0287-1
X. Yang, L. Han, H. Ning, S. Xu, B. Hao et al., Ultralow-pressure-driven polarization switching in ferroelectric membranes. Nat. Commun. 15(1), 9281 (2024). https://doi.org/10.1038/s41467-024-53436-6
M. Deng, X. Wang, X. Xu, A. Cui, K. Jiang et al., Directly measuring flexoelectric coefficients μ(11) of the van der Waals materials. Mater. Horiz. 10(4), 1309–1323 (2023). https://doi.org/10.1039/d2mh00984f
V. Chiara, P. Arrufat, R. Jeanson, A variable refractory period increases collective performance in noisy environments. Proc. Natl. Acad. Sci. U. S. A. 119(12), e2115103119 (2022). https://doi.org/10.1073/pnas.2115103119
P. Szymkowiak, P. Grabowski, Morphological differentiation of ventral tarsal setae and surface sculpturing of theraphosids (Araneae: Theraphosidae) with different types of lifestyles. Ann. Entomol. Soc. Am. 115(3), 314–323 (2022). https://doi.org/10.1093/aesa/saac001
C. Zhang, J. Zhang, D. Chen, X. Meng, L. Liu et al., Crack-based and hair-like sensors inspired from arthropods: a review. J. Bionic Eng. 17(5), 867–898 (2020). https://doi.org/10.1007/s42235-020-0092-6
K. Kim, S. Zhang, W. Huang, F. Yu, X. Jiang, YCa4O(BO3)3 (YCOB) high temperature vibration sensor. J. Appl. Phys. 109(12), 126103 (2011). https://doi.org/10.1063/1.3598115
H. Wei, W. Geng, K. Bi, T. Li, X. Li et al., High-performance piezoelectric-type MEMS vibration sensor based on LiNbO3 single-crystal cantilever beams. Micromachines 13(2), 329 (2022). https://doi.org/10.3390/mi13020329
H. Kim, S. Kerrigan, M. Bourham, X. Jiang, AlN single crystal accelerometer for nuclear power plants. IEEE Trans. Ind. Electron. 68(6), 5346–5354 (2021). https://doi.org/10.1109/TIE.2020.2992002
Z.-H. Chen, C.-Y. Li, S.-Y. Chu, C.-C. Tsai, Y.-H. Wang et al., The design of aluminum nitride-based lead-free piezoelectric MEMS accelerometer system. IEEE Trans. Electron Devices 67(10), 4399–4404 (2020). https://doi.org/10.1109/ted.2020.3019230
A.L. Gesing, F.D.P. Alves, S. Paul, J.A. Cordioli, On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci. Rep. 8(1), 3920 (2018). https://doi.org/10.1038/s41598-018-22219-7
G.-D. Wu, X.-L. Liu, F.-P. Yu, F.-L. Li, S.-W. Tian et al., The accelerometer utilizing the transverse vibration mode of LGT piezoelectric crystal, in 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). January 11–14, 2019. Harbin, China (IEEE, 2019), pp. 1–5. https://doi.org/10.1109/spawda.2019.8681812
S. Li, X. Liang, W. Cheng, C. Zhen, D. Hu et al., Design and prototyping of a combined sensor for vibration and temperature measurement in high-temperature environments. IEEE Trans. Instrum. Meas. 73, 1–9 (2024). https://doi.org/10.1109/tim.2024.3406773
Z. Zhang, L. Zhang, Z. Wu, Y. Gao, L. Lou, A high-sensitivity MEMS accelerometer using a Sc(0.8)Al(0.2)N-based four beam structure. Micromachines 14(5), 1069 (2023). https://doi.org/10.3390/mi14051069
C. Jiang, X. Liu, F. Yu, S. Zhang, H. Fang et al., High-temperature vibration sensor based on Ba2TiSi2O8 piezoelectric crystal with ultra-stable sensing performance up to 650 ℃. IEEE Trans. Ind. Electron. 68(12), 12850–12859 (2021). https://doi.org/10.1109/TIE.2020.3044792
Y. Liu, B. Hu, Y. Cai, W. Liu, A. Tovstopyat et al., A novel tri-axial piezoelectric MEMS accelerometer with folded beams. Sensors 21(2), 453 (2021). https://doi.org/10.3390/s21020453
J. Zhao, P. Ji, Y. Li, R. Li, K. Zhang et al., Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 625(7993), 60–65 (2024). https://doi.org/10.1038/s41586-023-06811-0
N.N. Hewa-Kasakarage, D. Kim, M.L. Kuntzman, N.A. Hall, Micromachined piezoelectric accelerometers via epitaxial silicon cantilevers and bulk silicon proof masses. J. Microelectromech. Syst. 22(6), 1438–1446 (2013). https://doi.org/10.1109/JMEMS.2013.2262581
R. Schulze, M. Heinrich, P. Nossol, R. Forke, M. Sborikas et al., Piezoelectric P(VDF-TrFE) transducers assembled with micro injection molded polymers. Sens. Actuators A 208, 159–165 (2014). https://doi.org/10.1016/j.sna.2013.12.032
X. Gong, Y.-C. Kuo, G. Zhou, W.-J. Wu, W.-H. Liao, An aerosol deposition based MEMS piezoelectric accelerometer for low noise measurement. Microsyst. Nanoeng. 9, 23 (2023). https://doi.org/10.1038/s41378-023-00484-5
A. Dabrowski, K. Elkjaer, L. Borregaard, T. Zawada, L. Golonka, LTCC/PZT accelerometer in SMD package. Microelectron. Int. 31(3), 186–192 (2014). https://doi.org/10.1108/mi-10-2013-0052
R. Schulze, T. Gessner, M. Heinrich, M. Schueller, R. Forke et al., Integration of piezoelectric polymer transducers into microsystems for sensing applications, in Proceedings of ISAF-ECAPD-PFM 2012. July 9–13, 2012. Aveiro, Portugal (IEEE, 2012), pp. 1–4. https://doi.org/10.1109/isaf.2012.6297771
L.-P. Wang, R.A. Wolf, Y. Wang, K.K. Deng, L. Zou et al., Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. J. Microelectromech. Syst. 12(4), 433–439 (2003). https://doi.org/10.1109/JMEMS.2003.811749
F. Gerfers, M. Kohlstadt, H. Bar, M.Y. He, Y. Manoli et al., Sub-μg ultra-low-noise MEMS accelerometers based on CMOS-compatible piezoelectric AlN thin films, in TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2007), p. 1191–1194. https://doi.org/10.1109/SENSOR.2007.4300349
C.C. Hindrichsen, N.S. Almind, S.H. Brodersen, R. Lou-Møller, K. Hansen et al., Triaxial MEMS accelerometer with screen printed PZT thick film. J. Electroceram. 25(2), 108–115 (2010). https://doi.org/10.1007/s10832-010-9597-4
C.C. Hindrichsen, J. Larsen, E.V. Thomsen, K. Hansen, R. Lou-Møller, Circular piezoelectric accelerometer for high band width application, in SENSORS, 2009 (IEEE, 2010), p. 475–478.
G. Wu, M. Fan, L. Sun, Y. Li, X. Cheng et al., Ultrahigh-temperature piezoelectric crystal YbBa3(PO4)3 for vibration sensing application. Adv. Sens. Res. 2(11), 2200090 (2023). https://doi.org/10.1002/adsr.202200090
S. Zhang, X. Jiang, M. Lapsley, P. Moses, T.R. Shrout, Piezoelectric accelerometers for ultrahigh temperature application. Appl. Phys. Lett. 96, 013506 (2010). https://doi.org/10.1063/1.3290251
K. Kim, X. Jiang, S. Zhang, A high temperature piezoelectric sensor for structure health monitoring, in Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011. San Diego, California, USA (SPIE, 2011), p. 79832V. https://doi.org/10.1117/12.880163
W.B. Huang, S.R. Kwon, F.-G. Yuan, S.J. Zhang, X.N, Jiang, A flexoelectric micro-accelerometer, in ASME 2012 International Mechanical Engineering Congress and Exposition November 9–15, 2012, Houston, Texas, USA, pp. 597–603 (2013). https://doi.org/10.1115/IMECE2012-89818
C. Ge, E. Cretu, A polymeric piezoelectric MEMS accelerometer with high sensitivity, low noise density, and an innovative manufacturing approach. Microsyst. Nanoeng. 9, 151 (2023). https://doi.org/10.1038/s41378-023-00628-7
C. Ge, E. Cretu, Polymeric piezoelectric accelerometers with high sensitivity, broad bandwidth, and low noise density for organic electronics and wearable microsystems. Microsyst. Nanoeng. 10, 61 (2024). https://doi.org/10.1038/s41378-024-00704-6
X. Zhang, C. Wang, X. Pi, B. Li, Y. Ding et al., Bionic recognition technologies inspired by biological mechanosensory systems. Adv. Mater. (2025). https://doi.org/10.1002/adma.202418108