Temperature-Immune High-Entropy Alloy Flexible Strain Sensor on Electrospinning Nanofibrous Membrane
Corresponding Author: Gaofeng Zheng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 191
Abstract
Temperature stability is essential for the precision of flexible sensors. However, constrained by the composite principle of heterogeneous materials, the existing self-compensating methods encounter substantial challenges. To tackle this, high-entropy alloy nanofibers were utilized to construct a flexible strain sensor with inherent temperature stability. This approach leverages the electrohydrodynamic direct writing; a precursor conductive network was established through the electrospinning of a high-entropy alloy acetate and polyvinylidene difluoride solution blend. Subsequently, annealing treatment facilitated metallization, resulting in the synergistic preservation of polymer stretchability and the low temperature coefficient of resistance properties of high-entropy alloys inside the nanofibers. The test results demonstrate that the high-entropy alloys flexible strain sensor exhibits a remarkably low temperature coefficient of resistance (45.59 ppm K−1) across the range of − 10 to 70 °C, a sensitivity coefficient GF of 1.12 with a 50% strain range, and a response time of 310 ms. After 6000 stretching cycles, no baseline drift or failure occurred, indicating excellent cyclic stability. Furthermore, the outstanding temperature stability of the sensor was validated through wearable application and robotic hands strain sensing conducted under varied environment temperatures. This work provides a viable design pathway for developing flexible sensors with an inherently low temperature coefficient of resistance.
Highlights:
1 High-entropy alloy fiber was fabricated via electrohydrodynamic direct writing and subsequently metallized at the nanoscale to form uniform high-entropy alloy lattices within polymer nanofibers.
2 The metallized temperature-immune strain sensor exhibits low temperature coefficient of resistance (45.59 ppm K-1) and excellent cyclic stability (6000 cycles), enabling reliable strain measurements across a wide temperature range.
3 Wearable human joint monitoring and robotic grasping tests demonstrate the sensor’s high reliability and accurate response under complex thermal environments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Jo, Y. Lee, J. Kwon, S. Kim, G. Ryu et al., 3D active-matrix multimodal sensor arrays for independent detection of pressure and temperature. Sci. Adv. 11(3), eads4516 (2025). https://doi.org/10.1126/sciadv.ads4516
- M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
- Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
- Y. Zhong, G. Yuan, D. Bao, Y. Tao, Z. Gao et al., Specific Sn-O-Fe active sites from atomically Sn-doping porous Fe2O3 for ultrasensitive NO2 detection. Nano-Micro Lett. 17(1), 276 (2025). https://doi.org/10.1007/s40820-025-01770-9
- X. Wei, S. Xiang, C. Meng, Z. Chen, S. Cao et al., Sensory fiber-based electronic device as intelligent and natural user interface. Adv. Fiber Mater. 7(3), 827–840 (2025). https://doi.org/10.1007/s42765-025-00524-x
- Y. Yang, Y. Chen, Y. Liu, R. Yin, Programmable and scalable embroidery textile resistive pressure sensors for integrated multifunctional smart wearable systems. Adv. Fiber Mater. 7(2), 574–586 (2025). https://doi.org/10.1007/s42765-024-00506-5
- C. Du, Y. Hu, X. Xiao, F. Manshaii, L. Liang et al., High-reliability thermoreceptors with minimal temporal and spatial variations through photo-induced patterning thermoelectrics. Nano-Micro Lett. 17(1), 307 (2025). https://doi.org/10.1007/s40820-025-01821-1
- F. Guo, Z. Ren, S. Wang, Y. Xie, J. Pan et al., Recent progress of electrospun nanofiber-based composite materials for monitoring physical, physiological, and body fluid signals. Nano-Micro Lett. 17(1), 302 (2025). https://doi.org/10.1007/s40820-025-01804-2
- X. Du, Z. Peng, Y. Liang, C. Zheng, Y. Zhong et al., Piezophototronic effect-enhanced highly sensitive flexible photodetectors based on electrohydrodynamic direct-writing nanofiber self-stacking. Adv. Fiber Mater. 7(4), 1232–1243 (2025). https://doi.org/10.1007/s42765-025-00554-5
- P. Guo, B. Tian, J. Liang, X. Yang, G. Tang et al., An all-printed, fast-response flexible humidity sensor based on hexagonal-WO3 nanowires for multifunctional applications. Adv. Mater. 35(41), e2304420 (2023). https://doi.org/10.1002/adma.202304420
- S.P.R. Mallem, J. Shim, S.J. An, Strain-dependent interface barriers and photoresponse characteristics of MoSe2 monolayer flexible devices based on piezotronic and piezophototronic effects. Nano Energy 135, 110618 (2025). https://doi.org/10.1016/j.nanoen.2024.110618
- A. Mensah, S. Liao, J. Amesimeku, J. Li, Y. Chen et al., Therapeutic smart insole technology with Archimedean algorithmic spiral triboelectric nanogenerator-based power system and sensors. Adv. Fiber Mater. 6(6), 1746–1764 (2024). https://doi.org/10.1007/s42765-024-00443-3
- Y. Cui, X. He, W. Liu, S. Zhu, M. Zhou et al., Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv. Fiber Mater. 6(1), 170–180 (2024). https://doi.org/10.1007/s42765-023-00339-8
- Y. Zhi, H. Zhang, L. Zhang, Q. Li, X. Kuang et al., Pressure sensors based on densely structured graphene fibers for motion monitoring. Adv. Fiber Mater. 7(2), 541–553 (2025). https://doi.org/10.1007/s42765-024-00502-9
- K. Xu, Y. Lu, T. Yamaguchi, T. Arie, S. Akita et al., Highly precise multifunctional thermal management-based flexible sensing sheets. ACS Nano 13(12), 14348–14356 (2019). https://doi.org/10.1021/acsnano.9b07805
- M. Li, Z. Hu, B. Yan, J. Wang, H. Zhang et al., A flexible resistive strain gauge with reduced temperature effect via thermal expansion anisotropic composite substrate. Microsyst. Nanoeng. 10(1), 129 (2024). https://doi.org/10.1038/s41378-024-00762-w
- L. Wang, R. Zhu, G. Li, Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl. Mater. Interfaces 12(1), 1953–1961 (2020). https://doi.org/10.1021/acsami.9b21474
- Y.-L. Zhou, W.-N. Cheng, Y.-Z. Bai, C. Hou, K. Li et al., Rise of flexible high-temperature electronics. Rare Met. 42(6), 1773–1777 (2023). https://doi.org/10.1007/s12598-023-02298-w
- S. Zhong, B. Lu, D.-C. Wang, B. Arianpour, S. Wang et al., Passive isothermal flexible sensor enabled by smart thermal-regulating aerogels. Adv. Mater. 37(8), e2415386 (2025). https://doi.org/10.1002/adma.202415386
- Q. He, Z. Zhou, M.M. Swe, C.G. Tang, Y. Wang et al., Skin-inspired flexible and printed iontronic sensor enables bimodal sensing of robot skin for machine-learning-assisted object recognition. Nano Energy 134, 110583 (2025). https://doi.org/10.1016/j.nanoen.2024.110583
- J. Lee, L.M. Liberty, I. Soltis, K. Kwon, D. Chong et al., Wireless flexible potentiometric microsensors for temperature-compensated sweat electrolyte monitoring. ACS Appl. Mater. Interfaces 17(25), 36345–36355 (2025). https://doi.org/10.1021/acsami.5c03558
- Z. Gong, W. Di, Y. Jiang, Z. Dong, Z. Yang et al., Flexible calorimetric flow sensor with unprecedented sensitivity and directional resolution for multiple flight parameter detection. Nat. Commun. 15, 3091 (2024). https://doi.org/10.1038/s41467-024-47284-7
- Y. Hou, H. Zhang, K. Zhou, Ultraflexible sensor development via 4D printing: enhanced sensitivity to strain, temperature, and magnetic fields. Adv. Sci. 12(7), 2411584 (2025). https://doi.org/10.1002/advs.202411584
- J.C. Yang, J.-O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim et al., Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 11(21), 19472–19480 (2019). https://doi.org/10.1021/acsami.9b03261
- M. Li, J. Pu, Q. Cao, W. Zhao, Y. Gao et al., Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem. Sci. 15(43), 17799–17822 (2024). https://doi.org/10.1039/d4sc05295a
- K. Chu, S.-C. Lee, S. Lee, D. Kim, C. Moon et al., Smart conducting polymer composites having zero temperature coefficient of resistance. Nanoscale 7(2), 471–478 (2015). https://doi.org/10.1039/c4nr04489d
- D.-K. Lee, K.-W. Nam, W.-J. Kim, S.-H. Park, Development of hybrid composites with zero-temperature coefficient of resistance: mechanisms and predictive modeling using symbolic regression. Chem. Eng. J. 506, 159866 (2025). https://doi.org/10.1016/j.cej.2025.159866
- W.-B. Zhu, S.-S. Xue, H. Zhang, Y.-Y. Wang, P. Huang et al., Direct ink writing of a graphene/CNT/silicone composite strain sensor with a near-zero temperature coefficient of resistance. J. Mater. Chem. C 10(21), 8226–8233 (2022). https://doi.org/10.1039/D2TC00918H
- J. Lin, Z. Chen, Q. Zhuang, S. Chen, C. Zhu et al., Temperature-immune, wide-range flexible robust pressure sensors for harsh environments. ACS Appl. Mater. Interfaces 15(42), 49642–49652 (2023). https://doi.org/10.1021/acsami.3c10975
- Z. Gao, K. Jiang, Z. Lou, W. Han, G. Shen, Water-proof and thermally inert flexible pressure sensors based on zero temperature coefficient of resistance hybrid films. J. Mater. Chem. C 7(31), 9648–9654 (2019). https://doi.org/10.1039/C9TC02832C
- J. Ma, Q. Liu, L. Yang, M. Li, Q. Liu et al., A flexible, highly accurate, and stable pressure sensor with anti-interference from temperature, sweat, and humidity. Adv. Mater. Interfaces 10(6), 2201528 (2023). https://doi.org/10.1002/admi.202201528
- K. Chu, S.-H. Park, Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance. IEEE Electron Device Lett. 36(1), 50–52 (2015). https://doi.org/10.1109/LED.2014.2374698
- W. Gao, Y. Zhang, Z. Zhang, B. Ma, J. Luo et al., Flexible self-assembly carbon nanotube/polyimide thermal film endowed adjustable temperature coefficient of resistance. Nanotechnology 31(47), 475601 (2020). https://doi.org/10.1088/1361-6528/abae9c
- W. Gao, B. Sun, Y. Zhang, B. Ma, J. Luo et al., High available carbon nanotube film micro-device with controllable temperature coefficient of resistance. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). January 18–22, 2020. Vancouver, BC, Canada. IEEE, (2020), pp. 806–809. https://doi.org/10.1109/mems46641.2020.9056286
- Y.K. Choi, T. Park, D.H.D. Lee, J. Ahn, Y.H. Kim et al., Wearable anti-temperature interference strain sensor with metal nanop thin film and hybrid ligand exchange. Nanoscale 14(24), 8628–8639 (2022). https://doi.org/10.1039/D2NR02392J
- Y. Zhao, J. Liu, Y. Ying, H. Chen, W. Wang et al., Temperature self-compensation thin film strain gauges based on nano-SiO2/AgNP composites. J. Mater. Chem. C 12(32), 12491–12498 (2024). https://doi.org/10.1039/d4tc01645a
- M.-X. Xu, C. Dou, T.-Y. Song, X. Li, Q. Zhang, A temperature-insensitive silver nanostructures@graphene foam for high accuracy and full range human health monitoring. Rare Met. 43(11), 5953–5963 (2024). https://doi.org/10.1007/s12598-024-02758-x
- Y. Kato, K. Fukuda, T. Someya, T. Yokota, An ultra-flexible temperature-insensitive strain sensor. J. Mater. Chem. C 11(41), 14070–14078 (2023). https://doi.org/10.1039/d3tc02960c
- W. He, G. Li, S. Zhang, Y. Wei, J. Wang et al., Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating. ACS Nano 9(4), 4244–4251 (2015). https://doi.org/10.1021/acsnano.5b00626
- S. Niu, X. Chang, Z. Zhu, Z. Qin, J. Li et al., Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance. ACS Appl. Mater. Interfaces 13(46), 55307–55318 (2021). https://doi.org/10.1021/acsami.1c14671
- T. Yuan, R. Yin, C. Li, Z. Fan, L. Pan, Ti3C2Tx MXene-based all-resistive dual-mode sensor with near-zero temperature coefficient of resistance for crosstalk-free pressure and temperature detections. Chem. Eng. J. 487, 150396 (2024). https://doi.org/10.1016/j.cej.2024.150396
- L.R. Viannie, N.R. Banapurmath, M.E.M. Soudagar, A.V. Nandi, N. Hossain et al., Electrical and mechanical properties of flexible multiwalled carbon nanotube/poly (dimethylsiloxane) based nanocomposite sheets. J. Environ. Chem. Eng. 9(6), 106550 (2021). https://doi.org/10.1016/j.jece.2021.106550
- T. Park, H.K. Woo, B.K. Jung, B. Park, J. Bang et al., Noninterference wearable strain sensor: near-zero temperature coefficient of resistance nanop arrays with thermal expansion and transport engineering. ACS Nano 15(5), 8120–8129 (2021). https://doi.org/10.1021/acsnano.0c09835
- H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36(17), e2305453 (2024). https://doi.org/10.1002/adma.202305453
- H. Wu, Q. Lu, Y. Li, M. Zhao, J. Wang et al., Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 145(3), 1924–1935 (2023). https://doi.org/10.1021/jacs.2c12295
- A. Laha, S. Yoshida, F. Marques dos Santos Vieira, H. Yi, S.H. Lee et al., High-entropy engineering of the crystal and electronic structures in a Dirac material. Nat. Commun. 15, 3532 (2024). https://doi.org/10.1038/s41467-024-47781-9
- S. Shafeie, S. Guo, P. Erhart, Q. Hu, A. Palmqvist, Balancing scattering channels: a panoscopic approach toward zero temperature coefficient of resistance using high-entropy alloys. Adv. Mater. 31(2), 1805392 (2019). https://doi.org/10.1002/adma.201805392
- S.A. Uporov, I.V. Evdokimov, R.E. Ryltsev, E.V. Sterkhov, V.A. Bykov et al., High entropy alloys as strain-sensitive materials. Intermetallics 170, 108334 (2024). https://doi.org/10.1016/j.intermet.2024.108334
- S.-E. Benrazzouq, J. Ghanbaja, S. Migot, V.A. Milichko, J.-F. Pierson, Chemically-driven control of electrical resistivity of high-entropy alloys. Appl. Mater. Today 44, 102726 (2025). https://doi.org/10.1016/j.apmt.2025.102726
- C. Wang, X. Li, Z. Li, Q. Wang, Y. Zheng et al., The resistivity–temperature behavior of Al CoCrFeNi high-entropy alloy films. Thin Solid Films 700, 137895 (2020). https://doi.org/10.1016/j.tsf.2020.137895
- W. Zhang, A. Chabok, H. Wang, J. Shen, J.P. Oliveira et al., Ultra-strong and ductile precipitation-strengthened high entropy alloy with 0.5% Nb addition produced by laser additive manufacturing. J. Mater. Sci. Technol. 187, 195–211 (2024). https://doi.org/10.1016/j.jmst.2023.11.053
- W. Li, J. Zhang, D. Cui, X. Wang, P. Zhang et al., Enhanced strength-ductility synergy by high density heterogeneous precipitation microstructure in high-entropy alloys. Mater. Sci. Eng. A 928, 147983 (2025). https://doi.org/10.1016/j.msea.2025.147983
- Z. Zhang, J. Pang, Y. Li, Y. Yang, Z. Xing et al., Synergistic enhancement of the strength and ductility of high-entropy alloy at high temperatures via multiple heterogeneous microstructure modulation. Sci. China Mater. 68(7), 2419–2432 (2025). https://doi.org/10.1007/s40843-025-3390-0
- S.S. Nene, S. Sinha, D.K. Yadav, A. Dutta, Metallurgical aspects of high entropy alloys. J. Alloys Compd. 1005, 175849 (2024). https://doi.org/10.1016/j.jallcom.2024.175849
- M.W. Shin, S.-J. Jo, S.K. Soni, J.-W. Lee, J. Moon et al., Engineering heterogeneous microstructure for enhancing mechanical properties of multicomponent alloys via powder metallurgy route. Mater. Sci. Eng. A 941, 148599 (2025). https://doi.org/10.1016/j.msea.2025.148599
- Y. Cho, J.W. Beak, M. Sagong, S. Ahn, J.S. Nam et al., Electrospinning and nanofiber technology: fundamentals, innovations, and applications. Adv. Mater. 37(28), 2500162 (2025). https://doi.org/10.1002/adma.202500162
- X. Wang, Y. Lin, Y. Chen, J. Zuo, X. Wang et al., Electrospinning high-entropy oxide nanofibers for catalytic oxidation of ethyl acetate: unraveling the synergistic role of metal–oxygen bonds. Sci. China Mater. 68(6), 1867–1879 (2025). https://doi.org/10.1007/s40843-025-3295-6
- M. Zhang, J. Ye, Y. Gao, X. Duan, J. Zhao et al., General synthesis of high-entropy oxide nanofibers. ACS Nano 18(2), 1449–1463 (2024). https://doi.org/10.1021/acsnano.3c07506
- J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
- Y. Zhou, Y. Wang, S. Qiu, W. Zhao, S. Wang et al., Microscopic response mechanism of Epsilon-negative and Epsilon-near-zero metacomposites. Research 8, 0556 (2025). https://doi.org/10.34133/research.0556
- S. Mu, Z. Pei, X. Liu, G.M. Stocks, Electronic transport and phonon properties of maximally disordered alloys: from binaries to high-entropy alloys. J. Mater. Res. 33(19), 2857–2880 (2018). https://doi.org/10.1557/jmr.2018.300
- S. Zhu, D. Yan, Y. Zhang, L. Han, D. Raabe et al., Strong and ductile Resinvar alloys with temperature- and time-independent resistivity. Nat. Commun. 15(1), 7199 (2024). https://doi.org/10.1038/s41467-024-51572-7
- C. Tandoc, Y.-J. Hu, L. Qi, P.K. Liaw, Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys. NPJ Comput. Mater. 9, 53 (2023). https://doi.org/10.1038/s41524-023-00993-x
- Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh et al., Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509(5), 1607–1614 (2011). https://doi.org/10.1016/j.jallcom.2010.10.210
- F. Meng, W. Zhang, Z. Zhou, R. Sheng, A.C.P. Chuang et al., Charge transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy. Scripta Mater. 203, 114104 (2021). https://doi.org/10.1016/j.scriptamat.2021.114104
- B. Zhang, T. Zheng, J. You, C. Ma, Y. Liu et al., Electron-phonon coupling suppression by enhanced lattice rigidity in 2D perovskite single crystals for high-performance X-ray detection. Adv. Mater. 35(7), 2208875 (2023). https://doi.org/10.1002/adma.202208875
- K. Jasiewicz, J. Tobola, B. Wiendlocha, Local distortions of the crystal structure and their influence on the electronic structure and superconductivity of the high-entropy alloy (TaNb)0.67(HfZrTi)0.33. Phys. Rev. B 108(22), 224505 (2023). https://doi.org/10.1103/physrevb.108.224505
- M.M. Yaqoob, M.F. Iqbal, D. Wang, Carrier–phonon interaction and anharmonic phonon decay in ZnS thin film studied by resonance Raman scattering. J. Raman Spectrosc. 55(3), 347–354 (2024). https://doi.org/10.1002/jrs.6627
- J. Kitagawa, K. Hoshi, Y. Kawasaki, R. Koga, Y. Mizuguchi et al., Superconductivity and hardness of the equiatomic high-entropy alloy HfMoNbTiZr. J. Alloys Compd. 924, 166473 (2022). https://doi.org/10.1016/j.jallcom.2022.166473
- Y. Ri, P. Woo, Hybrid-type stretchable interconnects with double-layered liquid metal-on-polyimide serpentine structure. ETRI J. 44(1), 147–154 (2022). https://doi.org/10.4218/etrij.2021-0188
- X. Wu, X. Luo, Z. Song, Y. Bai, B. Zhang et al., Ultra-robust and sensitive flexible strain sensor for real-time and wearable sign language translation. Adv. Funct. Mater. 33(36), 2303504 (2023). https://doi.org/10.1002/adfm.202303504
- M. Melzer, D. Makarov, O.G. Schmidt, A review on stretchable magnetic field sensorics. J. Phys. D-Appl. Phys. 53(8), 083002 (2020). https://doi.org/10.1088/1361-6463/ab52cf
- Y. Wei, Z. Li, H. Yan, J. Li, D. Xu et al., Stretchable and temperature-insensitive sensing yarn with a wide temperature range. Adv. Fiber Mater. (2025). https://doi.org/10.1007/s42765-025-00597-8
- Z. Huang, G. Wu, Y. Hu, F. Lv, R. Wang et al., Intrinsically temperature-insensitive and highly sensitive flexible wireless strain sensor. ACS Sens. 10(9), 6897–6907 (2025). https://doi.org/10.1021/acssensors.5c01861
- H. Fu, P. Wang, H. Zheng, B. Pang, Z. Jin et al., Bioinspired neural network-enabled metre-scale attached ultraductile cementitious nanosensors with temperature-immune. Chem. Eng. J. 519, 165335 (2025). https://doi.org/10.1016/j.cej.2025.165335
- L. Xu, F. Zhao, X. Zhou, Y. Wang, T. Shen et al., High-temperature thin-film strain sensors with low temperature coefficient of resistance and high sensitivity via direct ink writing. Nanotechnol. Precis. Eng. 8, 013001 (2025). https://doi.org/10.1063/10.0028828
- W. Li, Y. Li, M. Xu, Y. Zhou, R. Miao et al., Highly customizable, ultrawide-temperature free-form flexible sensing electronic systems based on medium-entropy alloy paintings. Nat. Commun. 16(1), 7351 (2025). https://doi.org/10.1038/s41467-025-62100-6
References
Y. Jo, Y. Lee, J. Kwon, S. Kim, G. Ryu et al., 3D active-matrix multimodal sensor arrays for independent detection of pressure and temperature. Sci. Adv. 11(3), eads4516 (2025). https://doi.org/10.1126/sciadv.ads4516
M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
Y. Zhong, G. Yuan, D. Bao, Y. Tao, Z. Gao et al., Specific Sn-O-Fe active sites from atomically Sn-doping porous Fe2O3 for ultrasensitive NO2 detection. Nano-Micro Lett. 17(1), 276 (2025). https://doi.org/10.1007/s40820-025-01770-9
X. Wei, S. Xiang, C. Meng, Z. Chen, S. Cao et al., Sensory fiber-based electronic device as intelligent and natural user interface. Adv. Fiber Mater. 7(3), 827–840 (2025). https://doi.org/10.1007/s42765-025-00524-x
Y. Yang, Y. Chen, Y. Liu, R. Yin, Programmable and scalable embroidery textile resistive pressure sensors for integrated multifunctional smart wearable systems. Adv. Fiber Mater. 7(2), 574–586 (2025). https://doi.org/10.1007/s42765-024-00506-5
C. Du, Y. Hu, X. Xiao, F. Manshaii, L. Liang et al., High-reliability thermoreceptors with minimal temporal and spatial variations through photo-induced patterning thermoelectrics. Nano-Micro Lett. 17(1), 307 (2025). https://doi.org/10.1007/s40820-025-01821-1
F. Guo, Z. Ren, S. Wang, Y. Xie, J. Pan et al., Recent progress of electrospun nanofiber-based composite materials for monitoring physical, physiological, and body fluid signals. Nano-Micro Lett. 17(1), 302 (2025). https://doi.org/10.1007/s40820-025-01804-2
X. Du, Z. Peng, Y. Liang, C. Zheng, Y. Zhong et al., Piezophototronic effect-enhanced highly sensitive flexible photodetectors based on electrohydrodynamic direct-writing nanofiber self-stacking. Adv. Fiber Mater. 7(4), 1232–1243 (2025). https://doi.org/10.1007/s42765-025-00554-5
P. Guo, B. Tian, J. Liang, X. Yang, G. Tang et al., An all-printed, fast-response flexible humidity sensor based on hexagonal-WO3 nanowires for multifunctional applications. Adv. Mater. 35(41), e2304420 (2023). https://doi.org/10.1002/adma.202304420
S.P.R. Mallem, J. Shim, S.J. An, Strain-dependent interface barriers and photoresponse characteristics of MoSe2 monolayer flexible devices based on piezotronic and piezophototronic effects. Nano Energy 135, 110618 (2025). https://doi.org/10.1016/j.nanoen.2024.110618
A. Mensah, S. Liao, J. Amesimeku, J. Li, Y. Chen et al., Therapeutic smart insole technology with Archimedean algorithmic spiral triboelectric nanogenerator-based power system and sensors. Adv. Fiber Mater. 6(6), 1746–1764 (2024). https://doi.org/10.1007/s42765-024-00443-3
Y. Cui, X. He, W. Liu, S. Zhu, M. Zhou et al., Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv. Fiber Mater. 6(1), 170–180 (2024). https://doi.org/10.1007/s42765-023-00339-8
Y. Zhi, H. Zhang, L. Zhang, Q. Li, X. Kuang et al., Pressure sensors based on densely structured graphene fibers for motion monitoring. Adv. Fiber Mater. 7(2), 541–553 (2025). https://doi.org/10.1007/s42765-024-00502-9
K. Xu, Y. Lu, T. Yamaguchi, T. Arie, S. Akita et al., Highly precise multifunctional thermal management-based flexible sensing sheets. ACS Nano 13(12), 14348–14356 (2019). https://doi.org/10.1021/acsnano.9b07805
M. Li, Z. Hu, B. Yan, J. Wang, H. Zhang et al., A flexible resistive strain gauge with reduced temperature effect via thermal expansion anisotropic composite substrate. Microsyst. Nanoeng. 10(1), 129 (2024). https://doi.org/10.1038/s41378-024-00762-w
L. Wang, R. Zhu, G. Li, Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl. Mater. Interfaces 12(1), 1953–1961 (2020). https://doi.org/10.1021/acsami.9b21474
Y.-L. Zhou, W.-N. Cheng, Y.-Z. Bai, C. Hou, K. Li et al., Rise of flexible high-temperature electronics. Rare Met. 42(6), 1773–1777 (2023). https://doi.org/10.1007/s12598-023-02298-w
S. Zhong, B. Lu, D.-C. Wang, B. Arianpour, S. Wang et al., Passive isothermal flexible sensor enabled by smart thermal-regulating aerogels. Adv. Mater. 37(8), e2415386 (2025). https://doi.org/10.1002/adma.202415386
Q. He, Z. Zhou, M.M. Swe, C.G. Tang, Y. Wang et al., Skin-inspired flexible and printed iontronic sensor enables bimodal sensing of robot skin for machine-learning-assisted object recognition. Nano Energy 134, 110583 (2025). https://doi.org/10.1016/j.nanoen.2024.110583
J. Lee, L.M. Liberty, I. Soltis, K. Kwon, D. Chong et al., Wireless flexible potentiometric microsensors for temperature-compensated sweat electrolyte monitoring. ACS Appl. Mater. Interfaces 17(25), 36345–36355 (2025). https://doi.org/10.1021/acsami.5c03558
Z. Gong, W. Di, Y. Jiang, Z. Dong, Z. Yang et al., Flexible calorimetric flow sensor with unprecedented sensitivity and directional resolution for multiple flight parameter detection. Nat. Commun. 15, 3091 (2024). https://doi.org/10.1038/s41467-024-47284-7
Y. Hou, H. Zhang, K. Zhou, Ultraflexible sensor development via 4D printing: enhanced sensitivity to strain, temperature, and magnetic fields. Adv. Sci. 12(7), 2411584 (2025). https://doi.org/10.1002/advs.202411584
J.C. Yang, J.-O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim et al., Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 11(21), 19472–19480 (2019). https://doi.org/10.1021/acsami.9b03261
M. Li, J. Pu, Q. Cao, W. Zhao, Y. Gao et al., Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem. Sci. 15(43), 17799–17822 (2024). https://doi.org/10.1039/d4sc05295a
K. Chu, S.-C. Lee, S. Lee, D. Kim, C. Moon et al., Smart conducting polymer composites having zero temperature coefficient of resistance. Nanoscale 7(2), 471–478 (2015). https://doi.org/10.1039/c4nr04489d
D.-K. Lee, K.-W. Nam, W.-J. Kim, S.-H. Park, Development of hybrid composites with zero-temperature coefficient of resistance: mechanisms and predictive modeling using symbolic regression. Chem. Eng. J. 506, 159866 (2025). https://doi.org/10.1016/j.cej.2025.159866
W.-B. Zhu, S.-S. Xue, H. Zhang, Y.-Y. Wang, P. Huang et al., Direct ink writing of a graphene/CNT/silicone composite strain sensor with a near-zero temperature coefficient of resistance. J. Mater. Chem. C 10(21), 8226–8233 (2022). https://doi.org/10.1039/D2TC00918H
J. Lin, Z. Chen, Q. Zhuang, S. Chen, C. Zhu et al., Temperature-immune, wide-range flexible robust pressure sensors for harsh environments. ACS Appl. Mater. Interfaces 15(42), 49642–49652 (2023). https://doi.org/10.1021/acsami.3c10975
Z. Gao, K. Jiang, Z. Lou, W. Han, G. Shen, Water-proof and thermally inert flexible pressure sensors based on zero temperature coefficient of resistance hybrid films. J. Mater. Chem. C 7(31), 9648–9654 (2019). https://doi.org/10.1039/C9TC02832C
J. Ma, Q. Liu, L. Yang, M. Li, Q. Liu et al., A flexible, highly accurate, and stable pressure sensor with anti-interference from temperature, sweat, and humidity. Adv. Mater. Interfaces 10(6), 2201528 (2023). https://doi.org/10.1002/admi.202201528
K. Chu, S.-H. Park, Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance. IEEE Electron Device Lett. 36(1), 50–52 (2015). https://doi.org/10.1109/LED.2014.2374698
W. Gao, Y. Zhang, Z. Zhang, B. Ma, J. Luo et al., Flexible self-assembly carbon nanotube/polyimide thermal film endowed adjustable temperature coefficient of resistance. Nanotechnology 31(47), 475601 (2020). https://doi.org/10.1088/1361-6528/abae9c
W. Gao, B. Sun, Y. Zhang, B. Ma, J. Luo et al., High available carbon nanotube film micro-device with controllable temperature coefficient of resistance. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). January 18–22, 2020. Vancouver, BC, Canada. IEEE, (2020), pp. 806–809. https://doi.org/10.1109/mems46641.2020.9056286
Y.K. Choi, T. Park, D.H.D. Lee, J. Ahn, Y.H. Kim et al., Wearable anti-temperature interference strain sensor with metal nanop thin film and hybrid ligand exchange. Nanoscale 14(24), 8628–8639 (2022). https://doi.org/10.1039/D2NR02392J
Y. Zhao, J. Liu, Y. Ying, H. Chen, W. Wang et al., Temperature self-compensation thin film strain gauges based on nano-SiO2/AgNP composites. J. Mater. Chem. C 12(32), 12491–12498 (2024). https://doi.org/10.1039/d4tc01645a
M.-X. Xu, C. Dou, T.-Y. Song, X. Li, Q. Zhang, A temperature-insensitive silver nanostructures@graphene foam for high accuracy and full range human health monitoring. Rare Met. 43(11), 5953–5963 (2024). https://doi.org/10.1007/s12598-024-02758-x
Y. Kato, K. Fukuda, T. Someya, T. Yokota, An ultra-flexible temperature-insensitive strain sensor. J. Mater. Chem. C 11(41), 14070–14078 (2023). https://doi.org/10.1039/d3tc02960c
W. He, G. Li, S. Zhang, Y. Wei, J. Wang et al., Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating. ACS Nano 9(4), 4244–4251 (2015). https://doi.org/10.1021/acsnano.5b00626
S. Niu, X. Chang, Z. Zhu, Z. Qin, J. Li et al., Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance. ACS Appl. Mater. Interfaces 13(46), 55307–55318 (2021). https://doi.org/10.1021/acsami.1c14671
T. Yuan, R. Yin, C. Li, Z. Fan, L. Pan, Ti3C2Tx MXene-based all-resistive dual-mode sensor with near-zero temperature coefficient of resistance for crosstalk-free pressure and temperature detections. Chem. Eng. J. 487, 150396 (2024). https://doi.org/10.1016/j.cej.2024.150396
L.R. Viannie, N.R. Banapurmath, M.E.M. Soudagar, A.V. Nandi, N. Hossain et al., Electrical and mechanical properties of flexible multiwalled carbon nanotube/poly (dimethylsiloxane) based nanocomposite sheets. J. Environ. Chem. Eng. 9(6), 106550 (2021). https://doi.org/10.1016/j.jece.2021.106550
T. Park, H.K. Woo, B.K. Jung, B. Park, J. Bang et al., Noninterference wearable strain sensor: near-zero temperature coefficient of resistance nanop arrays with thermal expansion and transport engineering. ACS Nano 15(5), 8120–8129 (2021). https://doi.org/10.1021/acsnano.0c09835
H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36(17), e2305453 (2024). https://doi.org/10.1002/adma.202305453
H. Wu, Q. Lu, Y. Li, M. Zhao, J. Wang et al., Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 145(3), 1924–1935 (2023). https://doi.org/10.1021/jacs.2c12295
A. Laha, S. Yoshida, F. Marques dos Santos Vieira, H. Yi, S.H. Lee et al., High-entropy engineering of the crystal and electronic structures in a Dirac material. Nat. Commun. 15, 3532 (2024). https://doi.org/10.1038/s41467-024-47781-9
S. Shafeie, S. Guo, P. Erhart, Q. Hu, A. Palmqvist, Balancing scattering channels: a panoscopic approach toward zero temperature coefficient of resistance using high-entropy alloys. Adv. Mater. 31(2), 1805392 (2019). https://doi.org/10.1002/adma.201805392
S.A. Uporov, I.V. Evdokimov, R.E. Ryltsev, E.V. Sterkhov, V.A. Bykov et al., High entropy alloys as strain-sensitive materials. Intermetallics 170, 108334 (2024). https://doi.org/10.1016/j.intermet.2024.108334
S.-E. Benrazzouq, J. Ghanbaja, S. Migot, V.A. Milichko, J.-F. Pierson, Chemically-driven control of electrical resistivity of high-entropy alloys. Appl. Mater. Today 44, 102726 (2025). https://doi.org/10.1016/j.apmt.2025.102726
C. Wang, X. Li, Z. Li, Q. Wang, Y. Zheng et al., The resistivity–temperature behavior of Al CoCrFeNi high-entropy alloy films. Thin Solid Films 700, 137895 (2020). https://doi.org/10.1016/j.tsf.2020.137895
W. Zhang, A. Chabok, H. Wang, J. Shen, J.P. Oliveira et al., Ultra-strong and ductile precipitation-strengthened high entropy alloy with 0.5% Nb addition produced by laser additive manufacturing. J. Mater. Sci. Technol. 187, 195–211 (2024). https://doi.org/10.1016/j.jmst.2023.11.053
W. Li, J. Zhang, D. Cui, X. Wang, P. Zhang et al., Enhanced strength-ductility synergy by high density heterogeneous precipitation microstructure in high-entropy alloys. Mater. Sci. Eng. A 928, 147983 (2025). https://doi.org/10.1016/j.msea.2025.147983
Z. Zhang, J. Pang, Y. Li, Y. Yang, Z. Xing et al., Synergistic enhancement of the strength and ductility of high-entropy alloy at high temperatures via multiple heterogeneous microstructure modulation. Sci. China Mater. 68(7), 2419–2432 (2025). https://doi.org/10.1007/s40843-025-3390-0
S.S. Nene, S. Sinha, D.K. Yadav, A. Dutta, Metallurgical aspects of high entropy alloys. J. Alloys Compd. 1005, 175849 (2024). https://doi.org/10.1016/j.jallcom.2024.175849
M.W. Shin, S.-J. Jo, S.K. Soni, J.-W. Lee, J. Moon et al., Engineering heterogeneous microstructure for enhancing mechanical properties of multicomponent alloys via powder metallurgy route. Mater. Sci. Eng. A 941, 148599 (2025). https://doi.org/10.1016/j.msea.2025.148599
Y. Cho, J.W. Beak, M. Sagong, S. Ahn, J.S. Nam et al., Electrospinning and nanofiber technology: fundamentals, innovations, and applications. Adv. Mater. 37(28), 2500162 (2025). https://doi.org/10.1002/adma.202500162
X. Wang, Y. Lin, Y. Chen, J. Zuo, X. Wang et al., Electrospinning high-entropy oxide nanofibers for catalytic oxidation of ethyl acetate: unraveling the synergistic role of metal–oxygen bonds. Sci. China Mater. 68(6), 1867–1879 (2025). https://doi.org/10.1007/s40843-025-3295-6
M. Zhang, J. Ye, Y. Gao, X. Duan, J. Zhao et al., General synthesis of high-entropy oxide nanofibers. ACS Nano 18(2), 1449–1463 (2024). https://doi.org/10.1021/acsnano.3c07506
J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593
Y. Zhou, Y. Wang, S. Qiu, W. Zhao, S. Wang et al., Microscopic response mechanism of Epsilon-negative and Epsilon-near-zero metacomposites. Research 8, 0556 (2025). https://doi.org/10.34133/research.0556
S. Mu, Z. Pei, X. Liu, G.M. Stocks, Electronic transport and phonon properties of maximally disordered alloys: from binaries to high-entropy alloys. J. Mater. Res. 33(19), 2857–2880 (2018). https://doi.org/10.1557/jmr.2018.300
S. Zhu, D. Yan, Y. Zhang, L. Han, D. Raabe et al., Strong and ductile Resinvar alloys with temperature- and time-independent resistivity. Nat. Commun. 15(1), 7199 (2024). https://doi.org/10.1038/s41467-024-51572-7
C. Tandoc, Y.-J. Hu, L. Qi, P.K. Liaw, Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys. NPJ Comput. Mater. 9, 53 (2023). https://doi.org/10.1038/s41524-023-00993-x
Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh et al., Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509(5), 1607–1614 (2011). https://doi.org/10.1016/j.jallcom.2010.10.210
F. Meng, W. Zhang, Z. Zhou, R. Sheng, A.C.P. Chuang et al., Charge transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy. Scripta Mater. 203, 114104 (2021). https://doi.org/10.1016/j.scriptamat.2021.114104
B. Zhang, T. Zheng, J. You, C. Ma, Y. Liu et al., Electron-phonon coupling suppression by enhanced lattice rigidity in 2D perovskite single crystals for high-performance X-ray detection. Adv. Mater. 35(7), 2208875 (2023). https://doi.org/10.1002/adma.202208875
K. Jasiewicz, J. Tobola, B. Wiendlocha, Local distortions of the crystal structure and their influence on the electronic structure and superconductivity of the high-entropy alloy (TaNb)0.67(HfZrTi)0.33. Phys. Rev. B 108(22), 224505 (2023). https://doi.org/10.1103/physrevb.108.224505
M.M. Yaqoob, M.F. Iqbal, D. Wang, Carrier–phonon interaction and anharmonic phonon decay in ZnS thin film studied by resonance Raman scattering. J. Raman Spectrosc. 55(3), 347–354 (2024). https://doi.org/10.1002/jrs.6627
J. Kitagawa, K. Hoshi, Y. Kawasaki, R. Koga, Y. Mizuguchi et al., Superconductivity and hardness of the equiatomic high-entropy alloy HfMoNbTiZr. J. Alloys Compd. 924, 166473 (2022). https://doi.org/10.1016/j.jallcom.2022.166473
Y. Ri, P. Woo, Hybrid-type stretchable interconnects with double-layered liquid metal-on-polyimide serpentine structure. ETRI J. 44(1), 147–154 (2022). https://doi.org/10.4218/etrij.2021-0188
X. Wu, X. Luo, Z. Song, Y. Bai, B. Zhang et al., Ultra-robust and sensitive flexible strain sensor for real-time and wearable sign language translation. Adv. Funct. Mater. 33(36), 2303504 (2023). https://doi.org/10.1002/adfm.202303504
M. Melzer, D. Makarov, O.G. Schmidt, A review on stretchable magnetic field sensorics. J. Phys. D-Appl. Phys. 53(8), 083002 (2020). https://doi.org/10.1088/1361-6463/ab52cf
Y. Wei, Z. Li, H. Yan, J. Li, D. Xu et al., Stretchable and temperature-insensitive sensing yarn with a wide temperature range. Adv. Fiber Mater. (2025). https://doi.org/10.1007/s42765-025-00597-8
Z. Huang, G. Wu, Y. Hu, F. Lv, R. Wang et al., Intrinsically temperature-insensitive and highly sensitive flexible wireless strain sensor. ACS Sens. 10(9), 6897–6907 (2025). https://doi.org/10.1021/acssensors.5c01861
H. Fu, P. Wang, H. Zheng, B. Pang, Z. Jin et al., Bioinspired neural network-enabled metre-scale attached ultraductile cementitious nanosensors with temperature-immune. Chem. Eng. J. 519, 165335 (2025). https://doi.org/10.1016/j.cej.2025.165335
L. Xu, F. Zhao, X. Zhou, Y. Wang, T. Shen et al., High-temperature thin-film strain sensors with low temperature coefficient of resistance and high sensitivity via direct ink writing. Nanotechnol. Precis. Eng. 8, 013001 (2025). https://doi.org/10.1063/10.0028828
W. Li, Y. Li, M. Xu, Y. Zhou, R. Miao et al., Highly customizable, ultrawide-temperature free-form flexible sensing electronic systems based on medium-entropy alloy paintings. Nat. Commun. 16(1), 7351 (2025). https://doi.org/10.1038/s41467-025-62100-6