Flexible Sensors for Battery Health Monitoring
Corresponding Author: Libo Gao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 154
Abstract
With the widespread application of lithium batteries in electric vehicles and energy storage systems, battery-related safety and reliability issues have become increasingly prominent. Conventional monitoring methods often struggle to address dynamic changes under complex operando. In recent years, flexible sensing technology has emerged as a promising solution for battery health monitoring due to its high adaptability and conformability to complex structures. Meanwhile, empowered by artificial intelligence (AI) for data analysis, the collected data enables efficient and accurate state assessment, offering robust support for accident prevention. Against this background, this paper first explores the integrated applications of flexible sensors in battery health monitoring and their unique advantages in addressing complex battery operating conditions, while analyzing the potential of AI in battery state analysis. Subsequently, it systematically reviews mainstream flexible sensing technologies (e.g., film sensors, thermocouples, and optical fiber sensors), elucidating their mechanisms for revealing intricate internal battery processes during operation. Finally, the paper discusses AI’s role in enhancing monitoring efficiency and accuracy, and envisions future research directions and application prospects. This work aims to provide technical references for the battery health monitoring field as well as promote the application of flexible sensing technologies in improving battery system safety and reliability.
Highlights:
1 Flexible sensing technology enables battery health monitoring under complex operating conditions, overcoming the limitations of traditional monitoring methods.
2 Artificial intelligence (AI) -powered data processing facilitates the construction of a "sensing–AI–control" framework, enhancing monitoring efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Fan, W. Liang, W. Guo, T. Feng, W. Li, Life cycle assessment of electric vehicles lithium-ion batteries reused for energy storage. J. Energy Storage 71, 108126 (2023). https://doi.org/10.1016/j.est.2023.108126
- T. Mesbahi, P. Bartholomeüs, N. Rizoug, R. Sadoun, F. Khenfri et al., Advanced model of hybrid energy storage system integrating lithium-ion battery and supercapacitor for electric vehicle applications. IEEE Trans. Ind. Electron. 68(5), 3962–3972 (2021). https://doi.org/10.1109/TIE.2020.2984426
- F.M.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N.K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy Storage 71, 108033 (2023). https://doi.org/10.1016/j.est.2023.108033
- X. Li, C. Yuan, X. Li, Z. Wang, State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy 190, 116467 (2020). https://doi.org/10.1016/j.energy.2019.116467
- L. Fan, P. Wang, Z. Cheng, A remaining capacity estimation approach of lithium-ion batteries based on partial charging curve and health feature fusion. J. Energy Storage 43, 103115 (2021). https://doi.org/10.1016/j.est.2021.103115
- X. Li, Z. Wang, J. Yan, Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. J. Power. Sources 421, 56–67 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.008
- F.H. Gandoman, A. Ahmadi, P. Van den Bossche, J. Van Mierlo, N. Omar et al., Status and future perspectives of reliability assessment for electric vehicles. Reliab. Eng. Syst. Saf. 183, 1–16 (2019). https://doi.org/10.1016/j.ress.2018.11.013
- X. Zhang, W. Chen, L. Yang, J. Wang, X. Sun et al., PEDOT-coated rice husk-based activated carbon: boosting lead-acid battery performance. J. Energy Storage 90, 111771 (2024). https://doi.org/10.1016/j.est.2024.111771
- C.V.V. Muralee Gopi, S. Alzahmi, V. Narayanaswamy, R. Vinodh, B. Issa et al., Supercapacitors: a promising solution for sustainable energy storage and diverse applications. J. Energy Storage 114, 115729 (2025). https://doi.org/10.1016/j.est.2025.115729
- J. Wu, W.-M. Lau, D.-S. Geng, Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 36(5), 307–320 (2017). https://doi.org/10.1007/s12598-017-0904-y
- S. Mallick, C.R. Raj, Aqueous rechargeable Zn-ion batteries: strategies for improving the energy storage performance. Chemsuschem 14(9), 1987–2022 (2021). https://doi.org/10.1002/cssc.202100299
- Y. Jia, S. Yin, B. Liu, H. Zhao, H. Yu et al., Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading. Energy 166, 951–960 (2019). https://doi.org/10.1016/j.energy.2018.10.142
- Q. Zhang, J. Niu, J. Yang, T. Liu, F. Bao et al., In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway. J. Energy Storage 56, 106146 (2022). https://doi.org/10.1016/j.est.2022.106146
- I. Dhuchakallaya, P. Saechan, Numerical study of a pressurized gas cooling system to suppress thermal runaway propagation in high-energy-dens Numerical study of a pressurized gas cooling system to suppress thermal runaway propagation in high-energy-density lithium-ion battery packs. J. Energy Storage 101, 113916 (2024). https://doi.org/10.1016/j.est.2024.113916
- Y. Jin, Z. Zhao, S. Miao, Q. Wang, L. Sun et al., Explosion hazards study of grid-scale lithium-ion battery energy storage station. J. Energy Storage 42, 102987 (2021). https://doi.org/10.1016/j.est.2021.102987
- P. Qin, S. Wang, Y. Cheng, L. Jiang, Q. Duan et al., A novel algorithm for heat generation and core temperature based on single-temperature in situ measurement of lithium ion cells. J. Power. Sources 542, 231731 (2022). https://doi.org/10.1016/j.jpowsour.2022.231731
- Q. Chang, Y.X. Angel Ng, D. Yang, J. Chen, T. Liang et al., Quantifying the morphology evolution of lithium battery materials using operando electron microscopy. ACS Mater. Lett. 5(6), 1506–1526 (2023). https://doi.org/10.1021/acsmaterialslett.3c00065
- R. Ma, W. Wu, Z. Jiang, Q. Li, X. Xu et al., Integrated liquid-cooled battery module with dual functions: Thermal runaway suppression and early warning via flexible pressure sensors. Int. J. Therm. Sci. 214, 109908 (2025). https://doi.org/10.1016/j.ijthermalsci.2025.109908
- Y. Kong, C.J. Bennett, C.J. Hyde, A review of non-destructive testing techniques for the in situ investigation of fretting fatigue cracks. Mater. Des. 196, 109093 (2020). https://doi.org/10.1016/j.matdes.2020.109093
- P.P.R.M.L. Harks, F.M. Mulder, P.H.L. Notten, In situ methods for Li-ion battery research: a review of recent developments. J. Power. Sources 288, 92–105 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.084
- Y. Qiao, R. Hu, Y. Gu, F.-J. Tang, S.-H. Luo et al., Exploring new generation of characterization approaches for energy electrochemistry: from operando to artificial intelligence. Sci. Sin. -Chim 54(3), 338–352 (2024). https://doi.org/10.1360/ssc-2023-0222
- J. Yuan, Y. Xue, L. Liu, J. Zhang, Y. Xia, Recent development of electrode materials in semi-solid lithium redox flow batteries. J. Energy Storage 76, 109574 (2024). https://doi.org/10.1016/j.est.2023.109574
- Y. Ding, J. Fu, S. Zhang, X. He, B. Zhao et al., Advances in recycling LiFePO4 from spent lithium batteries: a critical review. Sep. Purif. Technol. 338, 126551 (2024). https://doi.org/10.1016/j.seppur.2024.126551
- H. Wang, F. Wang, In situ, operando measurements of rechargeable batteries. Curr. Opin. Chem. Eng. 13, 170–178 (2016). https://doi.org/10.1016/j.coche.2016.09.002
- Y. Yuan, Y. Lu, T. Liang, H. Jia, L. Meng et al., Advances in sweat-activated batteries for powering wearable electronics: structures, materials, challenges, and perspectives. J. Phys. Energy 7(1), 012001 (2025). https://doi.org/10.1088/2515-7655/ad92aa
- B. Wang, J. Zhao, F. Ni, L. Qiu, X. Wang, Intelligent gesture recognition gloves for real-time monitoring in wireless human-computer interaction. ACS Appl. Mater. Interfaces 17(1), 790–798 (2025). https://doi.org/10.1021/acsami.4c20660
- S. Bi, W. Jin, X. Han, J. Metts, A.D. Ostrosky et al., Flexible pressure visualization equipment for human-computer interaction. Mater. Today Sustain. 21, 100318 (2023). https://doi.org/10.1016/j.mtsust.2023.100318
- N. Noriega, M. Shekhirev, C.E. Shuck, J. Salvage, A. VahidMohammadi et al., Pristine Ti3C2Tx MXene enables flexible and transparent electrochemical sensors. ACS Appl. Mater. Interfaces 16(5), 6569–6578 (2024). https://doi.org/10.1021/acsami.3c14842
- M. Zhang, J. Huang, Y. Lu, W. Pang, H. Zhang et al., Solid-state microfluidics with integrated thin-film acoustic sensors. ACS Sens. 3(8), 1584–1591 (2018). https://doi.org/10.1021/acssensors.8b00412
- S.V. Joshi, S. Sadeghpour, N. Kuznetsova, C. Wang, M. Kraft, Flexible micromachined ultrasound transducers (MUTs) for biomedical applications. Microsyst. Nanoeng. 11, 9 (2025). https://doi.org/10.1038/s41378-024-00783-5
- K.-H. Shin, C.-S. Jin, J.-Y. So, S.-K. Park, D.-H. Kim et al., Real-time monitoring of the state of charge (SOC) in vanadium redox-flow batteries using UV–vis spectroscopy in operando mode. J. Energy Storage 27, 101066 (2020). https://doi.org/10.1016/j.est.2019.101066
- Y. Shen, S. Wang, H. Li, K. Wang, K. Jiang, An overview on in situ/operando battery sensing methodology through thermal and stress measurements. J. Energy Storage 64, 107164 (2023). https://doi.org/10.1016/j.est.2023.107164
- Y. Jin, L. Zhou, J. Yu, J. Liang, W. Cai et al., In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proc. Natl. Acad. Sci. U.S.A. 115(44), 11168–11173 (2018). https://doi.org/10.1073/pnas.1808600115
- K.-Y. Oh, N.A. Samad, Y. Kim, J.B. Siegel, A.G. Stefanopoulou et al., A novel phenomenological multi-physics model of Li-ion battery cells. J. Power. Sources 326, 447–458 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.019
- T. Hackmann, S. Esser, M.A. Danzer, operando determination of lithium-ion cell temperature based on electrochemical impedance features. J. Power. Sources 615, 235036 (2024). https://doi.org/10.1016/j.jpowsour.2024.235036
- Y. Hu, W. Gong, S. Wei, S. Khuje, Y. Huang et al., Lithiating magneto-ionics in a rechargeable battery. Proc. Natl. Acad. Sci. 119(25), e2122866119 (2022). https://doi.org/10.1073/pnas.2122866119
- J. Schwaeke, C. Gerlich, H.L. Nguyen, D.K. Kanbach, J. Gast, Artificial intelligence (AI) for good? Enabling organizational change towards sustainability. Rev. Manag. Sci. 19(10), 3013–3038 (2025). https://doi.org/10.1007/s11846-025-00840-x
- J. Zhang, W. Zhang, B. Sun, Y. Zhang, X. Fan et al., A novel method of battery pack energy health estimation based on visual feature learning. Energy 293, 130656 (2024). https://doi.org/10.1016/j.energy.2024.130656
- J. Zou, Y. Gao, M.H. Frieges, M.F. Börner, A. Kampker et al., Machine learning for battery quality classification and lifetime prediction using formation data. Energy AI 18, 100451 (2024). https://doi.org/10.1016/j.egyai.2024.100451
- Y. Xiang, W. Fan, J. Zhu, X. Wei, H. Dai, Semi-supervised deep learning for lithium-ion battery state-of-health estimation using dynamic discharge profiles. Cell Rep. Phys. Sci. 5(1), 101763 (2024). https://doi.org/10.1016/j.xcrp.2023.101763
- J. Sun, S. Ren, Y. Shang, X. Zhang, Y. Liu et al., A novel fault prediction method based on convolutional neural network and long short-term memory with correlation coefficient for lithium-ion battery. J. Energy Storage 62, 106811 (2023). https://doi.org/10.1016/j.est.2023.106811
- Q. Wang, M. Xie, F. Yang, Early battery lifetime prediction based on statistical health features and box-cox transformation. J. Energy Storage 96, 112594 (2024). https://doi.org/10.1016/j.est.2024.112594
- X. Lai, J. Yu, S. Mao, X. Han, Z. Zhu et al., Enhancing early warning systems: experimental investigation of physical signals in thermal runaway evolution of large-capacity lithium iron phosphate batteries. J. Power. Sources 632, 236389 (2025). https://doi.org/10.1016/j.jpowsour.2025.236389
- Y. Xue, J. Duan, W. Liu, Z. Jin, S. Deng et al., Multiple self-powered sensor-integrated mobile manipulator for intelligent environment detection. ACS Appl. Mater. Interfaces 16(32), 42242–42253 (2024). https://doi.org/10.1021/acsami.4c08624
- A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6(2), 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584
- H.-C. Chung, Charge and discharge profiles of repurposed LiFePO4 batteries based on the UL 1974 standard. Sci. Data 8(1), 165 (2021). https://doi.org/10.1038/s41597-021-00954-3
- W. Wang, Y. Zhang, B. Xie, L. Huang, S. Dong et al., Deciphering advanced sensors for life and safety monitoring of lithium batteries. Adv. Energy Mater. 14(24), 2304173 (2024). https://doi.org/10.1002/aenm.202304173
- G. Qian, X. Chen, H. Lin, L. Yang, Failure-detecting techniques for commercial anodes of lithium-ion batteries. Cell Rep. Phys. Sci. 5(9), 102153 (2024). https://doi.org/10.1016/j.xcrp.2024.102153
- G. Qian, F. Monaco, D. Meng, S.-J. Lee, G. Zan et al., The role of structural defects in commercial lithium-ion batteries. Cell Rep. Phys. Sci. 2(9), 100554 (2021). https://doi.org/10.1016/j.xcrp.2021.100554
- J. Zhang, G. Liang, C. Yang, J. Hu, Y. Chen et al., A breakthrough method for the recycling of spent lithium-ion batteries without pre-sorting. Green Chem. 23(21), 8434–8440 (2021). https://doi.org/10.1039/D1GC02132J
- J. Lochala, D. Liu, B. Wu, C. Robinson, J. Xiao, Research progress toward the practical applications of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 9(29), 24407–24421 (2017). https://doi.org/10.1021/acsami.7b06208
- T. Raoofi, M. Yildiz, Comprehensive review of battery state estimation strategies using machine learning for battery Management Systems of Aircraft Propulsion Batteries. J. Energy Storage 59, 106486 (2023). https://doi.org/10.1016/j.est.2022.106486
- H. Huang, H. Wang, J. Gu, Y. Wu, High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries. Energy Convers. Manag. 190, 54–72 (2019). https://doi.org/10.1016/j.enconman.2019.04.013
- L. Vichard, A. Ravey, P. Venet, F. Harel, S. Pelissier et al., A method to estimate battery SOH indicators based on vehicle operating data only. Energy 225, 120235 (2021). https://doi.org/10.1016/j.energy.2021.120235
- M. Ouyang, D. Ren, L. Lu, J. Li, X. Feng et al., Overcharge-induced capacity fading analysis for large format lithium-ion batteries with Li Ni1/3Co1/3Mn1/3O2+ Li Mn2O4 composite cathode. J. Power. Sources 279, 626–635 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.051
- H. Wang, W. Shi, F. Hu, Y. Wang, X. Hu et al., Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode. Energy 224, 120072 (2021). https://doi.org/10.1016/j.energy.2021.120072
- J. Liu, N. Pei, H. Hua, Y. Deng, H. Ma et al., From mosaic-type to heterojunction-type SEI films on the Li anode: decoupling chemical and electrochemical degradation of the electrolyte. ACS Sustain. Chem. Eng. 10(28), 9232–9241 (2022). https://doi.org/10.1021/acssuschemeng.2c02668
- K.-M. Lee, S.-W. Lee, Y.-G. Choi, B. Kang, Active balancing of Li-ion battery cells using transformer as energy carrier. IEEE Trans. Ind. Electron. 64(2), 1251–1257 (2017). https://doi.org/10.1109/TIE.2016.2611481
- M. Tekin, M.İ Karamangil, Comparative analysis of equivalent circuit battery models for electric vehicle battery management systems. J. Energy Storage 86, 111327 (2024). https://doi.org/10.1016/j.est.2024.111327
- F. Yang, D. Shi, K.-H. Lam, Modified extended Kalman filtering algorithm for precise voltage and state-of-charge estimations of rechargeable batteries. J. Energy Storage 56, 105831 (2022). https://doi.org/10.1016/j.est.2022.105831
- A.I. Rodriguez-Cea, D. Morinigo-Sotelo, F.V. Tinaut, A procedure for evaluating the SOH of Li-ion batteries from data during the constant voltage charge phase and the use of an ECM with internal resistance. J. Energy Storage 108, 115074 (2025). https://doi.org/10.1016/j.est.2024.115074
- D. Schneider, U. Vögele, C. Endisch, Model-based sensor data fusion of quasi-redundant voltage and current measurements in a lithium-ion battery module. J. Power. Sources 440, 227156 (2019). https://doi.org/10.1016/j.jpowsour.2019.227156
- L. Sheng, C. Zhang, J. Xu, X. Zhang, X. Wang et al., In-situ characterization approach for heat-generating performances of a pouch lithium-ion battery. Appl. Therm. Eng. 256, 124081 (2024). https://doi.org/10.1016/j.applthermaleng.2024.124081
- R. Xi, Z. Mu, Z. Ma, W. Jin, H. Ma et al., Lifetime prediction of rechargeable lithium-ion battery using multi-physics and multiscale model. J. Power. Sources 608, 234622 (2024). https://doi.org/10.1016/j.jpowsour.2024.234622
- G. Zhao, Y. Liu, G. Liu, S. Jiang, W. Hao, State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave. J. Energy Storage 39, 102657 (2021). https://doi.org/10.1016/j.est.2021.102657
- X. Xue, X. Han, W. Li, K. Li, F. Liu et al., operando battery monitoring: lab-on-fiber electrochemical sensing technologies. Laser Photonics Rev. 18(9), 2301298 (2024). https://doi.org/10.1002/lpor.202301298
- T. Pan, X. Zheng, D. Guo, X. Huang, W. Li et al., operando monitoring of internal temperature in lithium-ion battery enabled by wireless implantable sensor with ultrasonic communication. J. Energy Storage 101, 113977 (2024). https://doi.org/10.1016/j.est.2024.113977
- V.I. Vlasov, A.Y. Kuzin, I.N. Florya, N.S. Buriak, V.S. Chernyshev et al., Hybrid nanophotonic-microfluidic sensor integrated with machine learning for operando state-of-charge monitoring in vanadium flow batteries. J. Energy Storage 111, 115349 (2025). https://doi.org/10.1016/j.est.2025.115349
- S. Xie, Z. Wang, J. Fu, P. Lv, Y. He, A review of sensing technology for monitoring the key thermal safety characteristic parameters of lithium-ion batteries. J. Power. Sources 624, 235598 (2024). https://doi.org/10.1016/j.jpowsour.2024.235598
- Y. Zhang, Y. Li, Z. Guo, J. Li, X. Ge et al., Health monitoring by optical fiber sensing technology for rechargeable batteries. eScience 4(1), 100174 (2024). https://doi.org/10.1016/j.esci.2023.100174
- Q. Meng, Y. Huang, L. Li, F. Wu, R. Chen, Smart batteries for powering the future. Joule 8, 344–373 (2024). https://doi.org/10.1016/j.joule.2024.01.011
- Y. Lu, X. Wang, S. Mao, D. Wang, D. Sun et al., Smart batteries enabled by implanted flexible sensors. Energy Environ. Sci. 16(6), 2448–2463 (2023). https://doi.org/10.1039/d3ee00695f
- P. Lyu, X. Liu, J. Qu, J. Zhao, Y. Huo et al., Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 31, 195–220 (2020). https://doi.org/10.1016/j.ensm.2020.06.042
- A.G. Olabi, A.A. Abdelghafar, B. Soudan, A.H. Alami, C. Semeraro et al., Artificial neural network driven prognosis and estimation of Lithium-Ion battery states: current insights and future perspectives. Ain Shams Eng. J. 15(2), 102429 (2024). https://doi.org/10.1016/j.asej.2023.102429
- A. Schommer, M.O. Corzo, P. Henshall, D. Morrey, G. Collier, Stack pressure on lithium-ion pouch cells: a comparative study of constant pressure and fixed displacement devices. J. Power. Sources 629, 236019 (2025). https://doi.org/10.1016/j.jpowsour.2024.236019
- M. He, L.G. Hector Jr., F. Dai, F. Xu, S. Kolluri et al., Industry needs for practical lithium-metal battery designs in electric vehicles. Nat. Energy 9(10), 1199–1205 (2024). https://doi.org/10.1038/s41560-024-01624-5
- Z. Zhang, X. Li, L. Gong, Y. Li, J. Qin et al., Performance of lithium-ion pouch cells with silicon composite anodes under external mechanical pressure. Energy Fuels 37(13), 9713–9721 (2023). https://doi.org/10.1021/acs.energyfuels.3c01497
- W. Mei, Z. Liu, C. Wang, C. Wu, Y. Liu et al., operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 (2023). https://doi.org/10.1038/s41467-023-40995-3
- L. Albero Blanquer, F. Marchini, J.R. Seitz, N. Daher, F. Bétermier et al., Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13(1), 1153 (2022). https://doi.org/10.1038/s41467-022-28792-w
- X. Hu, Z. Jiang, L. Yan, G. Yang, J. Xie et al., Real-time visualized battery health monitoring sensor with piezoelectric/pyroelectric poly (vinylidene fluoride-trifluoroethylene) and thin film transistor array by in situ poling. J. Power. Sources 467, 228367 (2020). https://doi.org/10.1016/j.jpowsour.2020.228367
- Y. Li, L. Jiang, N. Zhang, Z. Wei, W. Mei et al., Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring. J. Energy Chem. 92, 74–86 (2024). https://doi.org/10.1016/j.jechem.2023.12.049
- K. Li, L. Chen, X. Gao, S. Peng, P. Liu et al., Influence of ambient temperature on multidimensional signal dynamics and safety performance in lithium-ion batteries during overcharging process. Process. Saf. Environ. Prot. 189, 288–301 (2024). https://doi.org/10.1016/j.psep.2024.06.070
- X. Hong, N. Li, Q. Kong, G. Liu, M. Ho, Local cell temperature monitoring for aluminum shell lithium-ion battery based on electrical resistance tomography. Measurement 86, 227–238 (2016). https://doi.org/10.1016/j.measurement.2016.02.039
- Z. Zhang, Z. Liu, J. Lei, L. Chen, L. Li et al., Flexible thin film thermocouples: from structure, material, fabrication to application. iScience 26(8), 107303 (2023). https://doi.org/10.1016/j.isci.2023.107303
- J. Huang, S.T. Boles, J.-M. Tarascon, Sensing as the key to battery lifetime and sustainability. Nat. Sustain. 5(3), 194–204 (2022). https://doi.org/10.1038/s41893-022-00859-y
- Z. Lv, J. Zhao, Resource-efficient artificial intelligence for battery capacity estimation using convolutional flashattention fusion networks. eTransportation 23, 100383 (2025). https://doi.org/10.1016/j.etran.2024.100383
- Z. Xiao, C. Liu, T. Zhao, Y. Kuang, B. Yin et al., Review: online monitoring of internal temperature in lithium-ion batteries. J. Electrochem. Soc. 170(5), 057517 (2023). https://doi.org/10.1149/1945-7111/acd586
- J. Hedman, D. Nilebo, E. Larsson Langhammer, F. Björefors, Fibre optic sensor for characterisation of lithium-ion batteries. Chemsuschem 13(21), 5731–5739 (2020). https://doi.org/10.1002/cssc.202001709
- A. Fortier, M. Tsao, N.D. Williard, Y. Xing, M.G. Pecht, Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells. Energies 10(7), 838 (2017). https://doi.org/10.3390/en10070838
- G. Bree, H. Hao, Z. Stoeva, C.T. John Low, Monitoring state of charge and volume expansion in lithium-ion batteries: an approach using surface mounted thin-film graphene sensors. RSC Adv. 13(10), 7045–7054 (2023). https://doi.org/10.1039/D2RA07572E
- C.-Y. Lee, S.-J. Lee, M.-S. Tang, P.-C. Chen, In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors 11(10), 9942–9950 (2011). https://doi.org/10.3390/s111009942
- B. Gulsoy, T.A. Vincent, J.E.H. Sansom, J. Marco, In-situ temperature monitoring of a lithium-ion battery using an embedded thermocouple for smart battery applications. J. Energy Storage 54, 105260 (2022). https://doi.org/10.1016/j.est.2022.105260
- K.M. Alcock, M. Grammel, Á. González-Vila, L. Binetti, K. Goh et al., An accessible method of embedding fibre optic sensors on lithium-ion battery surface for in situ thermal monitoring. Sens. Actuat. A Phys. 332, 113061 (2021). https://doi.org/10.1016/j.sna.2021.113061
- D.Z. Gan, S. Gong, W. Zhang, L. Shao, Large-area flexible pressure sensors for in situ monitoring of cell swelling in vehicle battery packs. IEEE Sens. J. 24(9), 13980–13990 (2024). https://doi.org/10.1109/JSEN.2024.3376562
- Z. Chen, J. Lin, C. Zhu, Q. Zhuang, Q. Chen et al., Detection of jelly roll pressure evolution in large-format Li-ion batteries via in situ thin film flexible pressure sensors. J. Power. Sources 566, 232960 (2023). https://doi.org/10.1016/j.jpowsour.2023.232960
- Z. Zhang, W. Zhao, Y. Ma, Y. Yao, T. Yu et al., A flexible integrated temperature-pressure sensor for wearable detection of thermal runaway in lithium batteries. Appl. Energy 381, 125191 (2025). https://doi.org/10.1016/j.apenergy.2024.125191
- Y. Zeng, F. Shen, B. Zhang, J. Lee, D. Chalise et al., Nonintrusive thermal-wave sensor for operando quantification of degradation in commercial batteries. Nat. Commun. 14(1), 8203 (2023). https://doi.org/10.1038/s41467-023-43808-9
- Q. Zhang, H. Zhang, Q. Liu, W.-D. Xue, Y. Xiang et al., Contactless magnetoelectric sensor based on PVDF-TrFE and metglass laminates for lithium-ion battery current and vibration monitoring. ACS Appl. Electron. Mater. 6(5), 3304–3310 (2024). https://doi.org/10.1021/acsaelm.4c00138
- M.S.K. Mutyala, J. Zhao, J. Li, H. Pan, C. Yuan et al., In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples. J. Power. Sources 260, 43–49 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.004
- S. Chen, X. Wei, G. Zhang, X. Rui, C. Xu et al., Active and passive safety enhancement for batteries from force perspective. Renew. Sustain. Energy Rev. 187, 113740 (2023). https://doi.org/10.1016/j.rser.2023.113740
- J. Peng, S. Jia, H. Yu, X. Kang, S. Yang et al., Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries. IEEE Sens. J. 21(4), 4628–4634 (2021). https://doi.org/10.1109/JSEN.2020.3034257
- L.W. Sommer, P. Kiesel, A. Ganguli, A. Lochbaum, B. Saha et al., Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors. J. Power. Sources 296, 46–52 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.025
- M. Nascimento, S. Novais, M.S. Ding, M.S. Ferreira, S. Koch et al., Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power. Sources 410–411, 1–9 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.096
- X. Ge, Y. Zhang, R. Du, N. Chen, Y. Yu et al., Revealing the electrochemical-mechanical correspondence between electrode films and 20 Ah prismatic Li-ion batteries via optical fiber monitoring. Chem. Eng. J. 488, 150895 (2024). https://doi.org/10.1016/j.cej.2024.150895
- J. Hedman, F. Björefors, Fiber optic monitoring of composite lithium iron phosphate cathodes in pouch cell batteries. ACS Appl. Energy Mater. 5(1), 870–881 (2022). https://doi.org/10.1021/acsaem.1c03304
- J. Huang, L. Albero Blanquer, J. Bonefacino, E.R. Logan, D. Alves Dalla Corte et al., operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5(9), 674–683 (2020). https://doi.org/10.1038/s41560-020-0665-y
- C. Ma, B. Zhu, Z. Qian, L. Ren, H. Yuan et al., 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure. J. Manuf. Process. 87, 1–10 (2023). https://doi.org/10.1016/j.jmapro.2023.01.008
- X. Wang, G. Wu, X. Zhang, F. Lv, Z. Yang et al., Traditional Chinese medicine (TCM)-inspired fully printed soft pressure sensor array with self-adaptive pressurization for highly reliable individualized long-term pulse diagnostics. Adv. Mater. 37(1), e2410312 (2025). https://doi.org/10.1002/adma.202410312
- J. Chai, X. Wang, X. Li, G. Wu, Y. Zhao et al., A dual-mode pressure and temperature sensor. Micromachines 15(2), 179 (2024). https://doi.org/10.3390/mi15020179
- X. Liu, Y. Ma, X. Dai, S. Li, B. Li et al., Flexible pressure sensor based on Pt/PI network with high sensitivity and high thermal resistance. Chem. Eng. J. 494, 152996 (2024). https://doi.org/10.1016/j.cej.2024.152996
- K. Guo, J. Liu, N. Gong, Y. Li, Q. Guo, Flexible fiber-based multimodal perception system with integrated pressure, humidity, and temperature sensing for wearable application. Chem. Eng. J. 506, 159925 (2025). https://doi.org/10.1016/j.cej.2025.159925
- X. Cui, H. Xie, Y. Jiang, Z. Xu, G. Sui et al., Porous structure induced crack redistribution in surface conductive layer for high-performance fiber-based flexible strain and pressure sensors. Polym. Adv. Technol. 34(9), 3011–3021 (2023). https://doi.org/10.1002/pat.6124
- S. Sun, X. Maimaitiyiming, Silver nanowire/polyacrylamide/gelatin flexible stress, strain and temperature sensor. Colloids Surf. A Physicochem. Eng. Aspects 675, 131919 (2023). https://doi.org/10.1016/j.colsurfa.2023.131919
- Z. Liu, B. Tian, B. Zhang, J. Liu, Z. Zhang et al., A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng. 7, 42 (2021). https://doi.org/10.1038/s41378-021-00271-0
- B. Sun, G. Xu, Z. Yang, C. Guan, X. Ji et al., Dual-mode temperature monitoring using high-performance flexible thermocouple sensors based on PEDOT: PSS/CNTs and MXene/Bi2Se3. Microsyst. Nanoeng. 11, 31 (2025). https://doi.org/10.1038/s41378-025-00867-w
- S. Konishi, A. Hirata, Flexible temperature sensor integrated with soft pneumatic microactuators for functional microfingers. Sci. Rep. 9(1), 15634 (2019). https://doi.org/10.1038/s41598-019-52022-x
- C. Lu, J. Su, X. Dong, T. Sun, K.T.V. Grattan, Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor. J. Lightwave Technol. 36(13), 2796–2802 (2018). https://doi.org/10.1109/JLT.2018.2825294
- Y. Liu, Y. Wang, D. Yang, J. Wu, T. Zhang et al., Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature. IEEE Sens. J. 19(23), 11236–11241 (2019). https://doi.org/10.1109/JSEN.2019.2934738
- C.-J. Hu, C. Jiang, L. Li, L.-F. Deng, J.-W. Gao et al., Thin-core fiber-based Mach-Zehnder interferometer sensor for monitoring temperature, pressure, and humidity. Instrum. Sci. Technol. 52(5), 536–554 (2024). https://doi.org/10.1080/10739149.2023.2291725
- A. Khan, I.H. Naqvi, C. Bhargava, C.-P. Lin, S.T. Boles et al., Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. Renew. Sustain. Energy Rev. 212, 115408 (2025). https://doi.org/10.1016/j.rser.2025.115408
- C. Choi, L. Myeong, K. Hyeong, K. Jeong, J. Di et al., Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16(12), 7677–7684 (2016). https://doi.org/10.1021/acs.nanolett.6b03739
- Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma et al., Lithium-ion battery aging mechanisms and life model under different charging stresses. J. Power. Sources 356, 103–114 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.084
- Y. Wang, Q. Zhang, C. Yang, Z. Xia, Ratiometric fluorescence optical fiber enabling operando temperature monitoring in pouch-type battery. Adv. Mater. 36(25), 2401057 (2024). https://doi.org/10.1002/adma.202401057
- X. Wang, J. Zhu, X. Wei, D. Wang, W. Xu et al., Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing. Energy Storage Mater. 65, 103160 (2024). https://doi.org/10.1016/j.ensm.2023.103160
- G. Zhu, F. Wang, L. Chen, C. Wang, Y. Xu et al., Highly flexible TPU/SWCNTs composite-based temperature sensors with linear negative temperature coefficient effect and photo-thermal effect. Compos. Sci. Technol. 217, 109133 (2022). https://doi.org/10.1016/j.compscitech.2021.109133
- X.-H. Zhao, Y.-R. Wang, Y.-Z. Chen, H.-C. Jiang, W.-L. Zhang, Enhanced thermoelectric property and stability of NiCr–NiSi thin film thermocouple on superalloy substrate. Rare Met. 36(6), 512–516 (2017). https://doi.org/10.1007/s12598-016-0809-1
- J. Guo, K. Zhu, Q. Wu, Y. Rao, P. Liang et al., Microfiber sensor integrated inside solid-state lithium-metal batteries for reducing invasiveness. J. Power. Sources 599, 234231 (2024). https://doi.org/10.1016/j.jpowsour.2024.234231
- Y. Kuang, Y. Guo, L. Xiong, W. Liu, Packaging and temperature compensation of fiber Bragg grating for strain sensing: a survey. Photonic Sens. 8(4), 320–331 (2018). https://doi.org/10.1007/s13320-018-0504-y
- P. Jia, Q. Zhang, Z. Ren, J. Yin, D. Lei et al., Self-powered flexible battery pressure sensor based on gelatin. Chem. Eng. J. 479, 147586 (2024). https://doi.org/10.1016/j.cej.2023.147586
- P. Zhang, W. Wang, Y. Ma, H. Zhang, D. Zhou et al., MXene-based self-adhesive, ultrasensitive, highly tough flexible hydrogel pressure sensors for motion monitoring and robotic tactile sensing. Chem. Eng. J. 499, 156173 (2024). https://doi.org/10.1016/j.cej.2024.156173
- Y. Wang, W. Zhu, Y. Deng, B. Fu, P. Zhu et al., Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 73, 104773 (2020). https://doi.org/10.1016/j.nanoen.2020.104773
- K.-B. Chang, P. Parashar, L.-C. Shen, A.-R. Chen, Y.-T. Huang et al., A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure distribution inside prosthetic limb. Nano Energy 111, 108397 (2023). https://doi.org/10.1016/j.nanoen.2023.108397
- A.J. Louli, L.D. Ellis, J.R. Dahn, operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance. Joule 3(3), 745–761 (2019). https://doi.org/10.1016/j.joule.2018.12.009
- T. Isernia, V. Pascazio, R. Pierri, On the local minima in a tomographic imaging technique. IEEE Trans. Geosci. Remote Sens. 39(7), 1596–1607 (2001). https://doi.org/10.1109/36.934091
- M. Otoyama, A. Sakuda, M. Tatsumisago, A. Hayashi, Sulfide electrolyte suppressing side reactions in composite positive electrodes for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(26), 29228–29234 (2020). https://doi.org/10.1021/acsami.0c05050
- J. Kasnatscheew, M. Börner, B. Streipert, P. Meister, R. Wagner et al., Lithium ion battery cells under abusive discharge conditions: Electrode potential development and interactions between positive and negative electrode. J. Power. Sources 362, 278–282 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.044
- A. Orita, K. Kamijima, M. Yoshida, K. Dokko, M. Watanabe, Favorable combination of positive and negative electrode materials with glyme–Li salt complex electrolytes in lithium ion batteries. J. Power. Sources 196(8), 3874–3880 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.087
- M.M. Mallick, L. Franke, A.G. Rösch, M. Hussein, Z. Long et al., High-sensitivity flexible thermocouple sensor arrays via printing and photonic curing. Adv. Funct. Mater. 34(20), 2301681 (2024). https://doi.org/10.1002/adfm.202301681
- C. He, M. Li, F. Wang, J. Zheng, Simulation study of a cylindrical battery module. J. Energy Storage 48, 104000 (2022). https://doi.org/10.1016/j.est.2022.104000
- S.D. Gelam, S. Maddipatla, C. Chicone, M. Pecht, Core collapse in cylindrical Li-ion batteries. J. Power. Sources 623, 235471 (2024). https://doi.org/10.1016/j.jpowsour.2024.235471
- K. Li, Y. Huang, G. Han, W. Lyu, A. He et al., Real-time electrochemical-strain distribution and state-of-charge mapping via distributed optical fiber for lithium-ion batteries. J. Power. Sources 624, 235526 (2024). https://doi.org/10.1016/j.jpowsour.2024.235526
- J. Fan, C. Liu, N. Li, L. Yang, X.-G. Yang et al., Wireless transmission of internal hazard signals in Li-ion batteries. Nature 641(8063), 639–645 (2025). https://doi.org/10.1038/s41586-025-08785-7
- S. Zhu, L. Yang, J. Wen, X. Feng, P. Zhou et al., In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors. J. Power. Sources 516, 230669 (2021). https://doi.org/10.1016/j.jpowsour.2021.230669
- Q. Zhang, D. Wang, B. Yang, H. Dong, C. Zhu et al., An electrochemical impedance model of lithium-ion battery for electric vehicle application. J. Energy Storage 50, 104182 (2022). https://doi.org/10.1016/j.est.2022.104182
- L. Zheng, S. Zhang, H. Huang, R. Liu, M. Cai et al., Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage. J. Energy Storage 73, 108926 (2023). https://doi.org/10.1016/j.est.2023.108926
- S. Manikandan, R.S. Kaviya, D.H. Shreeharan, R. Subbaiya, S. Vickram et al., Artificial intelligence-driven sustainability: enhancing carbon capture for sustainable development goals—a review. Sustain. Dev. 33(2), 2004–2029 (2025). https://doi.org/10.1002/sd.3222
- S. Tong, J.H. Lacap, J.W. Park, Battery state of charge estimation using a load-classifying neural network. J. Energy Storage 7, 236–243 (2016). https://doi.org/10.1016/j.est.2016.07.002
- F. Yang, W. Li, C. Li, Q. Miao, State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy 175, 66–75 (2019). https://doi.org/10.1016/j.energy.2019.03.059
- C. Chen, R. Xiong, R. Yang, W. Shen, F. Sun, State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter. J. Clean. Prod. 234, 1153–1164 (2019). https://doi.org/10.1016/j.jclepro.2019.06.273
- A. Abbasi, A. Gharehghani, A. Andwari, Real-time discharge curve and state of charge estimation of lithium-ion batteries via a physics-informed full homogenized macroscale model. J. Energy Storage 135, 118307 (2025). https://doi.org/10.1016/j.est.2025.118307
- P. Schröer, E. Khoshbakht, T. Nemeth, M. Kuipers, H. Zappen et al., Adaptive modeling in the frequency and time domain of high-power lithium titanate oxide cells in battery management systems. J. Energy Storage 32, 101966 (2020). https://doi.org/10.1016/j.est.2020.101966
- X. Wang, J. Wu, C. Zhang, Y. Zhang, Multi-objective online driving strategy optimization for energy storage tram considering battery life. J. Energy Storage 100, 113498 (2024). https://doi.org/10.1016/j.est.2024.113498
- F. Widmer, A. Ritter, J. Ritzmann, D. Gerber, C.H. Onder, Battery health target tracking for HEVs: closed-loop control approach, simulation framework, and reference trajectory optimization. eTransportation 17, 100244 (2023). https://doi.org/10.1016/j.etran.2023.100244
- N. Mahne, O. Fontaine, M.O. Thotiyl, M. Wilkening, S.A. Freunberger, Mechanism and performance of lithium-oxygen batteries: a perspective. Chem. Sci. 8(10), 6716–6729 (2017). https://doi.org/10.1039/c7sc02519j
- Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater. 12(32), 2201506 (2022). https://doi.org/10.1002/aenm.202201506
- G. Li, H. Lu, H. Wang, Y. Ran, R. Ji et al., A visualization method for cross-scale online monitoring of grinding state based on data-mechanism hybrid-driven digital twin system. Mech. Syst. Signal Process. 225, 112293 (2025). https://doi.org/10.1016/j.ymssp.2024.112293
- G. Zhang, J. Zhu, H. Dai, X. Wei, Multi-level intelligence empowering lithium-ion batteries. J. Energy Chem. 97, 535–552 (2024). https://doi.org/10.1016/j.jechem.2024.06.020
References
T. Fan, W. Liang, W. Guo, T. Feng, W. Li, Life cycle assessment of electric vehicles lithium-ion batteries reused for energy storage. J. Energy Storage 71, 108126 (2023). https://doi.org/10.1016/j.est.2023.108126
T. Mesbahi, P. Bartholomeüs, N. Rizoug, R. Sadoun, F. Khenfri et al., Advanced model of hybrid energy storage system integrating lithium-ion battery and supercapacitor for electric vehicle applications. IEEE Trans. Ind. Electron. 68(5), 3962–3972 (2021). https://doi.org/10.1109/TIE.2020.2984426
F.M.N.U. Khan, M.G. Rasul, A.S.M. Sayem, N.K. Mandal, Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J. Energy Storage 71, 108033 (2023). https://doi.org/10.1016/j.est.2023.108033
X. Li, C. Yuan, X. Li, Z. Wang, State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy 190, 116467 (2020). https://doi.org/10.1016/j.energy.2019.116467
L. Fan, P. Wang, Z. Cheng, A remaining capacity estimation approach of lithium-ion batteries based on partial charging curve and health feature fusion. J. Energy Storage 43, 103115 (2021). https://doi.org/10.1016/j.est.2021.103115
X. Li, Z. Wang, J. Yan, Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. J. Power. Sources 421, 56–67 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.008
F.H. Gandoman, A. Ahmadi, P. Van den Bossche, J. Van Mierlo, N. Omar et al., Status and future perspectives of reliability assessment for electric vehicles. Reliab. Eng. Syst. Saf. 183, 1–16 (2019). https://doi.org/10.1016/j.ress.2018.11.013
X. Zhang, W. Chen, L. Yang, J. Wang, X. Sun et al., PEDOT-coated rice husk-based activated carbon: boosting lead-acid battery performance. J. Energy Storage 90, 111771 (2024). https://doi.org/10.1016/j.est.2024.111771
C.V.V. Muralee Gopi, S. Alzahmi, V. Narayanaswamy, R. Vinodh, B. Issa et al., Supercapacitors: a promising solution for sustainable energy storage and diverse applications. J. Energy Storage 114, 115729 (2025). https://doi.org/10.1016/j.est.2025.115729
J. Wu, W.-M. Lau, D.-S. Geng, Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 36(5), 307–320 (2017). https://doi.org/10.1007/s12598-017-0904-y
S. Mallick, C.R. Raj, Aqueous rechargeable Zn-ion batteries: strategies for improving the energy storage performance. Chemsuschem 14(9), 1987–2022 (2021). https://doi.org/10.1002/cssc.202100299
Y. Jia, S. Yin, B. Liu, H. Zhao, H. Yu et al., Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading. Energy 166, 951–960 (2019). https://doi.org/10.1016/j.energy.2018.10.142
Q. Zhang, J. Niu, J. Yang, T. Liu, F. Bao et al., In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway. J. Energy Storage 56, 106146 (2022). https://doi.org/10.1016/j.est.2022.106146
I. Dhuchakallaya, P. Saechan, Numerical study of a pressurized gas cooling system to suppress thermal runaway propagation in high-energy-dens Numerical study of a pressurized gas cooling system to suppress thermal runaway propagation in high-energy-density lithium-ion battery packs. J. Energy Storage 101, 113916 (2024). https://doi.org/10.1016/j.est.2024.113916
Y. Jin, Z. Zhao, S. Miao, Q. Wang, L. Sun et al., Explosion hazards study of grid-scale lithium-ion battery energy storage station. J. Energy Storage 42, 102987 (2021). https://doi.org/10.1016/j.est.2021.102987
P. Qin, S. Wang, Y. Cheng, L. Jiang, Q. Duan et al., A novel algorithm for heat generation and core temperature based on single-temperature in situ measurement of lithium ion cells. J. Power. Sources 542, 231731 (2022). https://doi.org/10.1016/j.jpowsour.2022.231731
Q. Chang, Y.X. Angel Ng, D. Yang, J. Chen, T. Liang et al., Quantifying the morphology evolution of lithium battery materials using operando electron microscopy. ACS Mater. Lett. 5(6), 1506–1526 (2023). https://doi.org/10.1021/acsmaterialslett.3c00065
R. Ma, W. Wu, Z. Jiang, Q. Li, X. Xu et al., Integrated liquid-cooled battery module with dual functions: Thermal runaway suppression and early warning via flexible pressure sensors. Int. J. Therm. Sci. 214, 109908 (2025). https://doi.org/10.1016/j.ijthermalsci.2025.109908
Y. Kong, C.J. Bennett, C.J. Hyde, A review of non-destructive testing techniques for the in situ investigation of fretting fatigue cracks. Mater. Des. 196, 109093 (2020). https://doi.org/10.1016/j.matdes.2020.109093
P.P.R.M.L. Harks, F.M. Mulder, P.H.L. Notten, In situ methods for Li-ion battery research: a review of recent developments. J. Power. Sources 288, 92–105 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.084
Y. Qiao, R. Hu, Y. Gu, F.-J. Tang, S.-H. Luo et al., Exploring new generation of characterization approaches for energy electrochemistry: from operando to artificial intelligence. Sci. Sin. -Chim 54(3), 338–352 (2024). https://doi.org/10.1360/ssc-2023-0222
J. Yuan, Y. Xue, L. Liu, J. Zhang, Y. Xia, Recent development of electrode materials in semi-solid lithium redox flow batteries. J. Energy Storage 76, 109574 (2024). https://doi.org/10.1016/j.est.2023.109574
Y. Ding, J. Fu, S. Zhang, X. He, B. Zhao et al., Advances in recycling LiFePO4 from spent lithium batteries: a critical review. Sep. Purif. Technol. 338, 126551 (2024). https://doi.org/10.1016/j.seppur.2024.126551
H. Wang, F. Wang, In situ, operando measurements of rechargeable batteries. Curr. Opin. Chem. Eng. 13, 170–178 (2016). https://doi.org/10.1016/j.coche.2016.09.002
Y. Yuan, Y. Lu, T. Liang, H. Jia, L. Meng et al., Advances in sweat-activated batteries for powering wearable electronics: structures, materials, challenges, and perspectives. J. Phys. Energy 7(1), 012001 (2025). https://doi.org/10.1088/2515-7655/ad92aa
B. Wang, J. Zhao, F. Ni, L. Qiu, X. Wang, Intelligent gesture recognition gloves for real-time monitoring in wireless human-computer interaction. ACS Appl. Mater. Interfaces 17(1), 790–798 (2025). https://doi.org/10.1021/acsami.4c20660
S. Bi, W. Jin, X. Han, J. Metts, A.D. Ostrosky et al., Flexible pressure visualization equipment for human-computer interaction. Mater. Today Sustain. 21, 100318 (2023). https://doi.org/10.1016/j.mtsust.2023.100318
N. Noriega, M. Shekhirev, C.E. Shuck, J. Salvage, A. VahidMohammadi et al., Pristine Ti3C2Tx MXene enables flexible and transparent electrochemical sensors. ACS Appl. Mater. Interfaces 16(5), 6569–6578 (2024). https://doi.org/10.1021/acsami.3c14842
M. Zhang, J. Huang, Y. Lu, W. Pang, H. Zhang et al., Solid-state microfluidics with integrated thin-film acoustic sensors. ACS Sens. 3(8), 1584–1591 (2018). https://doi.org/10.1021/acssensors.8b00412
S.V. Joshi, S. Sadeghpour, N. Kuznetsova, C. Wang, M. Kraft, Flexible micromachined ultrasound transducers (MUTs) for biomedical applications. Microsyst. Nanoeng. 11, 9 (2025). https://doi.org/10.1038/s41378-024-00783-5
K.-H. Shin, C.-S. Jin, J.-Y. So, S.-K. Park, D.-H. Kim et al., Real-time monitoring of the state of charge (SOC) in vanadium redox-flow batteries using UV–vis spectroscopy in operando mode. J. Energy Storage 27, 101066 (2020). https://doi.org/10.1016/j.est.2019.101066
Y. Shen, S. Wang, H. Li, K. Wang, K. Jiang, An overview on in situ/operando battery sensing methodology through thermal and stress measurements. J. Energy Storage 64, 107164 (2023). https://doi.org/10.1016/j.est.2023.107164
Y. Jin, L. Zhou, J. Yu, J. Liang, W. Cai et al., In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proc. Natl. Acad. Sci. U.S.A. 115(44), 11168–11173 (2018). https://doi.org/10.1073/pnas.1808600115
K.-Y. Oh, N.A. Samad, Y. Kim, J.B. Siegel, A.G. Stefanopoulou et al., A novel phenomenological multi-physics model of Li-ion battery cells. J. Power. Sources 326, 447–458 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.019
T. Hackmann, S. Esser, M.A. Danzer, operando determination of lithium-ion cell temperature based on electrochemical impedance features. J. Power. Sources 615, 235036 (2024). https://doi.org/10.1016/j.jpowsour.2024.235036
Y. Hu, W. Gong, S. Wei, S. Khuje, Y. Huang et al., Lithiating magneto-ionics in a rechargeable battery. Proc. Natl. Acad. Sci. 119(25), e2122866119 (2022). https://doi.org/10.1073/pnas.2122866119
J. Schwaeke, C. Gerlich, H.L. Nguyen, D.K. Kanbach, J. Gast, Artificial intelligence (AI) for good? Enabling organizational change towards sustainability. Rev. Manag. Sci. 19(10), 3013–3038 (2025). https://doi.org/10.1007/s11846-025-00840-x
J. Zhang, W. Zhang, B. Sun, Y. Zhang, X. Fan et al., A novel method of battery pack energy health estimation based on visual feature learning. Energy 293, 130656 (2024). https://doi.org/10.1016/j.energy.2024.130656
J. Zou, Y. Gao, M.H. Frieges, M.F. Börner, A. Kampker et al., Machine learning for battery quality classification and lifetime prediction using formation data. Energy AI 18, 100451 (2024). https://doi.org/10.1016/j.egyai.2024.100451
Y. Xiang, W. Fan, J. Zhu, X. Wei, H. Dai, Semi-supervised deep learning for lithium-ion battery state-of-health estimation using dynamic discharge profiles. Cell Rep. Phys. Sci. 5(1), 101763 (2024). https://doi.org/10.1016/j.xcrp.2023.101763
J. Sun, S. Ren, Y. Shang, X. Zhang, Y. Liu et al., A novel fault prediction method based on convolutional neural network and long short-term memory with correlation coefficient for lithium-ion battery. J. Energy Storage 62, 106811 (2023). https://doi.org/10.1016/j.est.2023.106811
Q. Wang, M. Xie, F. Yang, Early battery lifetime prediction based on statistical health features and box-cox transformation. J. Energy Storage 96, 112594 (2024). https://doi.org/10.1016/j.est.2024.112594
X. Lai, J. Yu, S. Mao, X. Han, Z. Zhu et al., Enhancing early warning systems: experimental investigation of physical signals in thermal runaway evolution of large-capacity lithium iron phosphate batteries. J. Power. Sources 632, 236389 (2025). https://doi.org/10.1016/j.jpowsour.2025.236389
Y. Xue, J. Duan, W. Liu, Z. Jin, S. Deng et al., Multiple self-powered sensor-integrated mobile manipulator for intelligent environment detection. ACS Appl. Mater. Interfaces 16(32), 42242–42253 (2024). https://doi.org/10.1021/acsami.4c08624
A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6(2), 621–630 (2021). https://doi.org/10.1021/acsenergylett.0c02584
H.-C. Chung, Charge and discharge profiles of repurposed LiFePO4 batteries based on the UL 1974 standard. Sci. Data 8(1), 165 (2021). https://doi.org/10.1038/s41597-021-00954-3
W. Wang, Y. Zhang, B. Xie, L. Huang, S. Dong et al., Deciphering advanced sensors for life and safety monitoring of lithium batteries. Adv. Energy Mater. 14(24), 2304173 (2024). https://doi.org/10.1002/aenm.202304173
G. Qian, X. Chen, H. Lin, L. Yang, Failure-detecting techniques for commercial anodes of lithium-ion batteries. Cell Rep. Phys. Sci. 5(9), 102153 (2024). https://doi.org/10.1016/j.xcrp.2024.102153
G. Qian, F. Monaco, D. Meng, S.-J. Lee, G. Zan et al., The role of structural defects in commercial lithium-ion batteries. Cell Rep. Phys. Sci. 2(9), 100554 (2021). https://doi.org/10.1016/j.xcrp.2021.100554
J. Zhang, G. Liang, C. Yang, J. Hu, Y. Chen et al., A breakthrough method for the recycling of spent lithium-ion batteries without pre-sorting. Green Chem. 23(21), 8434–8440 (2021). https://doi.org/10.1039/D1GC02132J
J. Lochala, D. Liu, B. Wu, C. Robinson, J. Xiao, Research progress toward the practical applications of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 9(29), 24407–24421 (2017). https://doi.org/10.1021/acsami.7b06208
T. Raoofi, M. Yildiz, Comprehensive review of battery state estimation strategies using machine learning for battery Management Systems of Aircraft Propulsion Batteries. J. Energy Storage 59, 106486 (2023). https://doi.org/10.1016/j.est.2022.106486
H. Huang, H. Wang, J. Gu, Y. Wu, High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries. Energy Convers. Manag. 190, 54–72 (2019). https://doi.org/10.1016/j.enconman.2019.04.013
L. Vichard, A. Ravey, P. Venet, F. Harel, S. Pelissier et al., A method to estimate battery SOH indicators based on vehicle operating data only. Energy 225, 120235 (2021). https://doi.org/10.1016/j.energy.2021.120235
M. Ouyang, D. Ren, L. Lu, J. Li, X. Feng et al., Overcharge-induced capacity fading analysis for large format lithium-ion batteries with Li Ni1/3Co1/3Mn1/3O2+ Li Mn2O4 composite cathode. J. Power. Sources 279, 626–635 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.051
H. Wang, W. Shi, F. Hu, Y. Wang, X. Hu et al., Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode. Energy 224, 120072 (2021). https://doi.org/10.1016/j.energy.2021.120072
J. Liu, N. Pei, H. Hua, Y. Deng, H. Ma et al., From mosaic-type to heterojunction-type SEI films on the Li anode: decoupling chemical and electrochemical degradation of the electrolyte. ACS Sustain. Chem. Eng. 10(28), 9232–9241 (2022). https://doi.org/10.1021/acssuschemeng.2c02668
K.-M. Lee, S.-W. Lee, Y.-G. Choi, B. Kang, Active balancing of Li-ion battery cells using transformer as energy carrier. IEEE Trans. Ind. Electron. 64(2), 1251–1257 (2017). https://doi.org/10.1109/TIE.2016.2611481
M. Tekin, M.İ Karamangil, Comparative analysis of equivalent circuit battery models for electric vehicle battery management systems. J. Energy Storage 86, 111327 (2024). https://doi.org/10.1016/j.est.2024.111327
F. Yang, D. Shi, K.-H. Lam, Modified extended Kalman filtering algorithm for precise voltage and state-of-charge estimations of rechargeable batteries. J. Energy Storage 56, 105831 (2022). https://doi.org/10.1016/j.est.2022.105831
A.I. Rodriguez-Cea, D. Morinigo-Sotelo, F.V. Tinaut, A procedure for evaluating the SOH of Li-ion batteries from data during the constant voltage charge phase and the use of an ECM with internal resistance. J. Energy Storage 108, 115074 (2025). https://doi.org/10.1016/j.est.2024.115074
D. Schneider, U. Vögele, C. Endisch, Model-based sensor data fusion of quasi-redundant voltage and current measurements in a lithium-ion battery module. J. Power. Sources 440, 227156 (2019). https://doi.org/10.1016/j.jpowsour.2019.227156
L. Sheng, C. Zhang, J. Xu, X. Zhang, X. Wang et al., In-situ characterization approach for heat-generating performances of a pouch lithium-ion battery. Appl. Therm. Eng. 256, 124081 (2024). https://doi.org/10.1016/j.applthermaleng.2024.124081
R. Xi, Z. Mu, Z. Ma, W. Jin, H. Ma et al., Lifetime prediction of rechargeable lithium-ion battery using multi-physics and multiscale model. J. Power. Sources 608, 234622 (2024). https://doi.org/10.1016/j.jpowsour.2024.234622
G. Zhao, Y. Liu, G. Liu, S. Jiang, W. Hao, State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave. J. Energy Storage 39, 102657 (2021). https://doi.org/10.1016/j.est.2021.102657
X. Xue, X. Han, W. Li, K. Li, F. Liu et al., operando battery monitoring: lab-on-fiber electrochemical sensing technologies. Laser Photonics Rev. 18(9), 2301298 (2024). https://doi.org/10.1002/lpor.202301298
T. Pan, X. Zheng, D. Guo, X. Huang, W. Li et al., operando monitoring of internal temperature in lithium-ion battery enabled by wireless implantable sensor with ultrasonic communication. J. Energy Storage 101, 113977 (2024). https://doi.org/10.1016/j.est.2024.113977
V.I. Vlasov, A.Y. Kuzin, I.N. Florya, N.S. Buriak, V.S. Chernyshev et al., Hybrid nanophotonic-microfluidic sensor integrated with machine learning for operando state-of-charge monitoring in vanadium flow batteries. J. Energy Storage 111, 115349 (2025). https://doi.org/10.1016/j.est.2025.115349
S. Xie, Z. Wang, J. Fu, P. Lv, Y. He, A review of sensing technology for monitoring the key thermal safety characteristic parameters of lithium-ion batteries. J. Power. Sources 624, 235598 (2024). https://doi.org/10.1016/j.jpowsour.2024.235598
Y. Zhang, Y. Li, Z. Guo, J. Li, X. Ge et al., Health monitoring by optical fiber sensing technology for rechargeable batteries. eScience 4(1), 100174 (2024). https://doi.org/10.1016/j.esci.2023.100174
Q. Meng, Y. Huang, L. Li, F. Wu, R. Chen, Smart batteries for powering the future. Joule 8, 344–373 (2024). https://doi.org/10.1016/j.joule.2024.01.011
Y. Lu, X. Wang, S. Mao, D. Wang, D. Sun et al., Smart batteries enabled by implanted flexible sensors. Energy Environ. Sci. 16(6), 2448–2463 (2023). https://doi.org/10.1039/d3ee00695f
P. Lyu, X. Liu, J. Qu, J. Zhao, Y. Huo et al., Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 31, 195–220 (2020). https://doi.org/10.1016/j.ensm.2020.06.042
A.G. Olabi, A.A. Abdelghafar, B. Soudan, A.H. Alami, C. Semeraro et al., Artificial neural network driven prognosis and estimation of Lithium-Ion battery states: current insights and future perspectives. Ain Shams Eng. J. 15(2), 102429 (2024). https://doi.org/10.1016/j.asej.2023.102429
A. Schommer, M.O. Corzo, P. Henshall, D. Morrey, G. Collier, Stack pressure on lithium-ion pouch cells: a comparative study of constant pressure and fixed displacement devices. J. Power. Sources 629, 236019 (2025). https://doi.org/10.1016/j.jpowsour.2024.236019
M. He, L.G. Hector Jr., F. Dai, F. Xu, S. Kolluri et al., Industry needs for practical lithium-metal battery designs in electric vehicles. Nat. Energy 9(10), 1199–1205 (2024). https://doi.org/10.1038/s41560-024-01624-5
Z. Zhang, X. Li, L. Gong, Y. Li, J. Qin et al., Performance of lithium-ion pouch cells with silicon composite anodes under external mechanical pressure. Energy Fuels 37(13), 9713–9721 (2023). https://doi.org/10.1021/acs.energyfuels.3c01497
W. Mei, Z. Liu, C. Wang, C. Wu, Y. Liu et al., operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 14, 5251 (2023). https://doi.org/10.1038/s41467-023-40995-3
L. Albero Blanquer, F. Marchini, J.R. Seitz, N. Daher, F. Bétermier et al., Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. 13(1), 1153 (2022). https://doi.org/10.1038/s41467-022-28792-w
X. Hu, Z. Jiang, L. Yan, G. Yang, J. Xie et al., Real-time visualized battery health monitoring sensor with piezoelectric/pyroelectric poly (vinylidene fluoride-trifluoroethylene) and thin film transistor array by in situ poling. J. Power. Sources 467, 228367 (2020). https://doi.org/10.1016/j.jpowsour.2020.228367
Y. Li, L. Jiang, N. Zhang, Z. Wei, W. Mei et al., Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring. J. Energy Chem. 92, 74–86 (2024). https://doi.org/10.1016/j.jechem.2023.12.049
K. Li, L. Chen, X. Gao, S. Peng, P. Liu et al., Influence of ambient temperature on multidimensional signal dynamics and safety performance in lithium-ion batteries during overcharging process. Process. Saf. Environ. Prot. 189, 288–301 (2024). https://doi.org/10.1016/j.psep.2024.06.070
X. Hong, N. Li, Q. Kong, G. Liu, M. Ho, Local cell temperature monitoring for aluminum shell lithium-ion battery based on electrical resistance tomography. Measurement 86, 227–238 (2016). https://doi.org/10.1016/j.measurement.2016.02.039
Z. Zhang, Z. Liu, J. Lei, L. Chen, L. Li et al., Flexible thin film thermocouples: from structure, material, fabrication to application. iScience 26(8), 107303 (2023). https://doi.org/10.1016/j.isci.2023.107303
J. Huang, S.T. Boles, J.-M. Tarascon, Sensing as the key to battery lifetime and sustainability. Nat. Sustain. 5(3), 194–204 (2022). https://doi.org/10.1038/s41893-022-00859-y
Z. Lv, J. Zhao, Resource-efficient artificial intelligence for battery capacity estimation using convolutional flashattention fusion networks. eTransportation 23, 100383 (2025). https://doi.org/10.1016/j.etran.2024.100383
Z. Xiao, C. Liu, T. Zhao, Y. Kuang, B. Yin et al., Review: online monitoring of internal temperature in lithium-ion batteries. J. Electrochem. Soc. 170(5), 057517 (2023). https://doi.org/10.1149/1945-7111/acd586
J. Hedman, D. Nilebo, E. Larsson Langhammer, F. Björefors, Fibre optic sensor for characterisation of lithium-ion batteries. Chemsuschem 13(21), 5731–5739 (2020). https://doi.org/10.1002/cssc.202001709
A. Fortier, M. Tsao, N.D. Williard, Y. Xing, M.G. Pecht, Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells. Energies 10(7), 838 (2017). https://doi.org/10.3390/en10070838
G. Bree, H. Hao, Z. Stoeva, C.T. John Low, Monitoring state of charge and volume expansion in lithium-ion batteries: an approach using surface mounted thin-film graphene sensors. RSC Adv. 13(10), 7045–7054 (2023). https://doi.org/10.1039/D2RA07572E
C.-Y. Lee, S.-J. Lee, M.-S. Tang, P.-C. Chen, In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors. Sensors 11(10), 9942–9950 (2011). https://doi.org/10.3390/s111009942
B. Gulsoy, T.A. Vincent, J.E.H. Sansom, J. Marco, In-situ temperature monitoring of a lithium-ion battery using an embedded thermocouple for smart battery applications. J. Energy Storage 54, 105260 (2022). https://doi.org/10.1016/j.est.2022.105260
K.M. Alcock, M. Grammel, Á. González-Vila, L. Binetti, K. Goh et al., An accessible method of embedding fibre optic sensors on lithium-ion battery surface for in situ thermal monitoring. Sens. Actuat. A Phys. 332, 113061 (2021). https://doi.org/10.1016/j.sna.2021.113061
D.Z. Gan, S. Gong, W. Zhang, L. Shao, Large-area flexible pressure sensors for in situ monitoring of cell swelling in vehicle battery packs. IEEE Sens. J. 24(9), 13980–13990 (2024). https://doi.org/10.1109/JSEN.2024.3376562
Z. Chen, J. Lin, C. Zhu, Q. Zhuang, Q. Chen et al., Detection of jelly roll pressure evolution in large-format Li-ion batteries via in situ thin film flexible pressure sensors. J. Power. Sources 566, 232960 (2023). https://doi.org/10.1016/j.jpowsour.2023.232960
Z. Zhang, W. Zhao, Y. Ma, Y. Yao, T. Yu et al., A flexible integrated temperature-pressure sensor for wearable detection of thermal runaway in lithium batteries. Appl. Energy 381, 125191 (2025). https://doi.org/10.1016/j.apenergy.2024.125191
Y. Zeng, F. Shen, B. Zhang, J. Lee, D. Chalise et al., Nonintrusive thermal-wave sensor for operando quantification of degradation in commercial batteries. Nat. Commun. 14(1), 8203 (2023). https://doi.org/10.1038/s41467-023-43808-9
Q. Zhang, H. Zhang, Q. Liu, W.-D. Xue, Y. Xiang et al., Contactless magnetoelectric sensor based on PVDF-TrFE and metglass laminates for lithium-ion battery current and vibration monitoring. ACS Appl. Electron. Mater. 6(5), 3304–3310 (2024). https://doi.org/10.1021/acsaelm.4c00138
M.S.K. Mutyala, J. Zhao, J. Li, H. Pan, C. Yuan et al., In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples. J. Power. Sources 260, 43–49 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.004
S. Chen, X. Wei, G. Zhang, X. Rui, C. Xu et al., Active and passive safety enhancement for batteries from force perspective. Renew. Sustain. Energy Rev. 187, 113740 (2023). https://doi.org/10.1016/j.rser.2023.113740
J. Peng, S. Jia, H. Yu, X. Kang, S. Yang et al., Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries. IEEE Sens. J. 21(4), 4628–4634 (2021). https://doi.org/10.1109/JSEN.2020.3034257
L.W. Sommer, P. Kiesel, A. Ganguli, A. Lochbaum, B. Saha et al., Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors. J. Power. Sources 296, 46–52 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.025
M. Nascimento, S. Novais, M.S. Ding, M.S. Ferreira, S. Koch et al., Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power. Sources 410–411, 1–9 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.096
X. Ge, Y. Zhang, R. Du, N. Chen, Y. Yu et al., Revealing the electrochemical-mechanical correspondence between electrode films and 20 Ah prismatic Li-ion batteries via optical fiber monitoring. Chem. Eng. J. 488, 150895 (2024). https://doi.org/10.1016/j.cej.2024.150895
J. Hedman, F. Björefors, Fiber optic monitoring of composite lithium iron phosphate cathodes in pouch cell batteries. ACS Appl. Energy Mater. 5(1), 870–881 (2022). https://doi.org/10.1021/acsaem.1c03304
J. Huang, L. Albero Blanquer, J. Bonefacino, E.R. Logan, D. Alves Dalla Corte et al., operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 5(9), 674–683 (2020). https://doi.org/10.1038/s41560-020-0665-y
C. Ma, B. Zhu, Z. Qian, L. Ren, H. Yuan et al., 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure. J. Manuf. Process. 87, 1–10 (2023). https://doi.org/10.1016/j.jmapro.2023.01.008
X. Wang, G. Wu, X. Zhang, F. Lv, Z. Yang et al., Traditional Chinese medicine (TCM)-inspired fully printed soft pressure sensor array with self-adaptive pressurization for highly reliable individualized long-term pulse diagnostics. Adv. Mater. 37(1), e2410312 (2025). https://doi.org/10.1002/adma.202410312
J. Chai, X. Wang, X. Li, G. Wu, Y. Zhao et al., A dual-mode pressure and temperature sensor. Micromachines 15(2), 179 (2024). https://doi.org/10.3390/mi15020179
X. Liu, Y. Ma, X. Dai, S. Li, B. Li et al., Flexible pressure sensor based on Pt/PI network with high sensitivity and high thermal resistance. Chem. Eng. J. 494, 152996 (2024). https://doi.org/10.1016/j.cej.2024.152996
K. Guo, J. Liu, N. Gong, Y. Li, Q. Guo, Flexible fiber-based multimodal perception system with integrated pressure, humidity, and temperature sensing for wearable application. Chem. Eng. J. 506, 159925 (2025). https://doi.org/10.1016/j.cej.2025.159925
X. Cui, H. Xie, Y. Jiang, Z. Xu, G. Sui et al., Porous structure induced crack redistribution in surface conductive layer for high-performance fiber-based flexible strain and pressure sensors. Polym. Adv. Technol. 34(9), 3011–3021 (2023). https://doi.org/10.1002/pat.6124
S. Sun, X. Maimaitiyiming, Silver nanowire/polyacrylamide/gelatin flexible stress, strain and temperature sensor. Colloids Surf. A Physicochem. Eng. Aspects 675, 131919 (2023). https://doi.org/10.1016/j.colsurfa.2023.131919
Z. Liu, B. Tian, B. Zhang, J. Liu, Z. Zhang et al., A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng. 7, 42 (2021). https://doi.org/10.1038/s41378-021-00271-0
B. Sun, G. Xu, Z. Yang, C. Guan, X. Ji et al., Dual-mode temperature monitoring using high-performance flexible thermocouple sensors based on PEDOT: PSS/CNTs and MXene/Bi2Se3. Microsyst. Nanoeng. 11, 31 (2025). https://doi.org/10.1038/s41378-025-00867-w
S. Konishi, A. Hirata, Flexible temperature sensor integrated with soft pneumatic microactuators for functional microfingers. Sci. Rep. 9(1), 15634 (2019). https://doi.org/10.1038/s41598-019-52022-x
C. Lu, J. Su, X. Dong, T. Sun, K.T.V. Grattan, Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor. J. Lightwave Technol. 36(13), 2796–2802 (2018). https://doi.org/10.1109/JLT.2018.2825294
Y. Liu, Y. Wang, D. Yang, J. Wu, T. Zhang et al., Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature. IEEE Sens. J. 19(23), 11236–11241 (2019). https://doi.org/10.1109/JSEN.2019.2934738
C.-J. Hu, C. Jiang, L. Li, L.-F. Deng, J.-W. Gao et al., Thin-core fiber-based Mach-Zehnder interferometer sensor for monitoring temperature, pressure, and humidity. Instrum. Sci. Technol. 52(5), 536–554 (2024). https://doi.org/10.1080/10739149.2023.2291725
A. Khan, I.H. Naqvi, C. Bhargava, C.-P. Lin, S.T. Boles et al., Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. Renew. Sustain. Energy Rev. 212, 115408 (2025). https://doi.org/10.1016/j.rser.2025.115408
C. Choi, L. Myeong, K. Hyeong, K. Jeong, J. Di et al., Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16(12), 7677–7684 (2016). https://doi.org/10.1021/acs.nanolett.6b03739
Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma et al., Lithium-ion battery aging mechanisms and life model under different charging stresses. J. Power. Sources 356, 103–114 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.084
Y. Wang, Q. Zhang, C. Yang, Z. Xia, Ratiometric fluorescence optical fiber enabling operando temperature monitoring in pouch-type battery. Adv. Mater. 36(25), 2401057 (2024). https://doi.org/10.1002/adma.202401057
X. Wang, J. Zhu, X. Wei, D. Wang, W. Xu et al., Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing. Energy Storage Mater. 65, 103160 (2024). https://doi.org/10.1016/j.ensm.2023.103160
G. Zhu, F. Wang, L. Chen, C. Wang, Y. Xu et al., Highly flexible TPU/SWCNTs composite-based temperature sensors with linear negative temperature coefficient effect and photo-thermal effect. Compos. Sci. Technol. 217, 109133 (2022). https://doi.org/10.1016/j.compscitech.2021.109133
X.-H. Zhao, Y.-R. Wang, Y.-Z. Chen, H.-C. Jiang, W.-L. Zhang, Enhanced thermoelectric property and stability of NiCr–NiSi thin film thermocouple on superalloy substrate. Rare Met. 36(6), 512–516 (2017). https://doi.org/10.1007/s12598-016-0809-1
J. Guo, K. Zhu, Q. Wu, Y. Rao, P. Liang et al., Microfiber sensor integrated inside solid-state lithium-metal batteries for reducing invasiveness. J. Power. Sources 599, 234231 (2024). https://doi.org/10.1016/j.jpowsour.2024.234231
Y. Kuang, Y. Guo, L. Xiong, W. Liu, Packaging and temperature compensation of fiber Bragg grating for strain sensing: a survey. Photonic Sens. 8(4), 320–331 (2018). https://doi.org/10.1007/s13320-018-0504-y
P. Jia, Q. Zhang, Z. Ren, J. Yin, D. Lei et al., Self-powered flexible battery pressure sensor based on gelatin. Chem. Eng. J. 479, 147586 (2024). https://doi.org/10.1016/j.cej.2023.147586
P. Zhang, W. Wang, Y. Ma, H. Zhang, D. Zhou et al., MXene-based self-adhesive, ultrasensitive, highly tough flexible hydrogel pressure sensors for motion monitoring and robotic tactile sensing. Chem. Eng. J. 499, 156173 (2024). https://doi.org/10.1016/j.cej.2024.156173
Y. Wang, W. Zhu, Y. Deng, B. Fu, P. Zhu et al., Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 73, 104773 (2020). https://doi.org/10.1016/j.nanoen.2020.104773
K.-B. Chang, P. Parashar, L.-C. Shen, A.-R. Chen, Y.-T. Huang et al., A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure distribution inside prosthetic limb. Nano Energy 111, 108397 (2023). https://doi.org/10.1016/j.nanoen.2023.108397
A.J. Louli, L.D. Ellis, J.R. Dahn, operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance. Joule 3(3), 745–761 (2019). https://doi.org/10.1016/j.joule.2018.12.009
T. Isernia, V. Pascazio, R. Pierri, On the local minima in a tomographic imaging technique. IEEE Trans. Geosci. Remote Sens. 39(7), 1596–1607 (2001). https://doi.org/10.1109/36.934091
M. Otoyama, A. Sakuda, M. Tatsumisago, A. Hayashi, Sulfide electrolyte suppressing side reactions in composite positive electrodes for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(26), 29228–29234 (2020). https://doi.org/10.1021/acsami.0c05050
J. Kasnatscheew, M. Börner, B. Streipert, P. Meister, R. Wagner et al., Lithium ion battery cells under abusive discharge conditions: Electrode potential development and interactions between positive and negative electrode. J. Power. Sources 362, 278–282 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.044
A. Orita, K. Kamijima, M. Yoshida, K. Dokko, M. Watanabe, Favorable combination of positive and negative electrode materials with glyme–Li salt complex electrolytes in lithium ion batteries. J. Power. Sources 196(8), 3874–3880 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.087
M.M. Mallick, L. Franke, A.G. Rösch, M. Hussein, Z. Long et al., High-sensitivity flexible thermocouple sensor arrays via printing and photonic curing. Adv. Funct. Mater. 34(20), 2301681 (2024). https://doi.org/10.1002/adfm.202301681
C. He, M. Li, F. Wang, J. Zheng, Simulation study of a cylindrical battery module. J. Energy Storage 48, 104000 (2022). https://doi.org/10.1016/j.est.2022.104000
S.D. Gelam, S. Maddipatla, C. Chicone, M. Pecht, Core collapse in cylindrical Li-ion batteries. J. Power. Sources 623, 235471 (2024). https://doi.org/10.1016/j.jpowsour.2024.235471
K. Li, Y. Huang, G. Han, W. Lyu, A. He et al., Real-time electrochemical-strain distribution and state-of-charge mapping via distributed optical fiber for lithium-ion batteries. J. Power. Sources 624, 235526 (2024). https://doi.org/10.1016/j.jpowsour.2024.235526
J. Fan, C. Liu, N. Li, L. Yang, X.-G. Yang et al., Wireless transmission of internal hazard signals in Li-ion batteries. Nature 641(8063), 639–645 (2025). https://doi.org/10.1038/s41586-025-08785-7
S. Zhu, L. Yang, J. Wen, X. Feng, P. Zhou et al., In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors. J. Power. Sources 516, 230669 (2021). https://doi.org/10.1016/j.jpowsour.2021.230669
Q. Zhang, D. Wang, B. Yang, H. Dong, C. Zhu et al., An electrochemical impedance model of lithium-ion battery for electric vehicle application. J. Energy Storage 50, 104182 (2022). https://doi.org/10.1016/j.est.2022.104182
L. Zheng, S. Zhang, H. Huang, R. Liu, M. Cai et al., Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage. J. Energy Storage 73, 108926 (2023). https://doi.org/10.1016/j.est.2023.108926
S. Manikandan, R.S. Kaviya, D.H. Shreeharan, R. Subbaiya, S. Vickram et al., Artificial intelligence-driven sustainability: enhancing carbon capture for sustainable development goals—a review. Sustain. Dev. 33(2), 2004–2029 (2025). https://doi.org/10.1002/sd.3222
S. Tong, J.H. Lacap, J.W. Park, Battery state of charge estimation using a load-classifying neural network. J. Energy Storage 7, 236–243 (2016). https://doi.org/10.1016/j.est.2016.07.002
F. Yang, W. Li, C. Li, Q. Miao, State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy 175, 66–75 (2019). https://doi.org/10.1016/j.energy.2019.03.059
C. Chen, R. Xiong, R. Yang, W. Shen, F. Sun, State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter. J. Clean. Prod. 234, 1153–1164 (2019). https://doi.org/10.1016/j.jclepro.2019.06.273
A. Abbasi, A. Gharehghani, A. Andwari, Real-time discharge curve and state of charge estimation of lithium-ion batteries via a physics-informed full homogenized macroscale model. J. Energy Storage 135, 118307 (2025). https://doi.org/10.1016/j.est.2025.118307
P. Schröer, E. Khoshbakht, T. Nemeth, M. Kuipers, H. Zappen et al., Adaptive modeling in the frequency and time domain of high-power lithium titanate oxide cells in battery management systems. J. Energy Storage 32, 101966 (2020). https://doi.org/10.1016/j.est.2020.101966
X. Wang, J. Wu, C. Zhang, Y. Zhang, Multi-objective online driving strategy optimization for energy storage tram considering battery life. J. Energy Storage 100, 113498 (2024). https://doi.org/10.1016/j.est.2024.113498
F. Widmer, A. Ritter, J. Ritzmann, D. Gerber, C.H. Onder, Battery health target tracking for HEVs: closed-loop control approach, simulation framework, and reference trajectory optimization. eTransportation 17, 100244 (2023). https://doi.org/10.1016/j.etran.2023.100244
N. Mahne, O. Fontaine, M.O. Thotiyl, M. Wilkening, S.A. Freunberger, Mechanism and performance of lithium-oxygen batteries: a perspective. Chem. Sci. 8(10), 6716–6729 (2017). https://doi.org/10.1039/c7sc02519j
Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater. 12(32), 2201506 (2022). https://doi.org/10.1002/aenm.202201506
G. Li, H. Lu, H. Wang, Y. Ran, R. Ji et al., A visualization method for cross-scale online monitoring of grinding state based on data-mechanism hybrid-driven digital twin system. Mech. Syst. Signal Process. 225, 112293 (2025). https://doi.org/10.1016/j.ymssp.2024.112293
G. Zhang, J. Zhu, H. Dai, X. Wei, Multi-level intelligence empowering lithium-ion batteries. J. Energy Chem. 97, 535–552 (2024). https://doi.org/10.1016/j.jechem.2024.06.020