Creation of an Artificial Layer for Boosting Zn2+ Mass Transfer and Anode Stability in Aqueous Zinc Metal Batteries
Corresponding Author: Biao Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 121
Abstract
Aqueous zinc metal batteries (AZMBs) are promising candidates for next-generation energy storage, but their commercialization is hindered by zinc anode challenges, notably parasitic reactions and dendrite growth. Herein, we present a biodegradable biomass-derived protective layer, primarily composed of curcumin, as a zincophilic interface for AZMBs. The curcumin-based layer, fabricated via a homogeneous solution process, exhibits strong adhesion, uniform coverage, and robust mechanical integrity. Rich polar functional groups in curcumin facilitate homogeneous Zn2+ flux and suppress side reactions. The curcumin-based layer shows a favorable affinity for zinc trifluoromethanesulfonate (Zn(OTf)2) electrolyte, which is the representative of organic zinc salts, enabling optimal thickness for both protection and ion transport. The protected Zn anodes demonstrate an extended lifespan of 2500 h in symmetrical cells and a high Coulombic efficiency of 99.15%. Furthermore, Zn(OTf)2-based system typically exhibits poor stability at high current densities. Fortunately, the lifespan of symmetrical cells was extended by 40-fold at the high current density. When paired with an NaV3O8·1.5H2O (NVO) cathode, the system achieves 86.5% capacity retention after 3000 cycles at a large specific current density of 10 A g−1. These results underscore the efficacy of the curcumin-based protective layer in enhancing the reversibility and stability of metal electrodes, specifically relieving the instability of Zn(OTf)2-based systems at high current densities, advancing its commercial viability.
Highlights:
1 Natural extract, curcumin, was employed as the protective layer to improve the zinc anode stability.
2 The curcumin-based layer balanced the efficient thickness, robust adhesion, and facilitated Zn2+ transportation.
3 The desolvation mechanism with a metal ion chelating agent aside was clearly elucidated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- M. Tang, Q. Liu, X. Zou, B. Zhang, L. An, High-energy-density aqueous zinc-ion batteries: recent progress, design strategies, challenges, and perspectives. Adv. Mater. (2025). https://doi.org/10.1002/adma.202501361
- X. Gao, H. Dong, C.J. Carmalt, G. He, Recent advances of aqueous electrolytes for zinc-ion batteries to mitigate side reactions: a review. ChemElectroChem 10(19), e202300200 (2023). https://doi.org/10.1002/celc.202300200
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- X. Zou, M. Tang, Q. Lu, Y. Wang, Z. Shao et al., Carbon-based electrocatalysts for rechargeable Zn–air batteries: design concepts, recent progress and future perspectives. Energy Environ. Sci. 17(2), 386–424 (2024). https://doi.org/10.1039/d3ee03059h
- A. Li, J. Li, Y. He, M. Wu, Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. J. Energy Chem. 83, 209–228 (2023). https://doi.org/10.1016/j.jechem.2023.04.006
- G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
- A. Innocenti, D. Bresser, J. Garche, S. Passerini, A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15, 4068 (2024). https://doi.org/10.1038/s41467-024-48368-0
- A. Li, X. Zhang, Z. Xu, M. Wu, Non-sacrificial additive regulated electrode–electrolyte interface enables long-life, deeply rechargeable aqueous Zn anodes. Chem. Eng. J. 494, 153240 (2024). https://doi.org/10.1016/j.cej.2024.153240
- D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12(9), 2102707 (2022). https://doi.org/10.1002/aenm.202102707
- M. Tang, Q. Liu, Z. Yu, X. Zou, X. Huo et al., Bi-functional electrolyte additive leading to a highly reversible and stable zinc anode. Small 20(42), 2403457 (2024). https://doi.org/10.1002/smll.202403457
- B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
- H. Ma, H. Chen, M. Chen, A. Li, X. Han et al., Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries. Nat. Commun. 16(1), 1014 (2025). https://doi.org/10.1038/s41467-025-56325-8
- Q. Liu, Z. Yu, Q. Zhuang, J.-K. Kim, F. Kang et al., Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater. 35(36), e2300498 (2023). https://doi.org/10.1002/adma.202300498
- Q. Liu, Y. Wang, X. Hong, R. Zhou, Z. Hou et al., Elastomer–alginate interface for high-power and high-energy Zn metal anodes. Adv. Energy Mater. 12(20), 2200318 (2022). https://doi.org/10.1002/aenm.202200318
- T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(51), e202314883 (2023). https://doi.org/10.1002/anie.202314883
- D. Zhang, Y. Chen, X. Zheng, P. Liu, L. Miao et al., Angew. Chem. Int. Ed. 64(22), e202500380 (2025). https://doi.org/10.1002/anie.202500380
- M. Tang, Q. Liu, X. Zou, Z. Yu, K. Zhang et al., Engineering in situ heterometallic layer for robust Zn electrochemistry in extreme Zn(BF4)2 electrolyte environment. Energy Storage Mater. 74, 103896 (2025). https://doi.org/10.1016/j.ensm.2024.103896
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- P. Liu, Z. Song, Q. Huang, L. Miao, Y. Lv et al., Multi-H-bonded self-assembled superstructures for ultrahigh-capacity and ultralong-life all-organic ammonium-ion batteries. Energy Environ. Sci. 18(11), 5397–5406 (2025). https://doi.org/10.1039/d5ee00823a
- F. Zhao, J. Feng, H. Dong, R. Chen, T. Munshi et al., Ultrathin protection layer via rapid sputtering strategy for stable aqueous zinc ion batteries. Adv. Funct. Mater. 34(51), 2409400 (2024). https://doi.org/10.1002/adfm.202409400
- H. Yu, X. Zhang, Y. Wang, M. Li, W. Chen et al., Activation and stabilization strategies of aluminum metal anode toward high performance aqueous Al metal batteries. Adv. Mater. 37(38), 2507164 (2025). https://doi.org/10.1002/adma.202507164
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- Y. Zhang, X. Zheng, N. Wang, W.-H. Lai, Y. Liu et al., Anode optimization strategies for aqueous zinc-ion batteries. Chem. Sci. 13(48), 14246–14263 (2022). https://doi.org/10.1039/d2sc04945g
- M. Al-Abbasi, Y. Zhao, H. He, H. Liu, H. Xia et al., Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries. Carbon Neutr. 3(1), 108–141 (2024). https://doi.org/10.1002/cnl2.109
- Z. Guo, L. Fan, L. Wu, B. Li, N. Zhang, Guiding principles for the design of artificial interface layer for zinc metal anode. Batter. Supercaps. 6(2), e202200468 (2023). https://doi.org/10.1002/batt.202200468
- I. Jang, B. Im, D.G. Kim, J.-Y. Jeon, G.-H. An, Advancing zinc-ion batteries: amorphous V2O5 as a protective layer on Zn anode surface. J. Power. Sources 623, 235465 (2024). https://doi.org/10.1016/j.jpowsour.2024.235465
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- X. Wang, Y. Su, J. Chen, E.H. Yan, Q. Xia et al., Revisiting Pt foil catalysts for formamide electrosynthesis achieved at industrial-level current densities. Nat. Commun. 16(1), 8040 (2025). https://doi.org/10.1038/s41467-025-63313-5
- Q. Zhang, Y. Su, Z. Shi, X. Yang, J. Sun, Artificial interphase layer for stabilized Zn anodes: progress and prospects. Small 18(40), e2203583 (2022). https://doi.org/10.1002/smll.202203583
- J. Jang, J. Chun, C. Jo, Biopolymer-blended protective layer for use in stabilizing the zinc anode in metal battery applications. Energy Storage Mater. 62, 102948 (2023). https://doi.org/10.1016/j.ensm.2023.102948
- M. Chen, X. Guo, X. Jiang, B. Farhadi, X. Guo et al., Multi-group polymer coating on Zn anode for high overall conversion efficiency photorechargeable zinc-ion batteries. Angew. Chem. Int. Ed. 63(39), e202410011 (2024). https://doi.org/10.1002/anie.202410011
- X. Cheng, J. Wang, J. Xu, H. Li, H. Zhang et al., Engineering hybrid artificial interfacial layer with Zn-ion channels for stable zinc anodes. J. Power. Sources 635, 236514 (2025). https://doi.org/10.1016/j.jpowsour.2025.236514
- J. Yang, R. Zhao, Y. Wang, Y. Bai, C. Wu, Regulating uniform Zn deposition via hybrid artificial layer for stable aqueous Zn-ion batteries. Energy Mater. Adv. 2022, 9809626 (2022). https://doi.org/10.34133/2022/9809626
- H. Yu, Z. He, D. Chen, P. Liu, H. He et al., Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective. Energy Rev. 4(1), 100107 (2025). https://doi.org/10.1016/j.enrev.2024.100107
- D. de Moraes Carvalho, K.P. Takeuchi, R.M. Geraldine, C.J. de Moura, M.C.L. Torres, Production, solubility and antioxidant activity of curcumin nanosuspension. Food Sci. Technol. (Campinas) 35(1), 115–119 (2015). https://doi.org/10.1590/1678-457x.6515
- H. Abd-alhamed, M. Keshe, R. Alabaas, The chemical organic reactions of β-diketones to prepare different β-diketone derivatives, their properties and its applications: a review. Results Chem. 12, 101860 (2024). https://doi.org/10.1016/j.rechem.2024.101860
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- A.K. Singh, S. Yadav, K. Sharma, Z. Firdaus, P. Aditi et al., Quantum curcumin mediated inhibition of gingipains and mixed-biofilm of Porphyromonas gingivalis causing chronic periodontitis. RSC Adv. 8(70), 40426–40445 (2018). https://doi.org/10.1039/C8RA08435A
- T.-H. Huang, X.-Y. Tian, Y.-Y. Chen, J. Widakdo, H.F.M. Austria et al., Multifunctional Phra phrom-like graphene-based membrane for environmental remediation and resources regeneration. Adv. Funct. Mater. 34(7), 2308321 (2024). https://doi.org/10.1002/adfm.202308321
- T. Kou, M. Chen, F. Wu, T.J. Smart, S. Wang et al., Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction. Nat. Commun. 11(1), 590 (2020). https://doi.org/10.1038/s41467-020-14462-2
- W. Wang, S. Chen, X. Liao, R. Huang, F. Wang et al., Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries. Nat. Commun. 14(1), 5443 (2023). https://doi.org/10.1038/s41467-023-41276-9
- A.O. Kane, B.D. Ngom, O. Sakho, Influence of Adansonia digitata leaves dye extraction solvent nature on the structural and physical properties of biosynthesized ZnO nanops. Mater. Today Proc. 36, 290–297 (2021). https://doi.org/10.1016/j.matpr.2020.04.048
- C. Vivek, B. Balraj, S. Thangavel, Structural, optical and electrical behavior of ZnO@Ag core–shell nanocomposite synthesized via novel plasmon-green mediated approach. J. Mater. Sci. Mater. Electron. 30(12), 11220–11230 (2019). https://doi.org/10.1007/s10854-019-01467-x
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- J. Zhu, M. Yang, Y. Hu, M. Yao, J. Chen et al., The construction of binary phase electrolyte interface for highly stable zinc anodes. Adv. Mater. 36(3), e2304426 (2024). https://doi.org/10.1002/adma.202304426
- T. Mageto, S.D. Bhoyate, K. Mensah-Darkwa, A. Kumar, R.K. Gupta, Development of high-performance zinc-ion batteries: issues, mitigation strategies, and perspectives. J. Energy Storage 70, 108081 (2023). https://doi.org/10.1016/j.est.2023.108081
- H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
- Z. Hou, Y. Gao, R. Zhou, B. Zhang, Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 32(7), 2107584 (2022). https://doi.org/10.1002/adfm.202107584
- Q. Liu, L. Jiao, J. Wang, H. Bai, C. Yi et al., Kinetics-mediating artificial interphase for ultrafast Zn metal anodes. Adv. Funct. Mater. 35(17), 2422868 (2025). https://doi.org/10.1002/adfm.202422868
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
M. Tang, Q. Liu, X. Zou, B. Zhang, L. An, High-energy-density aqueous zinc-ion batteries: recent progress, design strategies, challenges, and perspectives. Adv. Mater. (2025). https://doi.org/10.1002/adma.202501361
X. Gao, H. Dong, C.J. Carmalt, G. He, Recent advances of aqueous electrolytes for zinc-ion batteries to mitigate side reactions: a review. ChemElectroChem 10(19), e202300200 (2023). https://doi.org/10.1002/celc.202300200
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
X. Zou, M. Tang, Q. Lu, Y. Wang, Z. Shao et al., Carbon-based electrocatalysts for rechargeable Zn–air batteries: design concepts, recent progress and future perspectives. Energy Environ. Sci. 17(2), 386–424 (2024). https://doi.org/10.1039/d3ee03059h
A. Li, J. Li, Y. He, M. Wu, Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. J. Energy Chem. 83, 209–228 (2023). https://doi.org/10.1016/j.jechem.2023.04.006
G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
A. Innocenti, D. Bresser, J. Garche, S. Passerini, A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15, 4068 (2024). https://doi.org/10.1038/s41467-024-48368-0
A. Li, X. Zhang, Z. Xu, M. Wu, Non-sacrificial additive regulated electrode–electrolyte interface enables long-life, deeply rechargeable aqueous Zn anodes. Chem. Eng. J. 494, 153240 (2024). https://doi.org/10.1016/j.cej.2024.153240
D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12(9), 2102707 (2022). https://doi.org/10.1002/aenm.202102707
M. Tang, Q. Liu, Z. Yu, X. Zou, X. Huo et al., Bi-functional electrolyte additive leading to a highly reversible and stable zinc anode. Small 20(42), 2403457 (2024). https://doi.org/10.1002/smll.202403457
B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
H. Ma, H. Chen, M. Chen, A. Li, X. Han et al., Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries. Nat. Commun. 16(1), 1014 (2025). https://doi.org/10.1038/s41467-025-56325-8
Q. Liu, Z. Yu, Q. Zhuang, J.-K. Kim, F. Kang et al., Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater. 35(36), e2300498 (2023). https://doi.org/10.1002/adma.202300498
Q. Liu, Y. Wang, X. Hong, R. Zhou, Z. Hou et al., Elastomer–alginate interface for high-power and high-energy Zn metal anodes. Adv. Energy Mater. 12(20), 2200318 (2022). https://doi.org/10.1002/aenm.202200318
T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(51), e202314883 (2023). https://doi.org/10.1002/anie.202314883
D. Zhang, Y. Chen, X. Zheng, P. Liu, L. Miao et al., Angew. Chem. Int. Ed. 64(22), e202500380 (2025). https://doi.org/10.1002/anie.202500380
M. Tang, Q. Liu, X. Zou, Z. Yu, K. Zhang et al., Engineering in situ heterometallic layer for robust Zn electrochemistry in extreme Zn(BF4)2 electrolyte environment. Energy Storage Mater. 74, 103896 (2025). https://doi.org/10.1016/j.ensm.2024.103896
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
P. Liu, Z. Song, Q. Huang, L. Miao, Y. Lv et al., Multi-H-bonded self-assembled superstructures for ultrahigh-capacity and ultralong-life all-organic ammonium-ion batteries. Energy Environ. Sci. 18(11), 5397–5406 (2025). https://doi.org/10.1039/d5ee00823a
F. Zhao, J. Feng, H. Dong, R. Chen, T. Munshi et al., Ultrathin protection layer via rapid sputtering strategy for stable aqueous zinc ion batteries. Adv. Funct. Mater. 34(51), 2409400 (2024). https://doi.org/10.1002/adfm.202409400
H. Yu, X. Zhang, Y. Wang, M. Li, W. Chen et al., Activation and stabilization strategies of aluminum metal anode toward high performance aqueous Al metal batteries. Adv. Mater. 37(38), 2507164 (2025). https://doi.org/10.1002/adma.202507164
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
Y. Zhang, X. Zheng, N. Wang, W.-H. Lai, Y. Liu et al., Anode optimization strategies for aqueous zinc-ion batteries. Chem. Sci. 13(48), 14246–14263 (2022). https://doi.org/10.1039/d2sc04945g
M. Al-Abbasi, Y. Zhao, H. He, H. Liu, H. Xia et al., Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries. Carbon Neutr. 3(1), 108–141 (2024). https://doi.org/10.1002/cnl2.109
Z. Guo, L. Fan, L. Wu, B. Li, N. Zhang, Guiding principles for the design of artificial interface layer for zinc metal anode. Batter. Supercaps. 6(2), e202200468 (2023). https://doi.org/10.1002/batt.202200468
I. Jang, B. Im, D.G. Kim, J.-Y. Jeon, G.-H. An, Advancing zinc-ion batteries: amorphous V2O5 as a protective layer on Zn anode surface. J. Power. Sources 623, 235465 (2024). https://doi.org/10.1016/j.jpowsour.2024.235465
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
X. Wang, Y. Su, J. Chen, E.H. Yan, Q. Xia et al., Revisiting Pt foil catalysts for formamide electrosynthesis achieved at industrial-level current densities. Nat. Commun. 16(1), 8040 (2025). https://doi.org/10.1038/s41467-025-63313-5
Q. Zhang, Y. Su, Z. Shi, X. Yang, J. Sun, Artificial interphase layer for stabilized Zn anodes: progress and prospects. Small 18(40), e2203583 (2022). https://doi.org/10.1002/smll.202203583
J. Jang, J. Chun, C. Jo, Biopolymer-blended protective layer for use in stabilizing the zinc anode in metal battery applications. Energy Storage Mater. 62, 102948 (2023). https://doi.org/10.1016/j.ensm.2023.102948
M. Chen, X. Guo, X. Jiang, B. Farhadi, X. Guo et al., Multi-group polymer coating on Zn anode for high overall conversion efficiency photorechargeable zinc-ion batteries. Angew. Chem. Int. Ed. 63(39), e202410011 (2024). https://doi.org/10.1002/anie.202410011
X. Cheng, J. Wang, J. Xu, H. Li, H. Zhang et al., Engineering hybrid artificial interfacial layer with Zn-ion channels for stable zinc anodes. J. Power. Sources 635, 236514 (2025). https://doi.org/10.1016/j.jpowsour.2025.236514
J. Yang, R. Zhao, Y. Wang, Y. Bai, C. Wu, Regulating uniform Zn deposition via hybrid artificial layer for stable aqueous Zn-ion batteries. Energy Mater. Adv. 2022, 9809626 (2022). https://doi.org/10.34133/2022/9809626
H. Yu, Z. He, D. Chen, P. Liu, H. He et al., Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective. Energy Rev. 4(1), 100107 (2025). https://doi.org/10.1016/j.enrev.2024.100107
D. de Moraes Carvalho, K.P. Takeuchi, R.M. Geraldine, C.J. de Moura, M.C.L. Torres, Production, solubility and antioxidant activity of curcumin nanosuspension. Food Sci. Technol. (Campinas) 35(1), 115–119 (2015). https://doi.org/10.1590/1678-457x.6515
H. Abd-alhamed, M. Keshe, R. Alabaas, The chemical organic reactions of β-diketones to prepare different β-diketone derivatives, their properties and its applications: a review. Results Chem. 12, 101860 (2024). https://doi.org/10.1016/j.rechem.2024.101860
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
A.K. Singh, S. Yadav, K. Sharma, Z. Firdaus, P. Aditi et al., Quantum curcumin mediated inhibition of gingipains and mixed-biofilm of Porphyromonas gingivalis causing chronic periodontitis. RSC Adv. 8(70), 40426–40445 (2018). https://doi.org/10.1039/C8RA08435A
T.-H. Huang, X.-Y. Tian, Y.-Y. Chen, J. Widakdo, H.F.M. Austria et al., Multifunctional Phra phrom-like graphene-based membrane for environmental remediation and resources regeneration. Adv. Funct. Mater. 34(7), 2308321 (2024). https://doi.org/10.1002/adfm.202308321
T. Kou, M. Chen, F. Wu, T.J. Smart, S. Wang et al., Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction. Nat. Commun. 11(1), 590 (2020). https://doi.org/10.1038/s41467-020-14462-2
W. Wang, S. Chen, X. Liao, R. Huang, F. Wang et al., Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries. Nat. Commun. 14(1), 5443 (2023). https://doi.org/10.1038/s41467-023-41276-9
A.O. Kane, B.D. Ngom, O. Sakho, Influence of Adansonia digitata leaves dye extraction solvent nature on the structural and physical properties of biosynthesized ZnO nanops. Mater. Today Proc. 36, 290–297 (2021). https://doi.org/10.1016/j.matpr.2020.04.048
C. Vivek, B. Balraj, S. Thangavel, Structural, optical and electrical behavior of ZnO@Ag core–shell nanocomposite synthesized via novel plasmon-green mediated approach. J. Mater. Sci. Mater. Electron. 30(12), 11220–11230 (2019). https://doi.org/10.1007/s10854-019-01467-x
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
J. Zhu, M. Yang, Y. Hu, M. Yao, J. Chen et al., The construction of binary phase electrolyte interface for highly stable zinc anodes. Adv. Mater. 36(3), e2304426 (2024). https://doi.org/10.1002/adma.202304426
T. Mageto, S.D. Bhoyate, K. Mensah-Darkwa, A. Kumar, R.K. Gupta, Development of high-performance zinc-ion batteries: issues, mitigation strategies, and perspectives. J. Energy Storage 70, 108081 (2023). https://doi.org/10.1016/j.est.2023.108081
H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
Z. Hou, Y. Gao, R. Zhou, B. Zhang, Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 32(7), 2107584 (2022). https://doi.org/10.1002/adfm.202107584
Q. Liu, L. Jiao, J. Wang, H. Bai, C. Yi et al., Kinetics-mediating artificial interphase for ultrafast Zn metal anodes. Adv. Funct. Mater. 35(17), 2422868 (2025). https://doi.org/10.1002/adfm.202422868