Homogenize Strain Distribution via Molecular Network Engineering for Mechanically Reliable Flexible Perovskite Solar Cells
Corresponding Author: Zhihao Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 218
Abstract
Flexible perovskite solar cells (FPSCs) suffer from strain localization-induced mechanical degradation, primarily due to heterogeneous strain distribution at grain boundaries. Herein, we propose a molecular engineering approach involving a crosslinked Methacrylic anhydride (MA) to construct a 3D crosslinking network within perovskite films. This molecular-scale network effectively redistributes localized strain into a more homogeneous pattern, as indicated by reduced strain variance and a lower Young’s modulus. Simultaneously, the MA network modulates crystallization kinetics, leading to enlarged grain sizes, enhanced (001) orientation, and decreased defect density. Together, these effects minimize strain concentration and promote elastic strain release, thereby suppressing microcrack formation at grain boundaries. As a result, the optimized rigid perovskite solar cells exhibit superior conversion efficiency of 26.42%, while the FPSCs reach 25.03% with excellent mechanical stability.
Highlights:
1 Dual-function molecular ligand (MA) can coordinate with Pb2+ to passivate defect at grain boundaries and undergoes in-situ polymerization to form a stress-buffering network.
2 Attributing to the simultaneous defect suppression and strain homogenization, the MA-modified perovskite solar cells demonstrate high photovoltaic performance with power conversion efficiency up to 26.42% (rigid) and 25.03% (flexible).
3 The MA-modified devices demonstrate excellent stability under various environmental stress conditions, including thermal aging, light irradiation, and bending.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
- J. Liu, T. Ye, D. Yu, S. Liu, D. Yang, Recoverable flexible perovskite solar cells for next-generation portable power sources. Angew. Chem. Int. Ed. 62(40), e202307225 (2023). https://doi.org/10.1002/anie.202307225
- T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou et al., Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7(20), 1700576 (2017). https://doi.org/10.1002/aenm.201700576
- S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365(6452), 473–478 (2019). https://doi.org/10.1126/science.aax3294
- J. Wu, R. Zhu, G. Li, Z. Zhang, J. Pascual et al., Inhibiting interfacial nonradiative recombination in inverted perovskite solar cells with a multifunctional molecule. Adv. Mater. 36(35), e2407433 (2024). https://doi.org/10.1002/adma.202407433
- X. Wu, G. Xu, F. Yang, W. Chen, H. Yang et al., Realizing 23.9% flexible perovskite solar cells via alleviating the residual strain induced by delayed heat transfer. ACS Energy Lett. 8(9), 3750–3759 (2023). https://doi.org/10.1021/acsenergylett.3c01167
- Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian et al., A bilayer conducting polymer structure for planar perovskite solar cells with over 1400 hours operational stability at elevated temperatures. Nat. Energy 7(2), 144–152 (2022). https://doi.org/10.1038/s41560-021-00953-z
- B. Jin, L. Ren, Y. Gou, R. Ma, Z. Liang et al., Fiber-bridging-induced toughening of perovskite for resistance to crack propagation. Matter 6(5), 1622–1638 (2023). https://doi.org/10.1016/j.matt.2023.03.014
- M. Li, J. Zhou, L. Tan, H. Li, Y. Liu et al., Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innov. 3(6), 100310 (2022). https://doi.org/10.1016/j.xinn.2022.100310
- B. Ding, Y. Ding, J. Peng, J. Romano-deGea, L.E.K. Frederiksen et al., Dopant-additive synergism enhances perovskite solar modules. Nature 628(8007), 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z
- N. Ren, L. Tan, M. Li, J. Zhou, Y. Ye et al., 25%—efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy 3(1), 39–45 (2024). https://doi.org/10.23919/IEN.2024.0001
- Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu et al., In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7(2), 398–415 (2023). https://doi.org/10.1016/j.joule.2022.12.013
- M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar et al., Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49(94), 11089–11091 (2013). https://doi.org/10.1039/c3cc46534a
- L. Xie, S. Du, J. Li, C. Liu, Z. Pu et al., Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci. 16(11), 5423–5433 (2023). https://doi.org/10.1039/D3EE02569A
- C. Wang, C. Gong, W. Ai, B. Fan, X. Meng et al., A wenzel interfaces design for homogeneous solute distribution obtains efficient and stable perovskite solar cells. Adv. Mater. 37(9), e2417779 (2025). https://doi.org/10.1002/adma.202417779
- Z. Chu, B. Fan, W. Shi, Z. Xing, C. Gong et al., Synergistic macroscopic–microscopic regulation: dual constraints of the island effect and coffee-ring effect in printing efficient flexible perovskite photovoltaics. Adv. Funct. Mater. 35(26), 2424191 (2025). https://doi.org/10.1002/adfm.202424191
- K. Fukuda, L. Sun, B. Du, M. Takakuwa, J. Wang et al., A bending test protocol for characterizing the mechanical performance of flexible photovoltaics. Nat. Energy 9(11), 1335–1343 (2024). https://doi.org/10.1038/s41560-024-01651-2
- L.A. Castriotta, M.A. Uddin, H. Jiao, J. Huang, Transition of perovskite solar technologies to being flexible. Adv. Mater. 37(8), 2408036 (2025). https://doi.org/10.1002/adma.202408036
- N. Rolston, A.D. Printz, J.M. Tracy, H.C. Weerasinghe, D. Vak et al., Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 8(9), 1702116 (2018). https://doi.org/10.1002/aenm.201702116
- Z. Chen, Q. Cheng, H. Chen, Y. Wu, J. Ding et al., Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 35(18), e2300513 (2023). https://doi.org/10.1002/adma.202300513
- D. Liu, D. Luo, A.N. Iqbal, K.W.P. Orr, T.A.S. Doherty et al., Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20(10), 1337–1346 (2021). https://doi.org/10.1038/s41563-021-01097-x
- A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 9(38), 1901489 (2019). https://doi.org/10.1002/aenm.201901489
- M. Hao, Y. Zhou, Grain-boundary grooves in perovskite solar cells. Joule 8(4), 913–921 (2024). https://doi.org/10.1016/j.joule.2024.03.002
- F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9(10), 3007–3035 (2016). https://doi.org/10.1039/c6ee01137c
- X. Hu, X. Meng, L. Zhang, Y. Zhang, Z. Cai et al., A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 3(9), 2205–2218 (2019). https://doi.org/10.1016/j.joule.2019.06.011
- X. Li, H. Yu, Z. Liu, J. Huang, X. Ma et al., Progress and challenges toward effective flexible perovskite solar cells. Nano-Micro Lett. 15(1), 206 (2023). https://doi.org/10.1007/s40820-023-01165-8
- J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30(35), 1801418 (2018). https://doi.org/10.1002/adma.201801418
- M. Li, Y.-G. Yang, Z.-K. Wang, T. Kang, Q. Wang et al., Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater. 31(25), 1901519 (2019). https://doi.org/10.1002/adma.201901519
- X. Yin, Z. Wang, Y. Zhao, S. Zhang, Y. Zhang et al., Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy Environ. Sci. 16(10), 4251–4279 (2023). https://doi.org/10.1039/d3ee01546g
- K. Kim, J. Han, S. Maruyama, M. Balaban, I. Jeon, Role and contribution of polymeric additives in perovskite solar cells: crystal growth templates and grain boundary passivators. Solar RRL 5(5), 2000783 (2021). https://doi.org/10.1002/solr.202000783
- Z. Li, C. Jia, Z. Wan, J. Cao, J. Shi et al., Boosting mechanical durability under high humidity by bioinspired multisite polymer for high-efficiency flexible perovskite solar cells. Nat. Commun. 16(1), 1771 (2025). https://doi.org/10.1038/s41467-025-57102-3
- Y. Wu, G. Xu, Y. Shen, X. Wu, X. Tang et al., Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv. Mater. 36(30), 2403531 (2024). https://doi.org/10.1002/adma.202403531
- S. Zhu, X. Jin, W. Tan, Y. Zhang, G. Zhao et al., Multiple dynamic hydrogen bonding networks boost the mechanical stability of flexible perovskite solar cells. Adv. Funct. Mater. 34(48), 2408487 (2024). https://doi.org/10.1002/adfm.202408487
- J. Jin, Z. Zhu, Y. Ming, Y. Zhou, J. Shang et al., Spontaneous bifacial capping of perovskite film for efficient and mechanically stable flexible solar cell. Nat. Commun. 16(1), 90 (2025). https://doi.org/10.1038/s41467-024-55652-6
- Z. Xu, R. Yu, Q. Lv, H. Jia, Q. Guo et al., Tensile strain regulation via grain boundary buffering for flexible perovskite solar cells. Nat. Commun. (2025). https://doi.org/10.1038/s41467-025-67027-6
- H. Wang, Q. Li, Y. Zhu, X. Sui, X. Fan et al., Photomechanically accelerated degradation of perovskite solar cells. Energy Environ. Sci. 18(5), 2254–2263 (2025). https://doi.org/10.1039/d4ee04878d
- Y. Gao, H. Raza, Z. Zhang, W. Chen, Z. Liu, Rethinking the role of excess/residual lead iodide in perovskite solar cells. Adv. Funct. Mater. 33(26), 2215171 (2023). https://doi.org/10.1002/adfm.202215171
- J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu et al., Inhibiting ion migration through chemical polymerization and chemical chelation toward stable perovskite solar cells. Angew. Chem. Int. Ed. 62(50), e202314106 (2023). https://doi.org/10.1002/anie.202314106
- J. Zhang, Z. Li, F. Guo, H. Jiang, W. Yan et al., Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angew. Chem. Int. Ed. 62(31), e202305221 (2023). https://doi.org/10.1002/anie.202305221
- X. Jiang, B. Zhang, G. Yang, Z. Zhou, X. Guo et al., Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(22), e202302462 (2023). https://doi.org/10.1002/anie.202302462
- Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han et al., Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31(7), 2005776 (2021). https://doi.org/10.1002/adfm.202005776
- H. Rui, X. Wu, Y. Qiu, X. Liu, S. Bu et al., Bifunctional bidentate organic additive toward high brightness pure red quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 33(52), 2308147 (2023). https://doi.org/10.1002/adfm.202308147
- H. Zheng, G. Liu, X. Dong, F. Chen, C. Wang et al., Self-regulated bilateral anchoring enables efficient charge transport pathways for high-performance rigid and flexible perovskite solar cells. Nano-Micro Lett. 17(1), 328 (2025). https://doi.org/10.1007/s40820-025-01846-6
- F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
- H. Wang, Z. Wang, Z. Yang, Y. Xu, Y. Ding et al., Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 32(21), e2000865 (2020). https://doi.org/10.1002/adma.202000865
- X. Jiang, J. Zhang, X. Liu, Z. Wang, X. Guo et al., Deeper insight into the role of organic ammonium cations in reducing surface defects of the perovskite film. Angew. Chem. Int. Ed. 61(12), e202115663 (2022). https://doi.org/10.1002/anie.202115663
- X. Yuan, R. Li, Z. Xiong, P. Li, G.O. Odunmbaku et al., Synergistic crystallization modulation and defects passivation via additive engineering stabilize perovskite films for efficient solar cells. Adv. Funct. Mater. 33(24), 2215096 (2023). https://doi.org/10.1002/adfm.202215096
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- D. Kim, H. Choi, W. Jung, C. Kim, E.Y. Park et al., Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells. Energy Environ. Sci. 16(5), 2045–2055 (2023). https://doi.org/10.1039/d3ee00636k
- J. Yang, W. Sheng, X. Li, Y. Zhong, Y. Su et al., Synergistic toughening and self-healing strategy for highly efficient and stable flexible perovskite solar cells. Adv. Funct. Mater. 33(23), 2214984 (2023). https://doi.org/10.1002/adfm.202214984
- Y. Cao, N. Yan, M. Wang, D. Qi, J. Zhang et al., Designed additive to regulated crystallization for high performance perovskite solar cell. Angew. Chem. Int. Ed. 63(30), e202404401 (2024). https://doi.org/10.1002/anie.202404401
- Y. Miao, M. Ren, H. Wang, L. Lu, X. Liu et al., Surface termination on unstable methylammonium-based perovskite using a steric barrier for improved perovskite solar cells. Angew. Chem. Int. Ed. 62(51), e202312726 (2023). https://doi.org/10.1002/anie.202312726
- Y. Cao, J. Feng, Z. Xu, L. Zhang, J. Lou et al., Bifunctional trifluorophenylacetic acid additive for stable and highly efficient flexible perovskite solar cell. InfoMat 5(10), e12423 (2023). https://doi.org/10.1002/inf2.12423
References
L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
J. Liu, T. Ye, D. Yu, S. Liu, D. Yang, Recoverable flexible perovskite solar cells for next-generation portable power sources. Angew. Chem. Int. Ed. 62(40), e202307225 (2023). https://doi.org/10.1002/anie.202307225
T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou et al., Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7(20), 1700576 (2017). https://doi.org/10.1002/aenm.201700576
S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365(6452), 473–478 (2019). https://doi.org/10.1126/science.aax3294
J. Wu, R. Zhu, G. Li, Z. Zhang, J. Pascual et al., Inhibiting interfacial nonradiative recombination in inverted perovskite solar cells with a multifunctional molecule. Adv. Mater. 36(35), e2407433 (2024). https://doi.org/10.1002/adma.202407433
X. Wu, G. Xu, F. Yang, W. Chen, H. Yang et al., Realizing 23.9% flexible perovskite solar cells via alleviating the residual strain induced by delayed heat transfer. ACS Energy Lett. 8(9), 3750–3759 (2023). https://doi.org/10.1021/acsenergylett.3c01167
Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian et al., A bilayer conducting polymer structure for planar perovskite solar cells with over 1400 hours operational stability at elevated temperatures. Nat. Energy 7(2), 144–152 (2022). https://doi.org/10.1038/s41560-021-00953-z
B. Jin, L. Ren, Y. Gou, R. Ma, Z. Liang et al., Fiber-bridging-induced toughening of perovskite for resistance to crack propagation. Matter 6(5), 1622–1638 (2023). https://doi.org/10.1016/j.matt.2023.03.014
M. Li, J. Zhou, L. Tan, H. Li, Y. Liu et al., Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innov. 3(6), 100310 (2022). https://doi.org/10.1016/j.xinn.2022.100310
B. Ding, Y. Ding, J. Peng, J. Romano-deGea, L.E.K. Frederiksen et al., Dopant-additive synergism enhances perovskite solar modules. Nature 628(8007), 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z
N. Ren, L. Tan, M. Li, J. Zhou, Y. Ye et al., 25%—efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy 3(1), 39–45 (2024). https://doi.org/10.23919/IEN.2024.0001
Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu et al., In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7(2), 398–415 (2023). https://doi.org/10.1016/j.joule.2022.12.013
M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar et al., Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49(94), 11089–11091 (2013). https://doi.org/10.1039/c3cc46534a
L. Xie, S. Du, J. Li, C. Liu, Z. Pu et al., Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci. 16(11), 5423–5433 (2023). https://doi.org/10.1039/D3EE02569A
C. Wang, C. Gong, W. Ai, B. Fan, X. Meng et al., A wenzel interfaces design for homogeneous solute distribution obtains efficient and stable perovskite solar cells. Adv. Mater. 37(9), e2417779 (2025). https://doi.org/10.1002/adma.202417779
Z. Chu, B. Fan, W. Shi, Z. Xing, C. Gong et al., Synergistic macroscopic–microscopic regulation: dual constraints of the island effect and coffee-ring effect in printing efficient flexible perovskite photovoltaics. Adv. Funct. Mater. 35(26), 2424191 (2025). https://doi.org/10.1002/adfm.202424191
K. Fukuda, L. Sun, B. Du, M. Takakuwa, J. Wang et al., A bending test protocol for characterizing the mechanical performance of flexible photovoltaics. Nat. Energy 9(11), 1335–1343 (2024). https://doi.org/10.1038/s41560-024-01651-2
L.A. Castriotta, M.A. Uddin, H. Jiao, J. Huang, Transition of perovskite solar technologies to being flexible. Adv. Mater. 37(8), 2408036 (2025). https://doi.org/10.1002/adma.202408036
N. Rolston, A.D. Printz, J.M. Tracy, H.C. Weerasinghe, D. Vak et al., Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 8(9), 1702116 (2018). https://doi.org/10.1002/aenm.201702116
Z. Chen, Q. Cheng, H. Chen, Y. Wu, J. Ding et al., Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 35(18), e2300513 (2023). https://doi.org/10.1002/adma.202300513
D. Liu, D. Luo, A.N. Iqbal, K.W.P. Orr, T.A.S. Doherty et al., Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20(10), 1337–1346 (2021). https://doi.org/10.1038/s41563-021-01097-x
A.-F. Castro-Méndez, J. Hidalgo, J.-P. Correa-Baena, The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 9(38), 1901489 (2019). https://doi.org/10.1002/aenm.201901489
M. Hao, Y. Zhou, Grain-boundary grooves in perovskite solar cells. Joule 8(4), 913–921 (2024). https://doi.org/10.1016/j.joule.2024.03.002
F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9(10), 3007–3035 (2016). https://doi.org/10.1039/c6ee01137c
X. Hu, X. Meng, L. Zhang, Y. Zhang, Z. Cai et al., A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 3(9), 2205–2218 (2019). https://doi.org/10.1016/j.joule.2019.06.011
X. Li, H. Yu, Z. Liu, J. Huang, X. Ma et al., Progress and challenges toward effective flexible perovskite solar cells. Nano-Micro Lett. 15(1), 206 (2023). https://doi.org/10.1007/s40820-023-01165-8
J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30(35), 1801418 (2018). https://doi.org/10.1002/adma.201801418
M. Li, Y.-G. Yang, Z.-K. Wang, T. Kang, Q. Wang et al., Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater. 31(25), 1901519 (2019). https://doi.org/10.1002/adma.201901519
X. Yin, Z. Wang, Y. Zhao, S. Zhang, Y. Zhang et al., Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy Environ. Sci. 16(10), 4251–4279 (2023). https://doi.org/10.1039/d3ee01546g
K. Kim, J. Han, S. Maruyama, M. Balaban, I. Jeon, Role and contribution of polymeric additives in perovskite solar cells: crystal growth templates and grain boundary passivators. Solar RRL 5(5), 2000783 (2021). https://doi.org/10.1002/solr.202000783
Z. Li, C. Jia, Z. Wan, J. Cao, J. Shi et al., Boosting mechanical durability under high humidity by bioinspired multisite polymer for high-efficiency flexible perovskite solar cells. Nat. Commun. 16(1), 1771 (2025). https://doi.org/10.1038/s41467-025-57102-3
Y. Wu, G. Xu, Y. Shen, X. Wu, X. Tang et al., Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv. Mater. 36(30), 2403531 (2024). https://doi.org/10.1002/adma.202403531
S. Zhu, X. Jin, W. Tan, Y. Zhang, G. Zhao et al., Multiple dynamic hydrogen bonding networks boost the mechanical stability of flexible perovskite solar cells. Adv. Funct. Mater. 34(48), 2408487 (2024). https://doi.org/10.1002/adfm.202408487
J. Jin, Z. Zhu, Y. Ming, Y. Zhou, J. Shang et al., Spontaneous bifacial capping of perovskite film for efficient and mechanically stable flexible solar cell. Nat. Commun. 16(1), 90 (2025). https://doi.org/10.1038/s41467-024-55652-6
Z. Xu, R. Yu, Q. Lv, H. Jia, Q. Guo et al., Tensile strain regulation via grain boundary buffering for flexible perovskite solar cells. Nat. Commun. (2025). https://doi.org/10.1038/s41467-025-67027-6
H. Wang, Q. Li, Y. Zhu, X. Sui, X. Fan et al., Photomechanically accelerated degradation of perovskite solar cells. Energy Environ. Sci. 18(5), 2254–2263 (2025). https://doi.org/10.1039/d4ee04878d
Y. Gao, H. Raza, Z. Zhang, W. Chen, Z. Liu, Rethinking the role of excess/residual lead iodide in perovskite solar cells. Adv. Funct. Mater. 33(26), 2215171 (2023). https://doi.org/10.1002/adfm.202215171
J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu et al., Inhibiting ion migration through chemical polymerization and chemical chelation toward stable perovskite solar cells. Angew. Chem. Int. Ed. 62(50), e202314106 (2023). https://doi.org/10.1002/anie.202314106
J. Zhang, Z. Li, F. Guo, H. Jiang, W. Yan et al., Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angew. Chem. Int. Ed. 62(31), e202305221 (2023). https://doi.org/10.1002/anie.202305221
X. Jiang, B. Zhang, G. Yang, Z. Zhou, X. Guo et al., Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(22), e202302462 (2023). https://doi.org/10.1002/anie.202302462
Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han et al., Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31(7), 2005776 (2021). https://doi.org/10.1002/adfm.202005776
H. Rui, X. Wu, Y. Qiu, X. Liu, S. Bu et al., Bifunctional bidentate organic additive toward high brightness pure red quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 33(52), 2308147 (2023). https://doi.org/10.1002/adfm.202308147
H. Zheng, G. Liu, X. Dong, F. Chen, C. Wang et al., Self-regulated bilateral anchoring enables efficient charge transport pathways for high-performance rigid and flexible perovskite solar cells. Nano-Micro Lett. 17(1), 328 (2025). https://doi.org/10.1007/s40820-025-01846-6
F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
H. Wang, Z. Wang, Z. Yang, Y. Xu, Y. Ding et al., Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 32(21), e2000865 (2020). https://doi.org/10.1002/adma.202000865
X. Jiang, J. Zhang, X. Liu, Z. Wang, X. Guo et al., Deeper insight into the role of organic ammonium cations in reducing surface defects of the perovskite film. Angew. Chem. Int. Ed. 61(12), e202115663 (2022). https://doi.org/10.1002/anie.202115663
X. Yuan, R. Li, Z. Xiong, P. Li, G.O. Odunmbaku et al., Synergistic crystallization modulation and defects passivation via additive engineering stabilize perovskite films for efficient solar cells. Adv. Funct. Mater. 33(24), 2215096 (2023). https://doi.org/10.1002/adfm.202215096
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
D. Kim, H. Choi, W. Jung, C. Kim, E.Y. Park et al., Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells. Energy Environ. Sci. 16(5), 2045–2055 (2023). https://doi.org/10.1039/d3ee00636k
J. Yang, W. Sheng, X. Li, Y. Zhong, Y. Su et al., Synergistic toughening and self-healing strategy for highly efficient and stable flexible perovskite solar cells. Adv. Funct. Mater. 33(23), 2214984 (2023). https://doi.org/10.1002/adfm.202214984
Y. Cao, N. Yan, M. Wang, D. Qi, J. Zhang et al., Designed additive to regulated crystallization for high performance perovskite solar cell. Angew. Chem. Int. Ed. 63(30), e202404401 (2024). https://doi.org/10.1002/anie.202404401
Y. Miao, M. Ren, H. Wang, L. Lu, X. Liu et al., Surface termination on unstable methylammonium-based perovskite using a steric barrier for improved perovskite solar cells. Angew. Chem. Int. Ed. 62(51), e202312726 (2023). https://doi.org/10.1002/anie.202312726
Y. Cao, J. Feng, Z. Xu, L. Zhang, J. Lou et al., Bifunctional trifluorophenylacetic acid additive for stable and highly efficient flexible perovskite solar cell. InfoMat 5(10), e12423 (2023). https://doi.org/10.1002/inf2.12423