Unlocking Superior Stability in High-Salinity Oxygen Evolution Reaction: A Ru Stabilized NiFeOOH/Ni Anode with over 2000 h Durability
Corresponding Author: Liang Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 223
Abstract
Saline water electrolysis presents a promising pathway for green hydrogen production by leveraging abundant saline water resources instead of scarce freshwater. However, the presence of highly corrosive chloride ions (Cl−) severely undermines anode durability. This instability arises from two main issues: (i) penetration of Cl− through catalyst layers to the underlying substrate and (ii) degradation of active catalytic sites due to Cl− attack. To tackle both issues simultaneously, we introduce ruthenium (Ru) ions as a dual-function stabilizing agent in NiFe-based anodes. Our results show that Ru incorporation promotes the formation of a protective surface layer enriched with Ru atoms, along with a denser NiFeOOH catalyst structure, which collectively inhibit Cl– infiltration. Moreover, atomically dispersed ruthenium (RuSA) within the NiFeOOH matrix effectively mitigates Cl–-induced corrosion of active sites. Thanks to this dual stabilization effect, the resulting RuSA-NiFeOOH/Ni anode exhibits exceptional operational stability—over 2000 h at an industrial current density of 0.5 A cm−2 in a chloride-enriched alkaline medium (1 M KOH + 2 M NaCl)—setting a new benchmark for performance under such aggressive conditions. This study establishes a robust dual stabilization strategy that significantly enhances anode stability in saline water electrolysis.
Highlights:
1 A dual-function stabilizing agent in NiFe-based anodes is proposed.
2 Ru incorporation promotes the formation of a protective surface layer enriched with Ru atoms, along with a denser NiFeOOH catalyst structure.
3 RuSA-NiFeOOH/Ni anode exhibits exceptional operational stability over 2000 h at an industrial current density of 0.5 A cm−2 in a chloride-enriched alkaline medium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 34(16), e2108133 (2022). https://doi.org/10.1002/adma.202108133
- Y. Wang, H. Arandiyan, S.S. Mofarah, X. Shen, S.A. Bartlett et al., Stacking fault-enriched MoNi4/MoO2 enables high-performance hydrogen evolution. Adv. Mater. 36(33), e2402156 (2024). https://doi.org/10.1002/adma.202402156
- D. Liu, H. Ai, J. Li, M. Fang, M. Chen et al., Surface reconstruction and phase transition on vanadium–cobalt–iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 10(45), 2002464 (2020). https://doi.org/10.1002/aenm.202002464
- G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28(43), 1803291 (2018). https://doi.org/10.1002/adfm.201803291
- X. Yang, Z. Wu, Z. Xing, C. Yang, W. Wang et al., IrPd nanoalloy-structured bifunctional electrocatalyst for efficient and pH-universal water splitting. Small 19(27), e2208261 (2023). https://doi.org/10.1002/smll.202208261
- M.N. Lakhan, A. Hanan, Y. Wang, H.K. Lee, H. Arandiyan, Integrated MXene and metal oxide electrocatalysts for the oxygen evolution reaction: synthesis, mechanisms, and advances. Chem. Sci. 15(38), 15540–15564 (2024). https://doi.org/10.1039/D4SC04141K
- C. Rong, Q. Sun, J. Zhu, H. Arandiyan, Z. Shao et al., Advances in stabilizing spinel cobalt oxide-based catalysts for acidic oxygen evolution reaction. Adv. Sci. 12(35), e09415 (2025). https://doi.org/10.1002/advs.202509415
- X. Zhang, J. Wang, K. Zong, Z. Chen, X. Yang et al., Recent advances in non-noble metal-based electrocatalysts for hybrid water electrolysis systems. Carbon Energy 7(3), e679 (2025). https://doi.org/10.1002/cey2.679
- B. Reda, A.A. Elzamar, S. AlFazzani, S.M. Ezzat, Green hydrogen as a source of renewable energy: a step towards sustainability, an overview. Environ. Dev. Sustain. 27(12), 29213–29233 (2025). https://doi.org/10.1007/s10668-024-04892-z
- J. Cheng, W. Liu, S. Chen, Y. Zhang, A. Cao et al., Fluoride-engineered electrolyte for highly stable and efficient alkaline seawater electrolysis at 2 a cm-2. Angew. Chem. Int. Ed. 64(52), e18106 (2025). https://doi.org/10.1002/anie.202518106
- Y. Wang, T. Wang, H. Arandiyan, G. Song, H. Sun et al., Advancing catalysts by stacking fault defects for enhanced hydrogen production: a review. Adv. Mater. 36(21), 2313378 (2024). https://doi.org/10.1002/adma.202313378
- B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang et al., Unmasking chloride attack on the passive film of metals. Nat. Commun. 9(1), 2559 (2018). https://doi.org/10.1038/s41467-018-04942-x
- C. Huang, Q. Zhou, L. Yu, D. Duan, T. Cao et al., Functional bimetal co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy Mater. 13(32), 2301475 (2023). https://doi.org/10.1002/aenm.202301475
- Y. Yu, W. Zhou, J. Yuan, X. Zhou, X. Meng et al., A hydrogen-bond network sieve enables selective OH–/Cl– discrimination for stable seawater splitting at 2.0 A cm–2. Energy Environ. Sci. 18(22), 9949–9958 (2025). https://doi.org/10.1039/d5ee04595a
- Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai et al., Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 11(46), 2102353 (2021). https://doi.org/10.1002/aenm.202102353
- J. Shi, H. Jiang, X. Hong, J. Tang, Non-noble metal high entropy sulfides for efficient oxygen evolution reaction catalysis. Appl. Surf. Sci. 642, 158598 (2024). https://doi.org/10.1016/j.apsusc.2023.158598
- B. Wang, M. Lu, D. Chen, Q. Zhang, W. Wang et al., NixFeyN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J. Mater. Chem. A 9(23), 13562–13569 (2021). https://doi.org/10.1039/d1ta01292d
- M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang et al., Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 15(9), 3945–3957 (2022). https://doi.org/10.1039/d2ee01094a
- L. Qi, A. Li, M. Wang, Y. Zhang, K. Zhang et al., Stable and efficient oxygen evolution from seawater enabled by graphene-supported sub-nanometer arrays of transition metal phosphides. Adv. Mater. Interfaces 9(2), 2101720 (2022). https://doi.org/10.1002/admi.202101720
- Z.-J. Gong, Z.-C. Hu, Z.-J. Bai, X.-A. Yu, Z. Liu et al., Fe1–xNix(PO3)2/Ni2P heterostructure for boosting alkaline oxygen evolution reaction in fresh water and real seawater at high current density. Inorg. Chem. 62(33), 13338–13347 (2023). https://doi.org/10.1021/acs.inorgchem.3c01639
- T. Fang, X. Yu, X. Han, J. Gao, Y. Ma, Coordination engineering of carbon dots and Mn in co-based phosphides for highly efficient seawater splitting at ampere-level current density. Small 20(40), e2402478 (2024). https://doi.org/10.1002/smll.202402478
- Q. Wu, Q. Gao, B. Shan, W. Wang, Y. Qi et al., Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202303012
- B. Wu, S. Gong, Y. Lin, T. Li, A. Chen et al., A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water. Adv. Mater. 34(43), e2108619 (2022). https://doi.org/10.1002/adma.202108619
- S.-H. Lin, J. He, Z.-Q. Tian, X.-P. Qi, Y.-C. Lin, Patching the cracks of catalyst layer for stable alkaline saline water electrolysis. Rare Met. 44(9), 6760–6770 (2025). https://doi.org/10.1007/s12598-025-03284-0
- J. Kim, M. Usama, K.S. Exner, S.H. Joo, Renaissance of chlorine evolution reaction: emerging theory and catalytic materials. Angew. Chem. Int. Ed. 64(1), e202417293 (2025). https://doi.org/10.1002/anie.202417293
- H. Zhang, N. Zhang, B. Xi, F. Wan, K. Song et al., Boosted electrosynthesis of hydrogen peroxide on isolated metal sites through second-shell modulation. Nano Res. 18(3), 94907211 (2025). https://doi.org/10.26599/nr.2025.94907211
- H. Zhang, F. Wan, X. Li, M. Zhang, N. Zhang et al., Atomically dispersed co–Ru dimer catalyst boosts conversion of polysulfides toward high-performance lithium–sulfur batteries. Adv. Mater. 37(28), 2500950 (2025). https://doi.org/10.1002/adma.202500950
- M.M. Uddin, B.M. Pirzada, F. Rasool, D. Anjum, G. Price et al., Surficial reconstruction in bimetallic oxide SrCoOx through Ce-doping for improved corrosion resistance during electrocatalytic oxygen evolution reaction in simulated alkaline saline water. Nano Res. Energy 4(3), e9120162 (2025). https://doi.org/10.26599/nre.2025.9120162
- J. Nie, J. Shi, L. Li, M.-Y. Xie, Z.-Y. Ouyang et al., Anion-mediated rapid and direct synthesis of FeNiOOH for robust water oxidation. Adv. Funct. Mater. 35(5), 2414493 (2025). https://doi.org/10.1002/adfm.202414493
- B. Guo, H. Huo, Q. Zhuang, X. Ren, X. Wen et al., Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction. Adv. Funct. Mater. 33(25), 2300557 (2023). https://doi.org/10.1002/adfm.202300557
- J. Hu, S. Li, J. Chu, S. Niu, J. Wang et al., Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 9(12), 10705–10711 (2019). https://doi.org/10.1021/acscatal.9b03876
- T. Zhao, Y. Jia, Q. Fang, R. Du, G. Hao et al., Amorphous-rich RuMnOx aerogel with weakened Ru–O covalency for efficient acidic water oxidation. J. Energy Chem. 104, 414–421 (2025). https://doi.org/10.1016/j.jechem.2024.12.053
- P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao et al., Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021). https://doi.org/10.1038/s41467-021-24828-9
- Y. Zhu, J. Wang, G. Weiser, M. Klingenhof, T. Koketsu et al., Ru single atoms and sulfur anions dual-doped NiFe layered double hydroxides for high-current-density alkaline oxygen evolution reaction. Adv. Energy Mater. 15(23), 2500554 (2025). https://doi.org/10.1002/aenm.202500554
- C.-F. Li, J.-W. Zhao, L.-J. Xie, J.-Q. Wu, Q. Ren et al., Surface-adsorbed carboxylate ligands on layered double hydroxides/metal–organic frameworks promote the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 60(33), 18129–18137 (2021). https://doi.org/10.1002/anie.202104148
- Y. Feng, X. Wang, J. Ma, N. Wang, Q. Liu et al., A solid-solution with asymmetric Ni-O-Cr sites for boosting protonation toward anodic oxidation. Adv. Energy Mater. 14(38), 2401501 (2024). https://doi.org/10.1002/aenm.202401501
- X. Wang, H. Hu, J. Song, J. Ma, H. Du et al., Surface anticorrosion engineering by polyphosphate oxyanions for durable seawater oxidation. Adv. Energy Mater. 15(4), 2402883 (2025). https://doi.org/10.1002/aenm.202402883
- Y. Zhuo, D. Liu, L. Qiao, S. Chen, J. Lu et al., Ultrafast room-temperature synthesis of large-scale, low-cost, and highly active Ni─Fe based electrodes toward industrialized seawater oxidation. Adv. Energy Mater. 13(39), 2301921 (2023). https://doi.org/10.1002/aenm.202301921
- A. Muthurasu, T.H. Ko, T.W. Kim, K. Chhetri, H.Y. Kim, Interfacial electronic modification of nickel phosphide via iron doping: an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 34(41), 2404254 (2024). https://doi.org/10.1002/adfm.202404254
- Y. Yan, R. Zhang, Y. Yu, Z. Sun, R. Che et al., Interfacial optimization of PtNi octahedrons@ Ti3C2 MXene with enhanced alkaline hydrogen evolution activity and stability. Appl. Catal. B Environ. 291, 120100 (2021). https://doi.org/10.1016/j.apcatb.2021.120100
- J. Wang, H. Yang, F. Li, L. Li, J. Wu et al., Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 8(9), eabl9271 (2022). https://doi.org/10.1126/sciadv.abl9271
- W. Xu, Z. Wang, P. Liu, X. Tang, S. Zhang et al., Ag nanop-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 36(2), e2306062 (2024). https://doi.org/10.1002/adma.202306062
- S. Zhang, Y. Wang, S. Li, Z. Wang, H. Chen et al., Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 14(1), 4822 (2023). https://doi.org/10.1038/s41467-023-40563-9
- H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36(45), e2411302 (2024). https://doi.org/10.1002/adma.202411302
- Z. Li, G. Lin, L. Wang, H. Lee, J. Du et al., Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density. Nat. Catal. 7(8), 944–952 (2024). https://doi.org/10.1038/s41929-024-01209-1
- M. Wei, J. Wang, X. Ma, Y. Cao, X. Yuan et al., Lattice Cl– reconstruction in a ternary hydroxychloride pre-electrocatalyst for efficient saline water oxidation. Carbon Future 2(3), 9200052 (2025). https://doi.org/10.26599/cf.2025.9200052
- C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
- W. Chen, B. Wu, Y. Wang, W. Zhou, Y. Li et al., Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 14(12), 6428–6440 (2021). https://doi.org/10.1039/d1ee01395e
- Y. Chen, Y. Liu, W. Zhai, H. Liu, T. Sakthivel et al., Metastabilizing the ruthenium clusters by interfacial oxygen vacancies for boosted water splitting electrocatalysis. Adv. Energy Mater. 14(21), 2400059 (2024). https://doi.org/10.1002/aenm.202400059
- L. Wu, J. Zhang, S. Wang, Q. Jiang, R. Feng et al., Silver decorated hydroxides electrocatalysts for efficient oxygen evolution reaction. Chem. Eng. J. 442, 136168 (2022). https://doi.org/10.1016/j.cej.2022.136168
- H. Chen, R.-T. Gao, H. Chen, Y. Yang, L. Wu et al., Ruthenium and silver synergetic regulation NiFe LDH boosting long-duration industrial seawater electrolysis. Adv. Funct. Mater. 34(25), 2315674 (2024). https://doi.org/10.1002/adfm.202315674
- F. Wu, B. Wu, L. Chen, Y. Wang, J. Li et al., Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH. Nanoscale 16(28), 13694–13702 (2024). https://doi.org/10.1039/d4nr01869a
- Z. Wang, H. Xiao, Fleeting-active-site-thrust oxygen evolution reaction by iron cations from the electrolyte. J. Am. Chem. Soc. 146(43), 29540–29550 (2024). https://doi.org/10.1021/jacs.4c09585
References
Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 34(16), e2108133 (2022). https://doi.org/10.1002/adma.202108133
Y. Wang, H. Arandiyan, S.S. Mofarah, X. Shen, S.A. Bartlett et al., Stacking fault-enriched MoNi4/MoO2 enables high-performance hydrogen evolution. Adv. Mater. 36(33), e2402156 (2024). https://doi.org/10.1002/adma.202402156
D. Liu, H. Ai, J. Li, M. Fang, M. Chen et al., Surface reconstruction and phase transition on vanadium–cobalt–iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 10(45), 2002464 (2020). https://doi.org/10.1002/aenm.202002464
G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28(43), 1803291 (2018). https://doi.org/10.1002/adfm.201803291
X. Yang, Z. Wu, Z. Xing, C. Yang, W. Wang et al., IrPd nanoalloy-structured bifunctional electrocatalyst for efficient and pH-universal water splitting. Small 19(27), e2208261 (2023). https://doi.org/10.1002/smll.202208261
M.N. Lakhan, A. Hanan, Y. Wang, H.K. Lee, H. Arandiyan, Integrated MXene and metal oxide electrocatalysts for the oxygen evolution reaction: synthesis, mechanisms, and advances. Chem. Sci. 15(38), 15540–15564 (2024). https://doi.org/10.1039/D4SC04141K
C. Rong, Q. Sun, J. Zhu, H. Arandiyan, Z. Shao et al., Advances in stabilizing spinel cobalt oxide-based catalysts for acidic oxygen evolution reaction. Adv. Sci. 12(35), e09415 (2025). https://doi.org/10.1002/advs.202509415
X. Zhang, J. Wang, K. Zong, Z. Chen, X. Yang et al., Recent advances in non-noble metal-based electrocatalysts for hybrid water electrolysis systems. Carbon Energy 7(3), e679 (2025). https://doi.org/10.1002/cey2.679
B. Reda, A.A. Elzamar, S. AlFazzani, S.M. Ezzat, Green hydrogen as a source of renewable energy: a step towards sustainability, an overview. Environ. Dev. Sustain. 27(12), 29213–29233 (2025). https://doi.org/10.1007/s10668-024-04892-z
J. Cheng, W. Liu, S. Chen, Y. Zhang, A. Cao et al., Fluoride-engineered electrolyte for highly stable and efficient alkaline seawater electrolysis at 2 a cm-2. Angew. Chem. Int. Ed. 64(52), e18106 (2025). https://doi.org/10.1002/anie.202518106
Y. Wang, T. Wang, H. Arandiyan, G. Song, H. Sun et al., Advancing catalysts by stacking fault defects for enhanced hydrogen production: a review. Adv. Mater. 36(21), 2313378 (2024). https://doi.org/10.1002/adma.202313378
B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang et al., Unmasking chloride attack on the passive film of metals. Nat. Commun. 9(1), 2559 (2018). https://doi.org/10.1038/s41467-018-04942-x
C. Huang, Q. Zhou, L. Yu, D. Duan, T. Cao et al., Functional bimetal co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy Mater. 13(32), 2301475 (2023). https://doi.org/10.1002/aenm.202301475
Y. Yu, W. Zhou, J. Yuan, X. Zhou, X. Meng et al., A hydrogen-bond network sieve enables selective OH–/Cl– discrimination for stable seawater splitting at 2.0 A cm–2. Energy Environ. Sci. 18(22), 9949–9958 (2025). https://doi.org/10.1039/d5ee04595a
Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai et al., Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 11(46), 2102353 (2021). https://doi.org/10.1002/aenm.202102353
J. Shi, H. Jiang, X. Hong, J. Tang, Non-noble metal high entropy sulfides for efficient oxygen evolution reaction catalysis. Appl. Surf. Sci. 642, 158598 (2024). https://doi.org/10.1016/j.apsusc.2023.158598
B. Wang, M. Lu, D. Chen, Q. Zhang, W. Wang et al., NixFeyN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J. Mater. Chem. A 9(23), 13562–13569 (2021). https://doi.org/10.1039/d1ta01292d
M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang et al., Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 15(9), 3945–3957 (2022). https://doi.org/10.1039/d2ee01094a
L. Qi, A. Li, M. Wang, Y. Zhang, K. Zhang et al., Stable and efficient oxygen evolution from seawater enabled by graphene-supported sub-nanometer arrays of transition metal phosphides. Adv. Mater. Interfaces 9(2), 2101720 (2022). https://doi.org/10.1002/admi.202101720
Z.-J. Gong, Z.-C. Hu, Z.-J. Bai, X.-A. Yu, Z. Liu et al., Fe1–xNix(PO3)2/Ni2P heterostructure for boosting alkaline oxygen evolution reaction in fresh water and real seawater at high current density. Inorg. Chem. 62(33), 13338–13347 (2023). https://doi.org/10.1021/acs.inorgchem.3c01639
T. Fang, X. Yu, X. Han, J. Gao, Y. Ma, Coordination engineering of carbon dots and Mn in co-based phosphides for highly efficient seawater splitting at ampere-level current density. Small 20(40), e2402478 (2024). https://doi.org/10.1002/smll.202402478
Q. Wu, Q. Gao, B. Shan, W. Wang, Y. Qi et al., Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202303012
B. Wu, S. Gong, Y. Lin, T. Li, A. Chen et al., A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water. Adv. Mater. 34(43), e2108619 (2022). https://doi.org/10.1002/adma.202108619
S.-H. Lin, J. He, Z.-Q. Tian, X.-P. Qi, Y.-C. Lin, Patching the cracks of catalyst layer for stable alkaline saline water electrolysis. Rare Met. 44(9), 6760–6770 (2025). https://doi.org/10.1007/s12598-025-03284-0
J. Kim, M. Usama, K.S. Exner, S.H. Joo, Renaissance of chlorine evolution reaction: emerging theory and catalytic materials. Angew. Chem. Int. Ed. 64(1), e202417293 (2025). https://doi.org/10.1002/anie.202417293
H. Zhang, N. Zhang, B. Xi, F. Wan, K. Song et al., Boosted electrosynthesis of hydrogen peroxide on isolated metal sites through second-shell modulation. Nano Res. 18(3), 94907211 (2025). https://doi.org/10.26599/nr.2025.94907211
H. Zhang, F. Wan, X. Li, M. Zhang, N. Zhang et al., Atomically dispersed co–Ru dimer catalyst boosts conversion of polysulfides toward high-performance lithium–sulfur batteries. Adv. Mater. 37(28), 2500950 (2025). https://doi.org/10.1002/adma.202500950
M.M. Uddin, B.M. Pirzada, F. Rasool, D. Anjum, G. Price et al., Surficial reconstruction in bimetallic oxide SrCoOx through Ce-doping for improved corrosion resistance during electrocatalytic oxygen evolution reaction in simulated alkaline saline water. Nano Res. Energy 4(3), e9120162 (2025). https://doi.org/10.26599/nre.2025.9120162
J. Nie, J. Shi, L. Li, M.-Y. Xie, Z.-Y. Ouyang et al., Anion-mediated rapid and direct synthesis of FeNiOOH for robust water oxidation. Adv. Funct. Mater. 35(5), 2414493 (2025). https://doi.org/10.1002/adfm.202414493
B. Guo, H. Huo, Q. Zhuang, X. Ren, X. Wen et al., Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction. Adv. Funct. Mater. 33(25), 2300557 (2023). https://doi.org/10.1002/adfm.202300557
J. Hu, S. Li, J. Chu, S. Niu, J. Wang et al., Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 9(12), 10705–10711 (2019). https://doi.org/10.1021/acscatal.9b03876
T. Zhao, Y. Jia, Q. Fang, R. Du, G. Hao et al., Amorphous-rich RuMnOx aerogel with weakened Ru–O covalency for efficient acidic water oxidation. J. Energy Chem. 104, 414–421 (2025). https://doi.org/10.1016/j.jechem.2024.12.053
P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao et al., Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021). https://doi.org/10.1038/s41467-021-24828-9
Y. Zhu, J. Wang, G. Weiser, M. Klingenhof, T. Koketsu et al., Ru single atoms and sulfur anions dual-doped NiFe layered double hydroxides for high-current-density alkaline oxygen evolution reaction. Adv. Energy Mater. 15(23), 2500554 (2025). https://doi.org/10.1002/aenm.202500554
C.-F. Li, J.-W. Zhao, L.-J. Xie, J.-Q. Wu, Q. Ren et al., Surface-adsorbed carboxylate ligands on layered double hydroxides/metal–organic frameworks promote the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 60(33), 18129–18137 (2021). https://doi.org/10.1002/anie.202104148
Y. Feng, X. Wang, J. Ma, N. Wang, Q. Liu et al., A solid-solution with asymmetric Ni-O-Cr sites for boosting protonation toward anodic oxidation. Adv. Energy Mater. 14(38), 2401501 (2024). https://doi.org/10.1002/aenm.202401501
X. Wang, H. Hu, J. Song, J. Ma, H. Du et al., Surface anticorrosion engineering by polyphosphate oxyanions for durable seawater oxidation. Adv. Energy Mater. 15(4), 2402883 (2025). https://doi.org/10.1002/aenm.202402883
Y. Zhuo, D. Liu, L. Qiao, S. Chen, J. Lu et al., Ultrafast room-temperature synthesis of large-scale, low-cost, and highly active Ni─Fe based electrodes toward industrialized seawater oxidation. Adv. Energy Mater. 13(39), 2301921 (2023). https://doi.org/10.1002/aenm.202301921
A. Muthurasu, T.H. Ko, T.W. Kim, K. Chhetri, H.Y. Kim, Interfacial electronic modification of nickel phosphide via iron doping: an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 34(41), 2404254 (2024). https://doi.org/10.1002/adfm.202404254
Y. Yan, R. Zhang, Y. Yu, Z. Sun, R. Che et al., Interfacial optimization of PtNi octahedrons@ Ti3C2 MXene with enhanced alkaline hydrogen evolution activity and stability. Appl. Catal. B Environ. 291, 120100 (2021). https://doi.org/10.1016/j.apcatb.2021.120100
J. Wang, H. Yang, F. Li, L. Li, J. Wu et al., Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 8(9), eabl9271 (2022). https://doi.org/10.1126/sciadv.abl9271
W. Xu, Z. Wang, P. Liu, X. Tang, S. Zhang et al., Ag nanop-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 36(2), e2306062 (2024). https://doi.org/10.1002/adma.202306062
S. Zhang, Y. Wang, S. Li, Z. Wang, H. Chen et al., Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 14(1), 4822 (2023). https://doi.org/10.1038/s41467-023-40563-9
H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36(45), e2411302 (2024). https://doi.org/10.1002/adma.202411302
Z. Li, G. Lin, L. Wang, H. Lee, J. Du et al., Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density. Nat. Catal. 7(8), 944–952 (2024). https://doi.org/10.1038/s41929-024-01209-1
M. Wei, J. Wang, X. Ma, Y. Cao, X. Yuan et al., Lattice Cl– reconstruction in a ternary hydroxychloride pre-electrocatalyst for efficient saline water oxidation. Carbon Future 2(3), 9200052 (2025). https://doi.org/10.26599/cf.2025.9200052
C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
W. Chen, B. Wu, Y. Wang, W. Zhou, Y. Li et al., Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 14(12), 6428–6440 (2021). https://doi.org/10.1039/d1ee01395e
Y. Chen, Y. Liu, W. Zhai, H. Liu, T. Sakthivel et al., Metastabilizing the ruthenium clusters by interfacial oxygen vacancies for boosted water splitting electrocatalysis. Adv. Energy Mater. 14(21), 2400059 (2024). https://doi.org/10.1002/aenm.202400059
L. Wu, J. Zhang, S. Wang, Q. Jiang, R. Feng et al., Silver decorated hydroxides electrocatalysts for efficient oxygen evolution reaction. Chem. Eng. J. 442, 136168 (2022). https://doi.org/10.1016/j.cej.2022.136168
H. Chen, R.-T. Gao, H. Chen, Y. Yang, L. Wu et al., Ruthenium and silver synergetic regulation NiFe LDH boosting long-duration industrial seawater electrolysis. Adv. Funct. Mater. 34(25), 2315674 (2024). https://doi.org/10.1002/adfm.202315674
F. Wu, B. Wu, L. Chen, Y. Wang, J. Li et al., Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH. Nanoscale 16(28), 13694–13702 (2024). https://doi.org/10.1039/d4nr01869a
Z. Wang, H. Xiao, Fleeting-active-site-thrust oxygen evolution reaction by iron cations from the electrolyte. J. Am. Chem. Soc. 146(43), 29540–29550 (2024). https://doi.org/10.1021/jacs.4c09585