A Promising Strategy for Solvent-Regulated Selective Hydrogenation of 5-Hydroxymethylfurfural over Porous Carbon-Supported Ni-ZnO Nanoparticles
Corresponding Author: Kui Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 5
Abstract
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization. Herein, we report porous carbon-supported Ni-ZnO nanoparticles catalyst (Ni-ZnO/AC) synthesized via low-temperature coprecipitation, exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural (HMF). A linear correlation is first observed between solvent polarity (ET(30)) and product selectivity within both polar aprotic and protic solvent classes, suggesting that solvent properties play a vital role in directing reaction pathways. Among these, 1,4-dioxane (aprotic) favors the formation of 2,5-bis(hydroxymethyl)furan (BHMF) with 97.5% selectivity, while isopropanol (iPrOH, protic) promotes 2,5-dimethylfuran production with up to 99.5% selectivity. Mechanistic investigations further reveal that beyond polarity, proton-donating ability is critical in facilitating hydrodeoxygenation. iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal, lowering the activation barrier. In contrast, 1,4-dioxane, lacking hydrogen bond donors, stabilizes BHMF and hinders further conversion. Density functional theory calculations confirm a lower activation energy in iPrOH (0.60 eV) compared to 1,4-dioxane (1.07 eV). This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation, highlighting the decisive role of solvent-catalyst-substrate interactions.
Highlights:
1 A porous carbon-supported Ni-ZnO nanoparticles catalyst (Ni-ZnO/AC) was synthesized by low-temperature coprecipitation, demonstrating exceptional catalytic activity and stability.
2 Selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (97.5%) or 2,5-dimethylfuran (99.5%) is achieved over Ni-ZnO/AC catalyst by solvent-tuning.
3 Solvent-catalyst interaction jointly regulates hydrodeoxygenation behavior in HMF hydrogenation by modulating rate and pathway via a hydrogen shuttle mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.J. Gilkey, B. Xu, Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal. 6(3), 1420–1436 (2016). https://doi.org/10.1021/acscatal.5b02171
- A. Shivhare, A. Kumar, R. Srivastava, The size-dependent catalytic performances of supported metal nanops and single atoms for the upgrading of biomass-derived 5-hydroxymethylfurfural, furfural, and levulinic acid. ChemCatChem 14(3), e202101423 (2022). https://doi.org/10.1002/cctc.202101423
- D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15(3), 584–595 (2013). https://doi.org/10.1039/C3GC37065H
- X. Jiang, X. Ma, Y. Yang, Y. Liu, Y. Liu et al., Enhancing the electrocatalytic oxidation of 5-hydroxymethylfurfural through cascade structure tuning for highly stable biomass upgrading. Nano-Micro Lett. 16(1), 275 (2024). https://doi.org/10.1007/s40820-024-01493-3
- S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 118(22), 11023–11117 (2018). https://doi.org/10.1021/acs.chemrev.8b00134
- C. Chen, M. Lv, H. Hu, L. Huai, B. Zhu et al., 5-hydroxymethylfurfural and its downstream chemicals: a review of catalytic routes. Adv. Mater. 36(37), 2311464 (2024). https://doi.org/10.1002/adma.202311464
- Z. Jiang, Y. Zeng, D. Hu, R. Guo, K. Yan et al., Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future. Green Chem. 25(3), 871–892 (2023). https://doi.org/10.1039/D2GC03444A
- B. Chen, Y. Feng, S. Ma, W. Xie, G. Yan et al., One-pot synthesis of 2, 5-bis(hydroxymethyl)furan from biomass derived 5-(chloromethyl)furfural in high yield. J. Energy Chem. 76, 421–428 (2023). https://doi.org/10.1016/j.jechem.2022.10.005
- X. Wang, Q. Liu, S. Chen, X. Qian, Q. Huang et al., Engineered nickel phyllosilicate for selective 5-HMF C-O bond hydrogenation under benign conditions. Catal. Today 441, 114883 (2024). https://doi.org/10.1016/j.cattod.2024.114883
- L. Lin, Y. Zeng, S. Zhang, D. Hu, Z. Jiang et al., Tuning ligand-vacancies in Pd-UiO-66 to boost biofuel production from 5-hydroxymethylfurfural hydrodeoxygenation. Appl. Catal. B Environ. Energy 361, 124592 (2025). https://doi.org/10.1016/j.apcatb.2024.124592
- Y. Wang, H. Wang, X. Kong, Y. Zhu, Catalytic conversion of 5-hydroxymethylfurfural to high-value derivatives by selective activation of C−O, C=O, and C=C bonds. Chemsuschem 15(13), e202200421 (2022). https://doi.org/10.1002/cssc.202200421
- H. He, J. Yang, B. Kang, M. Lv, E. Du et al., Critical role of the support in the aqueous hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)furan over Pt-based catalysts. Fuel 372, 132147 (2024). https://doi.org/10.1016/j.fuel.2024.132147
- B. Kang, Z. Chen, J. Yang, M. Lv, H. He et al., Boosting hydrogenation properties of supported Cu-based catalysts by replacing Cu0 active sites. Appl. Catal. B Environ. Energy 361, 124563 (2025). https://doi.org/10.1016/j.apcatb.2024.124563
- D. Wu, S. Zhang, W.Y. Hernández, W. Baaziz, O. Ersen et al., Dual metal–acid Pd-Br catalyst for selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran at ambient temperature. ACS Catal. 11(1), 19–30 (2021). https://doi.org/10.1021/acscatal.0c03955
- M.A. Mellmer, C. Sener, J.M.R. Gallo, J.S. Luterbacher, D.M. Alonso et al., Solvent effects in acid-catalyzed biomass conversion reactions. Angew. Chem. Int. Ed. 53(44), 11872–11875 (2014). https://doi.org/10.1002/anie.201408359
- R. Li, Q. Lin, Y. Liu, X. Wang, C. Liu et al., Insights into solvent effect on selective production of furfural and 5-hydroxymethylfurfural from fructose. J. Catal. 424, 162–172 (2023). https://doi.org/10.1016/j.jcat.2023.05.022
- J.S. Adams, A. Chemburkar, P. Priyadarshini, T. Ricciardulli, Y. Lu et al., Solvent molecules form surface redox mediators in situ and cocatalyze O2 reduction on Pd. Science 371(6529), 626–632 (2021). https://doi.org/10.1126/science.abc1339
- Z. Zhao, R. Bababrik, W. Xue, Y. Li, N.M. Briggs et al., Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nat. Catal. 2(5), 431–436 (2019). https://doi.org/10.1038/s41929-019-0257-z
- Y. Deng, R. Gao, L. Lin, T. Liu, X.-D. Wen et al., Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst. J. Am. Chem. Soc. 140(43), 14481–14489 (2018). https://doi.org/10.1021/jacs.8b09310
- M.A. Mellmer, C. Sanpitakseree, B. Demir, P. Bai, K. Ma et al., Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1(3), 199–207 (2018). https://doi.org/10.1038/s41929-018-0027-3
- V. Ranaware, R.G. Kurniawan, D. Verma, S.K. Kwak, B.C. Ryu et al., Solvent-mediated selectivity control of furfural hydrogenation over a N-doped carbon-nanotube-supported Co/CoOx catalyst. Appl. Catal. B Environ. 318, 121838 (2022). https://doi.org/10.1016/j.apcatb.2022.121838
- A.A. Khechfe, T.B.M. Matha, Y. Román-Leshkov, Solvent polarity and framework hydrophobicity of Hf-BEA zeolites influence aldol addition rates in organic media. ACS Catal. 13(9), 6474–6485 (2023). https://doi.org/10.1021/acscatal.3c00787
- X. Ma, Y. Ma, H. Su, S. Liu, Y. Liu et al., Novel insights into the mechanism for protic solvent promoting Pd/C-catalyzed hydrodechlorination of chlorinated organic compounds. Chem. Eng. J. 431, 133729 (2022). https://doi.org/10.1016/j.cej.2021.133729
- X. Gu, P. Guo, Z. Li, X. Xu, Y. Cao et al., A multifunctional coconut shell biochar modified by titanium dioxide for heavy metal removal in water/soil and tetracycline degradation. J. Clean. Prod. 482, 144192 (2024). https://doi.org/10.1016/j.jclepro.2024.144192
- C. Cheng, L. Ding, Q. Guo, Q. He, Y. Gong et al., Process analysis and kinetic modeling of coconut shell hydrothermal carbonization. Appl. Energy 315, 118981 (2022). https://doi.org/10.1016/j.apenergy.2022.118981
- Y. Qiu, S. Ali, G. Lan, H. Tong, J. Fan et al., Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination. Carbon 146, 406–412 (2019). https://doi.org/10.1016/j.carbon.2019.01.102
- Q. Fan, P. Hou, C. Choi, T.-S. Wu, S. Hong et al., Activation of Ni ps into single Ni–N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 10(5), 1903068 (2020). https://doi.org/10.1002/aenm.201903068
- H. Song, G. Fang, Z. Gao, Y. Su, X. Yan et al., In situ transformation of ZIF-8 into porous overlayer on Ru/ZnO for enhanced hydrogenation catalysis. ACS Appl. Mater. Interfaces 14(10), 12295–12303 (2022). https://doi.org/10.1021/acsami.1c25046
- D. Liu, J.-C. Li, Q. Shi, S. Feng, Z. Lyu et al., Atomically isolated iron atom anchored on carbon nanotubes for oxygen reduction reaction. ACS Appl. Mater. Interfaces 11(43), 39820–39826 (2019). https://doi.org/10.1021/acsami.9b12054
- H. Guo, J. Zhao, Y. Chen, X. Lu, Y. Yang et al., Mechanistic insights into hydrodeoxygenation of lignin derivatives over Ni single atoms supported on Mo2C. ACS Catal. 14(2), 703–717 (2024). https://doi.org/10.1021/acscatal.3c04555
- C. Wang, J. Lv, Y. Ren, Q. Zhou, J. Chen et al., Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property. Carbohydr. Polym. 138, 106–113 (2016). https://doi.org/10.1016/j.carbpol.2015.11.046
- Z. Xia, L. Niu, Y. An, G. Bian, T. Li et al., Ni–Al/CoOx-catalyzed hydrodeoxygenation of 5-hydroxymethylfurfural into 2, 5-dimethylfuran at low temperatures without external hydrogen. Green Chem. 23(19), 7763–7772 (2021). https://doi.org/10.1039/D1GC02758A
- D. Liu, K. Srinivas, X. Chen, F. Ma, X. Zhang et al., Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction. J. Colloid Interface Sci. 624, 680–690 (2022). https://doi.org/10.1016/j.jcis.2022.05.167
- S. Zhou, F. Dai, Z. Xiang, T. Song, D. Liu et al., Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl. Catal. B Environ. 248, 31–43 (2019). https://doi.org/10.1016/j.apcatb.2019.02.011
- L. Peng, Y. Yu, S. Gao, M. Wang, J. Zhang et al., Coupling Cu+ species and Zr single atoms for synergetic catalytic transfer hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Catal. 14(9), 6623–6632 (2024). https://doi.org/10.1021/acscatal.4c00763
- J. Wei, T. Wang, X. Cao, H. Liu, X. Tang et al., A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels. Appl. Catal. B Environ. 258, 117793 (2019). https://doi.org/10.1016/j.apcatb.2019.117793
- Y. Gao, A. Aihemaiti, J. Jiang, Y. Meng, T. Ju et al., Inspection over carbon deposition features of various nickel catalysts during simulated biogas dry reforming. J. Clean. Prod. 260, 120944 (2020). https://doi.org/10.1016/j.jclepro.2020.120944
- K. Zhang, J. Jiang, Z. Liu, J. Ye, R. Tao, H. Xu, K. Wang, Catalytic hydrogenolysis of lignin into propenyl-monophenol over Ru single atoms supported on CeO2 with rich oxygen vacancies. ACS Catal. 14(21), 16115–16126 (2024). https://doi.org/10.1021/acscatal.4c03184
- X. Kong, Y. Zhu, H. Zheng, Y. Zhu, Z. Fang, Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2, 5-dimethylfuran from bioderived 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 5(12), 11280–11289 (2017). https://doi.org/10.1021/acssuschemeng.7b01813
- Y. Wan, J.-M. Lee, Recent advances in reductive upgrading of 5-hydroxymethylfurfural via heterogeneous thermocatalysis. Chemsuschem 15(13), e202102041 (2022). https://doi.org/10.1002/cssc.202102041
- Z. Liu, H. Li, X. Gao, X. Guo, S. Wang et al., Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nat. Commun. 13(1), 4716 (2022). https://doi.org/10.1038/s41467-022-32451-5
- Q. Wang, J. Feng, L. Zheng, B. Wang, R. Bi et al., Interfacial structure-determined reaction pathway and selectivity for 5-(hydroxymethyl)furfural hydrogenation over Cu-based catalysts. ACS Catal. 10(2), 1353–1365 (2020). https://doi.org/10.1021/acscatal.9b03630
- Y. Yang, L. Chen, Y. Chen, W. Liu, H. Feng et al., The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chem. 21(19), 5352–5362 (2019). https://doi.org/10.1039/C9GC01119F
- Y. Zhang, S. Wang, Y. Yang, L. Wang, E. Xu et al., A switchable hydrogenation chemoselectivity of biomass platform compounds based on solvent regulation. Appl. Catal. B Environ. Energy 346, 123719 (2024). https://doi.org/10.1016/j.apcatb.2024.123719
- R. Huang, J. Jiang, J. Liang, S. Wang, Y. Chen et al., Selective hydrogenation of 5-hydroxymethylfurfural triggered bya high Lewis acidic Ni-based transition metal carbide catalyst. Green Energy Environ. 10(3), 573–584 (2025). https://doi.org/10.1016/j.gee.2024.05.007
- B. Chen, Y. Feng, R. Huang, S. Yang, Z. Li et al., Efficient synthesis of the liquid fuel 2, 5-dimethylfuran from biomass derived 5-(chloromethyl)furfural at room temperature. Appl. Catal. B Environ. 318, 121842 (2022). https://doi.org/10.1016/j.apcatb.2022.121842
- C. Liu, Y. Wu, T. Cai, Y. Chen, S. Jia et al., Investigation into the effect of solvents on lignin hydrogenation for the production of phenolic compounds. Green Chem. 26(6), 3356–3367 (2024). https://doi.org/10.1039/D3GC04902G
- J. Liang, C. Liu, J. Jiang, K. Wang, Unlocking the anion effect on steerable production of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 63(48), e202410229 (2024). https://doi.org/10.1002/anie.202410229
References
M.J. Gilkey, B. Xu, Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal. 6(3), 1420–1436 (2016). https://doi.org/10.1021/acscatal.5b02171
A. Shivhare, A. Kumar, R. Srivastava, The size-dependent catalytic performances of supported metal nanops and single atoms for the upgrading of biomass-derived 5-hydroxymethylfurfural, furfural, and levulinic acid. ChemCatChem 14(3), e202101423 (2022). https://doi.org/10.1002/cctc.202101423
D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15(3), 584–595 (2013). https://doi.org/10.1039/C3GC37065H
X. Jiang, X. Ma, Y. Yang, Y. Liu, Y. Liu et al., Enhancing the electrocatalytic oxidation of 5-hydroxymethylfurfural through cascade structure tuning for highly stable biomass upgrading. Nano-Micro Lett. 16(1), 275 (2024). https://doi.org/10.1007/s40820-024-01493-3
S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 118(22), 11023–11117 (2018). https://doi.org/10.1021/acs.chemrev.8b00134
C. Chen, M. Lv, H. Hu, L. Huai, B. Zhu et al., 5-hydroxymethylfurfural and its downstream chemicals: a review of catalytic routes. Adv. Mater. 36(37), 2311464 (2024). https://doi.org/10.1002/adma.202311464
Z. Jiang, Y. Zeng, D. Hu, R. Guo, K. Yan et al., Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future. Green Chem. 25(3), 871–892 (2023). https://doi.org/10.1039/D2GC03444A
B. Chen, Y. Feng, S. Ma, W. Xie, G. Yan et al., One-pot synthesis of 2, 5-bis(hydroxymethyl)furan from biomass derived 5-(chloromethyl)furfural in high yield. J. Energy Chem. 76, 421–428 (2023). https://doi.org/10.1016/j.jechem.2022.10.005
X. Wang, Q. Liu, S. Chen, X. Qian, Q. Huang et al., Engineered nickel phyllosilicate for selective 5-HMF C-O bond hydrogenation under benign conditions. Catal. Today 441, 114883 (2024). https://doi.org/10.1016/j.cattod.2024.114883
L. Lin, Y. Zeng, S. Zhang, D. Hu, Z. Jiang et al., Tuning ligand-vacancies in Pd-UiO-66 to boost biofuel production from 5-hydroxymethylfurfural hydrodeoxygenation. Appl. Catal. B Environ. Energy 361, 124592 (2025). https://doi.org/10.1016/j.apcatb.2024.124592
Y. Wang, H. Wang, X. Kong, Y. Zhu, Catalytic conversion of 5-hydroxymethylfurfural to high-value derivatives by selective activation of C−O, C=O, and C=C bonds. Chemsuschem 15(13), e202200421 (2022). https://doi.org/10.1002/cssc.202200421
H. He, J. Yang, B. Kang, M. Lv, E. Du et al., Critical role of the support in the aqueous hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)furan over Pt-based catalysts. Fuel 372, 132147 (2024). https://doi.org/10.1016/j.fuel.2024.132147
B. Kang, Z. Chen, J. Yang, M. Lv, H. He et al., Boosting hydrogenation properties of supported Cu-based catalysts by replacing Cu0 active sites. Appl. Catal. B Environ. Energy 361, 124563 (2025). https://doi.org/10.1016/j.apcatb.2024.124563
D. Wu, S. Zhang, W.Y. Hernández, W. Baaziz, O. Ersen et al., Dual metal–acid Pd-Br catalyst for selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran at ambient temperature. ACS Catal. 11(1), 19–30 (2021). https://doi.org/10.1021/acscatal.0c03955
M.A. Mellmer, C. Sener, J.M.R. Gallo, J.S. Luterbacher, D.M. Alonso et al., Solvent effects in acid-catalyzed biomass conversion reactions. Angew. Chem. Int. Ed. 53(44), 11872–11875 (2014). https://doi.org/10.1002/anie.201408359
R. Li, Q. Lin, Y. Liu, X. Wang, C. Liu et al., Insights into solvent effect on selective production of furfural and 5-hydroxymethylfurfural from fructose. J. Catal. 424, 162–172 (2023). https://doi.org/10.1016/j.jcat.2023.05.022
J.S. Adams, A. Chemburkar, P. Priyadarshini, T. Ricciardulli, Y. Lu et al., Solvent molecules form surface redox mediators in situ and cocatalyze O2 reduction on Pd. Science 371(6529), 626–632 (2021). https://doi.org/10.1126/science.abc1339
Z. Zhao, R. Bababrik, W. Xue, Y. Li, N.M. Briggs et al., Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nat. Catal. 2(5), 431–436 (2019). https://doi.org/10.1038/s41929-019-0257-z
Y. Deng, R. Gao, L. Lin, T. Liu, X.-D. Wen et al., Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst. J. Am. Chem. Soc. 140(43), 14481–14489 (2018). https://doi.org/10.1021/jacs.8b09310
M.A. Mellmer, C. Sanpitakseree, B. Demir, P. Bai, K. Ma et al., Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1(3), 199–207 (2018). https://doi.org/10.1038/s41929-018-0027-3
V. Ranaware, R.G. Kurniawan, D. Verma, S.K. Kwak, B.C. Ryu et al., Solvent-mediated selectivity control of furfural hydrogenation over a N-doped carbon-nanotube-supported Co/CoOx catalyst. Appl. Catal. B Environ. 318, 121838 (2022). https://doi.org/10.1016/j.apcatb.2022.121838
A.A. Khechfe, T.B.M. Matha, Y. Román-Leshkov, Solvent polarity and framework hydrophobicity of Hf-BEA zeolites influence aldol addition rates in organic media. ACS Catal. 13(9), 6474–6485 (2023). https://doi.org/10.1021/acscatal.3c00787
X. Ma, Y. Ma, H. Su, S. Liu, Y. Liu et al., Novel insights into the mechanism for protic solvent promoting Pd/C-catalyzed hydrodechlorination of chlorinated organic compounds. Chem. Eng. J. 431, 133729 (2022). https://doi.org/10.1016/j.cej.2021.133729
X. Gu, P. Guo, Z. Li, X. Xu, Y. Cao et al., A multifunctional coconut shell biochar modified by titanium dioxide for heavy metal removal in water/soil and tetracycline degradation. J. Clean. Prod. 482, 144192 (2024). https://doi.org/10.1016/j.jclepro.2024.144192
C. Cheng, L. Ding, Q. Guo, Q. He, Y. Gong et al., Process analysis and kinetic modeling of coconut shell hydrothermal carbonization. Appl. Energy 315, 118981 (2022). https://doi.org/10.1016/j.apenergy.2022.118981
Y. Qiu, S. Ali, G. Lan, H. Tong, J. Fan et al., Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination. Carbon 146, 406–412 (2019). https://doi.org/10.1016/j.carbon.2019.01.102
Q. Fan, P. Hou, C. Choi, T.-S. Wu, S. Hong et al., Activation of Ni ps into single Ni–N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 10(5), 1903068 (2020). https://doi.org/10.1002/aenm.201903068
H. Song, G. Fang, Z. Gao, Y. Su, X. Yan et al., In situ transformation of ZIF-8 into porous overlayer on Ru/ZnO for enhanced hydrogenation catalysis. ACS Appl. Mater. Interfaces 14(10), 12295–12303 (2022). https://doi.org/10.1021/acsami.1c25046
D. Liu, J.-C. Li, Q. Shi, S. Feng, Z. Lyu et al., Atomically isolated iron atom anchored on carbon nanotubes for oxygen reduction reaction. ACS Appl. Mater. Interfaces 11(43), 39820–39826 (2019). https://doi.org/10.1021/acsami.9b12054
H. Guo, J. Zhao, Y. Chen, X. Lu, Y. Yang et al., Mechanistic insights into hydrodeoxygenation of lignin derivatives over Ni single atoms supported on Mo2C. ACS Catal. 14(2), 703–717 (2024). https://doi.org/10.1021/acscatal.3c04555
C. Wang, J. Lv, Y. Ren, Q. Zhou, J. Chen et al., Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property. Carbohydr. Polym. 138, 106–113 (2016). https://doi.org/10.1016/j.carbpol.2015.11.046
Z. Xia, L. Niu, Y. An, G. Bian, T. Li et al., Ni–Al/CoOx-catalyzed hydrodeoxygenation of 5-hydroxymethylfurfural into 2, 5-dimethylfuran at low temperatures without external hydrogen. Green Chem. 23(19), 7763–7772 (2021). https://doi.org/10.1039/D1GC02758A
D. Liu, K. Srinivas, X. Chen, F. Ma, X. Zhang et al., Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction. J. Colloid Interface Sci. 624, 680–690 (2022). https://doi.org/10.1016/j.jcis.2022.05.167
S. Zhou, F. Dai, Z. Xiang, T. Song, D. Liu et al., Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl. Catal. B Environ. 248, 31–43 (2019). https://doi.org/10.1016/j.apcatb.2019.02.011
L. Peng, Y. Yu, S. Gao, M. Wang, J. Zhang et al., Coupling Cu+ species and Zr single atoms for synergetic catalytic transfer hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Catal. 14(9), 6623–6632 (2024). https://doi.org/10.1021/acscatal.4c00763
J. Wei, T. Wang, X. Cao, H. Liu, X. Tang et al., A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels. Appl. Catal. B Environ. 258, 117793 (2019). https://doi.org/10.1016/j.apcatb.2019.117793
Y. Gao, A. Aihemaiti, J. Jiang, Y. Meng, T. Ju et al., Inspection over carbon deposition features of various nickel catalysts during simulated biogas dry reforming. J. Clean. Prod. 260, 120944 (2020). https://doi.org/10.1016/j.jclepro.2020.120944
K. Zhang, J. Jiang, Z. Liu, J. Ye, R. Tao, H. Xu, K. Wang, Catalytic hydrogenolysis of lignin into propenyl-monophenol over Ru single atoms supported on CeO2 with rich oxygen vacancies. ACS Catal. 14(21), 16115–16126 (2024). https://doi.org/10.1021/acscatal.4c03184
X. Kong, Y. Zhu, H. Zheng, Y. Zhu, Z. Fang, Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2, 5-dimethylfuran from bioderived 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 5(12), 11280–11289 (2017). https://doi.org/10.1021/acssuschemeng.7b01813
Y. Wan, J.-M. Lee, Recent advances in reductive upgrading of 5-hydroxymethylfurfural via heterogeneous thermocatalysis. Chemsuschem 15(13), e202102041 (2022). https://doi.org/10.1002/cssc.202102041
Z. Liu, H. Li, X. Gao, X. Guo, S. Wang et al., Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nat. Commun. 13(1), 4716 (2022). https://doi.org/10.1038/s41467-022-32451-5
Q. Wang, J. Feng, L. Zheng, B. Wang, R. Bi et al., Interfacial structure-determined reaction pathway and selectivity for 5-(hydroxymethyl)furfural hydrogenation over Cu-based catalysts. ACS Catal. 10(2), 1353–1365 (2020). https://doi.org/10.1021/acscatal.9b03630
Y. Yang, L. Chen, Y. Chen, W. Liu, H. Feng et al., The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chem. 21(19), 5352–5362 (2019). https://doi.org/10.1039/C9GC01119F
Y. Zhang, S. Wang, Y. Yang, L. Wang, E. Xu et al., A switchable hydrogenation chemoselectivity of biomass platform compounds based on solvent regulation. Appl. Catal. B Environ. Energy 346, 123719 (2024). https://doi.org/10.1016/j.apcatb.2024.123719
R. Huang, J. Jiang, J. Liang, S. Wang, Y. Chen et al., Selective hydrogenation of 5-hydroxymethylfurfural triggered bya high Lewis acidic Ni-based transition metal carbide catalyst. Green Energy Environ. 10(3), 573–584 (2025). https://doi.org/10.1016/j.gee.2024.05.007
B. Chen, Y. Feng, R. Huang, S. Yang, Z. Li et al., Efficient synthesis of the liquid fuel 2, 5-dimethylfuran from biomass derived 5-(chloromethyl)furfural at room temperature. Appl. Catal. B Environ. 318, 121842 (2022). https://doi.org/10.1016/j.apcatb.2022.121842
C. Liu, Y. Wu, T. Cai, Y. Chen, S. Jia et al., Investigation into the effect of solvents on lignin hydrogenation for the production of phenolic compounds. Green Chem. 26(6), 3356–3367 (2024). https://doi.org/10.1039/D3GC04902G
J. Liang, C. Liu, J. Jiang, K. Wang, Unlocking the anion effect on steerable production of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 63(48), e202410229 (2024). https://doi.org/10.1002/anie.202410229