Engineering PtFe/LiO2 Frontier Orbital Interaction in Li–O2 Batteries
Corresponding Author: Guo Hong
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 257
Abstract
Elucidating the structure–activity relationship between the electronic structure of catalytic active sites and oxygen evolution reaction (OER) activity at the orbital level is critical yet challenging in lithium–oxygen (Li–O2) batteries. Herein, employing frontier molecular orbital theory, we designed a Pt-based catalyst as a model cathode to investigate the influence of frontier orbital interactions between the Pt dz2 orbital and the 5σ orbital of LiO2 on the OER activity. Specifically, compared to the pure Pt catalyst, the dz2–dz2 orbital coupling between low-electronegativity Fe and Pt in PtFe catalyst induces predominant electron transfer from Fe to the dz2 frontier orbital of Pt. As the Pt content in PtFe alloys increases progressively (from Pt58Fe42, Pt67Fe33 to Pt76Fe24), the electron population of the Pt 5dz2 orbital gradually decreases (1.92 for Pt58Fe42, 1.85 for Pt67Fe33, and 1.80 for Pt76Fe24). This leads to a gradual enhancement in the strength of interactions between the Pt dz2 orbital and the frontier orbitals of LiO2, consequently resulting in a progressive decline in the OER catalytic activity. Establishing the correlating between the electron population in the dz2 frontier orbital and OER activity provides a descriptor for designing efficient electrocatalysts in Li–O2 batteries.
Highlights:
1 PtFe catalyst was rationally designed based on frontier molecular orbital theory to investigate orbital-level interactions for enhanced oxygen evolution reaction activity in Li–O2 batteries.
2 The dz2–dz2 orbital coupling between Fe and Pt leads to electron donation from Fe to Pt, increasing electron population in the Pt dz2 orbital.
3 Excess electrons from the Pt dz2 orbital occupy antibonding states with LiO2, weakening interaction strength and boosting oxygen evolution reaction kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Yu, G. Zhang, D. Zhang, R. Yang, X. Li et al., Homogeneous in-plane lattice strain enabling d-band center modulation and efficient d–π interaction for an Ag2Mo2O7 cathode catalyst with ultralong cycle life in Li–O2 batteries. Adv. Energy Mater. 14(36), 2401509 (2024). https://doi.org/10.1002/aenm.202401509
- Y. Zhou, S. Guo, Recent advances in cathode catalyst architecture for lithium–oxygen batteries. eScience 3(4), 100123 (2023). https://doi.org/10.1016/j.esci.2023.100123
- D. Du, Z. Zhu, K.-Y. Chan, F. Li, J. Chen, Photoelectrochemistry of oxygen in rechargeable Li–O2 batteries. Chem. Soc. Rev. 51(6), 1846–1860 (2022). https://doi.org/10.1039/d1cs00877c
- Z. Jiang, B. Wen, Y. Huang, Y. Guo, Y. Wang et al., New reaction pathway of superoxide disproportionation induced by a soluble catalyst in Li–O2 batteries. Angew. Chem. Int. Ed. 63(1), e202315314 (2024). https://doi.org/10.1002/anie.202315314
- T. Lu, Y. Qian, K. Liu, C. Wu, X. Li et al., Recent progress of electrolyte materials for solid-state lithium–oxygen (air) batteries. Adv. Energy Mater. 14(26), 2400766 (2024). https://doi.org/10.1002/aenm.202400766
- S. Xing, Z. Zhang, Y. Dou, M. Li, J. Wu et al., An efficient multifunctional soluble catalyst for Li–O2 batteries. CCS Chem. 6(7), 1810–1820 (2024). https://doi.org/10.31635/ccschem.023.202303320
- Z. Li, S. Weng, X. Wu, C. Song, X. Yu et al., Tuning solid electrolyte interface against oxygen/superoxide-derived attack on Li-metal anode in Li–O2 battery. Next Energy 1(3), 100036 (2023). https://doi.org/10.1016/j.nxener.2023.100036
- Y. Huang, H. Fang, J. Geng, T. Zhang, W. Hu et al., Anionic solvation transition at low temperatures for reversible anodes in lithium–oxygen batteries. J. Am. Chem. Soc. 146(38), 26516–26524 (2024). https://doi.org/10.1021/jacs.4c10187
- Y. Huang, J. Geng, Z. Jiang, M. Ren, B. Wen et al., Solvation structure with enhanced anionic coordination for stable anodes in lithium–oxygen batteries. Angew. Chem. Int. Ed. 62(30), e202306236 (2023). https://doi.org/10.1002/anie.202306236
- M. Li, J. Wu, Z. You, Z. Dai, Y. Gu et al., Crown ether electrolyte induced Li2O2 amorphization for low polarization and long lifespan Li–O2 batteries. Angew. Chem. Int. Ed. 63(27), e202403521 (2024). https://doi.org/10.1002/anie.202403521
- S.-L. Tian, L.-N. Song, L.-M. Chang, W.-Q. Liu, H.-F. Wang et al., A force-assisted Li−O2 battery based on piezoelectric catalysis and band bending of MoS2/Pd cathode. Adv. Energy Mater. 14(9), 2303215 (2024). https://doi.org/10.1002/aenm.202303215
- B. Kim, M.-C. Sung, G.-H. Lee, B. Hwang, S. Seo et al., Aligned ion conduction pathway of polyrotaxane-based electrolyte with dispersed hydrophobic chains for solid-state lithium–oxygen batteries. Nano-Micro Lett. 17(1), 31 (2024). https://doi.org/10.1007/s40820-024-01535-w
- E.J. Askins, M.R. Zoric, M. Li, R. Amine, K. Amine et al., Triarylmethyl cation redox mediators enhance Li–O2 battery discharge capacities. Nat. Chem. 15(9), 1247–1254 (2023). https://doi.org/10.1038/s41557-023-01268-0
- Z. Sun, X. Lin, W. Dou, Y. Tan, A. Hu et al., Redox mediator with the function of intramolecularly disproportionating superoxide intermediate enabled high-performance Li–O2 batteries. Adv. Energy Mater. 12(12), 2270050 (2022). https://doi.org/10.1002/aenm.202270050
- Y. Dou, Z. Xie, Y. Wei, Z. Peng, Z. Zhou, Redox mediators for high-performance lithium–oxygen batteries. Natl. Sci. Rev. 9(4), nwac040 (2022). https://doi.org/10.1093/nsr/nwac040
- Y. He, L. Ding, J. Cheng, S. Mei, X. Xie et al., A “trinity” design of Li–O2 battery engaging the slow-release capsule of redox mediators. Adv. Mater. 35(49), 2308134 (2023). https://doi.org/10.1002/adma.202308134
- Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering e(g) orbital occupancy of Pt with Au alloying enables reversible Li–O2 batteries. Angew. Chem. Int. Ed. 61(26), e202201416 (2022). https://doi.org/10.1002/anie.202201416
- Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li et al., Lewis-acidic PtIr multipods enable high-performance Li–O2 batteries. Angew. Chem. Int. Ed. 60(51), 26592–26598 (2021). https://doi.org/10.1002/anie.202114067
- Y. Zhou, G. Hong, W. Zhang, Nanoengineering of cathode catalysts for Li–O2 batteries. ACS Nano 18(26), 16489–16504 (2024). https://doi.org/10.1021/acsnano.4c04420
- P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li–O2 batteries. Small 19(15), 2206742 (2023). https://doi.org/10.1002/smll.202206742
- W.-B. Jung, H. Park, J.-S. Jang, D.Y. Kim, D.W. Kim et al., Polyelemental nanops as catalysts for a Li–O2 battery. ACS Nano 15(3), 4235–4244 (2021). https://doi.org/10.1021/acsnano.0c06528
- D. Cao, L. Zheng, Q. Li, J. Zhang, Y. Dong et al., Crystal phase-controlled modulation of binary transition metal oxides for highly reversible Li–O2 batteries. Nano Lett. 21(12), 5225–5232 (2021). https://doi.org/10.1021/acs.nanolett.1c01276
- Z. Sun, X. Cao, M. Tian, K. Zeng, Y. Jiang et al., Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium–oxygen batteries. Adv. Energy Mater. 11(22), 2100110 (2021). https://doi.org/10.1002/aenm.202100110
- Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed Mott-Schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li–O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
- Q. Xia, L. Zhao, Z. Zhang, J. Wang, D. Li et al., MnCo2S4-CoS1.097 heterostructure nanotubes as high efficiency cathode catalysts for stable and long-life lithium–oxygen batteries under high current conditions. Adv. Sci. 8(22), 2103302 (2021). https://doi.org/10.1002/advs.202103302
- Z. Zhou, L. Zhao, J. Wang, Y. Zhang, Y. Li et al., Optimizing eg orbital occupancy of transition metal sulfides by building internal electric fields to adjust the adsorption of oxygenated intermediates for Li–O2 batteries. Small 19(41), 2302598 (2023). https://doi.org/10.1002/smll.202302598
- Y. Dou, Z. Liu, L. Zhao, J. Zhang, F. Meng et al., Constructing double heterojunctions on 1T/2H-MoS2@Co3S4 electrocatalysts for regulating Li2O2 formation in lithium–oxygen batteries. Nano-Micro Lett. 18(1), 51 (2025). https://doi.org/10.1007/s40820-025-01895-x
- E. Zhang, A. Dong, K. Yin, C. Ye, Y. Zhou et al., Electron localization in rationally designed Pt1Pd single-atom alloy catalyst enables high-performance Li–O2 batteries. J. Am. Chem. Soc. 146(4), 2339–2344 (2024). https://doi.org/10.1021/jacs.3c12734
- L. Li, M. Hua, J. Li, P. Zhang, Y. Nie et al., Tuning dual catalytic active sites of Pt single atoms paired with high-entropy alloy nanops for advanced Li–O2 batteries. ACS Nano 19(4), 4391–4402 (2025). https://doi.org/10.1021/acsnano.4c12499
- X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
- D. Du, H. He, R. Zheng, L. Zeng, X. Wang et al., Single-atom immobilization boosting oxygen redox kinetics of high-entropy perovskite oxide toward high-performance lithium–oxygen batteries. Adv. Energy Mater. 14(17), 2304238 (2024). https://doi.org/10.1002/aenm.202304238
- P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium–oxygen batteries. Nat. Commun. 11(1), 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
- L.-N. Song, W. Zhang, Y. Wang, X. Ge, L.-C. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium–oxygen batteries. Nat. Commun. 11(1), 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
- P. Wang, D. Zhao, X. Hui, Z. Qian, P. Zhang et al., Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries. Adv. Energy Mater. 11(32), 2003069 (2021). https://doi.org/10.1002/aenm.202003069
- D. Zhang, G. Zhang, R. Liu, R. Yang, X. Li et al., Mutually activated 2D Ti0.87O2/MXene monolayers through electronic compensation effect as highly efficient cathode catalysts of Li–O2 batteries. Adv. Funct. Mater. 35(5), 2414679 (2025). https://doi.org/10.1002/adfm.202414679
- X. Zheng, M. Yuan, Y. Zhao, Z. Li, K. Shi et al., Status and prospects of MXene-based lithium–oxygen batteries: theoretical prediction and experimental modulation. Adv. Energy Mater. 13(20), 2204019 (2023). https://doi.org/10.1002/aenm.202204019
- X.-W. Lv, J. Gong, S. Wang, X. Yan, C. Sun et al., Engineering orbital hybridization in advanced electrocatalysts for energy conversion: fundamentals, modulations, and perspectives. Adv. Energy Mater. 15(30), 2501129 (2025). https://doi.org/10.1002/aenm.202501129
- L. Chen, J. Xia, Z. Lai, D. Wu, J. Zhou et al., Coordinatively unsaturated co single-atom catalysts enhance the performance of lithium-sulfur batteries by triggering strong d–p orbital hybridization. ACS Nano 18(45), 31123–31134 (2024). https://doi.org/10.1021/acsnano.4c08728
- X. Leng, K. Yang, L. Sun, J. Weng, J. Xu, Modulating the band structure of two-dimensional black phosphorus via electronic effects of organic functional groups for enhanced hydrogen production activity. Angew. Chem. Int. Ed. 64(5), e202416992 (2025). https://doi.org/10.1002/anie.202416992
- K. Chen, Y. Zhu, Z. Huang, B. Han, Q. Xu et al., Strengthened d–p orbital hybridization on metastable cubic Mo2C for highly stable lithium–sulfur batteries. ACS Nano 18(51), 34791–34802 (2024). https://doi.org/10.1021/acsnano.4c11701
- S. Cai, M. Zheng, X. Lin, M. Lei, R. Yuan et al., A synergistic catalytic mechanism for oxygen evolution reaction in aprotic Li–O2 battery. ACS Catal. 8(9), 7983–7990 (2018). https://doi.org/10.1021/acscatal.8b02236
- T. Zhang, B. Zou, X. Bi, M. Li, J. Wen et al., Selective growth of a discontinuous subnanometer Pd film on carbon defects for Li–O2 batteries. ACS Energy Lett. 4(12), 2782–2786 (2019). https://doi.org/10.1021/acsenergylett.9b02202
- K. Song, J. Jung, M. Park, H. Park, H.-J. Kim et al., Anisotropic surface modulation of Pt catalysts for highly reversible Li–O2 batteries: high index facet as a critical descriptor. ACS Catal. 8(10), 9006–9015 (2018). https://doi.org/10.1021/acscatal.8b02172
- J. Tian, Y. Rao, W. Shi, J. Yang, W. Ning et al., Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li–O2 batteries. Angew. Chem. Int. Ed. 62(44), e202310894 (2023). https://doi.org/10.1002/anie.202310894
- Y. Zhou, Q. Gu, K. Yin, L. Tao, Y. Li et al., Cascaded orbital-oriented hybridization of intermetallic Pd3Pb boosts electrocatalysis of Li–O2 battery. Proc. Natl. Acad. Sci. U.S.A. 120(25), e2301439120 (2023). https://doi.org/10.1073/pnas.2301439120
- Q. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang et al., Atomic ruthenium-riveted metal-organic framework with tunable d-band modulates oxygen redox for lithium–oxygen batteries. J. Am. Chem. Soc. 144(50), 23239–23246 (2022). https://doi.org/10.1021/jacs.2c11676
- Y. Rao, J. Yang, J. Tian, W. Ning, S. Guo et al., The spin-selective channels in fully-exposed PtFe clusters enable fast cathodic kinetics of Li–O2 battery. Angew. Chem. Int. Ed. 64(7), e202418893 (2025). https://doi.org/10.1002/anie.202418893
- H. Xu, X. Wang, G. Tian, F. Fan, X. Wen et al., Manipulating electron delocalization of metal sites via a high-entropy strategy for accelerating oxygen electrode reactions in lithium–oxygen batteries. ACS Nano 18(40), 27804–27816 (2024). https://doi.org/10.1021/acsnano.4c11909
References
H. Yu, G. Zhang, D. Zhang, R. Yang, X. Li et al., Homogeneous in-plane lattice strain enabling d-band center modulation and efficient d–π interaction for an Ag2Mo2O7 cathode catalyst with ultralong cycle life in Li–O2 batteries. Adv. Energy Mater. 14(36), 2401509 (2024). https://doi.org/10.1002/aenm.202401509
Y. Zhou, S. Guo, Recent advances in cathode catalyst architecture for lithium–oxygen batteries. eScience 3(4), 100123 (2023). https://doi.org/10.1016/j.esci.2023.100123
D. Du, Z. Zhu, K.-Y. Chan, F. Li, J. Chen, Photoelectrochemistry of oxygen in rechargeable Li–O2 batteries. Chem. Soc. Rev. 51(6), 1846–1860 (2022). https://doi.org/10.1039/d1cs00877c
Z. Jiang, B. Wen, Y. Huang, Y. Guo, Y. Wang et al., New reaction pathway of superoxide disproportionation induced by a soluble catalyst in Li–O2 batteries. Angew. Chem. Int. Ed. 63(1), e202315314 (2024). https://doi.org/10.1002/anie.202315314
T. Lu, Y. Qian, K. Liu, C. Wu, X. Li et al., Recent progress of electrolyte materials for solid-state lithium–oxygen (air) batteries. Adv. Energy Mater. 14(26), 2400766 (2024). https://doi.org/10.1002/aenm.202400766
S. Xing, Z. Zhang, Y. Dou, M. Li, J. Wu et al., An efficient multifunctional soluble catalyst for Li–O2 batteries. CCS Chem. 6(7), 1810–1820 (2024). https://doi.org/10.31635/ccschem.023.202303320
Z. Li, S. Weng, X. Wu, C. Song, X. Yu et al., Tuning solid electrolyte interface against oxygen/superoxide-derived attack on Li-metal anode in Li–O2 battery. Next Energy 1(3), 100036 (2023). https://doi.org/10.1016/j.nxener.2023.100036
Y. Huang, H. Fang, J. Geng, T. Zhang, W. Hu et al., Anionic solvation transition at low temperatures for reversible anodes in lithium–oxygen batteries. J. Am. Chem. Soc. 146(38), 26516–26524 (2024). https://doi.org/10.1021/jacs.4c10187
Y. Huang, J. Geng, Z. Jiang, M. Ren, B. Wen et al., Solvation structure with enhanced anionic coordination for stable anodes in lithium–oxygen batteries. Angew. Chem. Int. Ed. 62(30), e202306236 (2023). https://doi.org/10.1002/anie.202306236
M. Li, J. Wu, Z. You, Z. Dai, Y. Gu et al., Crown ether electrolyte induced Li2O2 amorphization for low polarization and long lifespan Li–O2 batteries. Angew. Chem. Int. Ed. 63(27), e202403521 (2024). https://doi.org/10.1002/anie.202403521
S.-L. Tian, L.-N. Song, L.-M. Chang, W.-Q. Liu, H.-F. Wang et al., A force-assisted Li−O2 battery based on piezoelectric catalysis and band bending of MoS2/Pd cathode. Adv. Energy Mater. 14(9), 2303215 (2024). https://doi.org/10.1002/aenm.202303215
B. Kim, M.-C. Sung, G.-H. Lee, B. Hwang, S. Seo et al., Aligned ion conduction pathway of polyrotaxane-based electrolyte with dispersed hydrophobic chains for solid-state lithium–oxygen batteries. Nano-Micro Lett. 17(1), 31 (2024). https://doi.org/10.1007/s40820-024-01535-w
E.J. Askins, M.R. Zoric, M. Li, R. Amine, K. Amine et al., Triarylmethyl cation redox mediators enhance Li–O2 battery discharge capacities. Nat. Chem. 15(9), 1247–1254 (2023). https://doi.org/10.1038/s41557-023-01268-0
Z. Sun, X. Lin, W. Dou, Y. Tan, A. Hu et al., Redox mediator with the function of intramolecularly disproportionating superoxide intermediate enabled high-performance Li–O2 batteries. Adv. Energy Mater. 12(12), 2270050 (2022). https://doi.org/10.1002/aenm.202270050
Y. Dou, Z. Xie, Y. Wei, Z. Peng, Z. Zhou, Redox mediators for high-performance lithium–oxygen batteries. Natl. Sci. Rev. 9(4), nwac040 (2022). https://doi.org/10.1093/nsr/nwac040
Y. He, L. Ding, J. Cheng, S. Mei, X. Xie et al., A “trinity” design of Li–O2 battery engaging the slow-release capsule of redox mediators. Adv. Mater. 35(49), 2308134 (2023). https://doi.org/10.1002/adma.202308134
Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering e(g) orbital occupancy of Pt with Au alloying enables reversible Li–O2 batteries. Angew. Chem. Int. Ed. 61(26), e202201416 (2022). https://doi.org/10.1002/anie.202201416
Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li et al., Lewis-acidic PtIr multipods enable high-performance Li–O2 batteries. Angew. Chem. Int. Ed. 60(51), 26592–26598 (2021). https://doi.org/10.1002/anie.202114067
Y. Zhou, G. Hong, W. Zhang, Nanoengineering of cathode catalysts for Li–O2 batteries. ACS Nano 18(26), 16489–16504 (2024). https://doi.org/10.1021/acsnano.4c04420
P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li–O2 batteries. Small 19(15), 2206742 (2023). https://doi.org/10.1002/smll.202206742
W.-B. Jung, H. Park, J.-S. Jang, D.Y. Kim, D.W. Kim et al., Polyelemental nanops as catalysts for a Li–O2 battery. ACS Nano 15(3), 4235–4244 (2021). https://doi.org/10.1021/acsnano.0c06528
D. Cao, L. Zheng, Q. Li, J. Zhang, Y. Dong et al., Crystal phase-controlled modulation of binary transition metal oxides for highly reversible Li–O2 batteries. Nano Lett. 21(12), 5225–5232 (2021). https://doi.org/10.1021/acs.nanolett.1c01276
Z. Sun, X. Cao, M. Tian, K. Zeng, Y. Jiang et al., Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium–oxygen batteries. Adv. Energy Mater. 11(22), 2100110 (2021). https://doi.org/10.1002/aenm.202100110
Y. Xia, L. Wang, G. Gao, T. Mao, Z. Wang et al., Constructed Mott-Schottky heterostructure catalyst to trigger interface disturbance and manipulate redox kinetics in Li–O2 battery. Nano-Micro Lett. 16(1), 258 (2024). https://doi.org/10.1007/s40820-024-01476-4
Q. Xia, L. Zhao, Z. Zhang, J. Wang, D. Li et al., MnCo2S4-CoS1.097 heterostructure nanotubes as high efficiency cathode catalysts for stable and long-life lithium–oxygen batteries under high current conditions. Adv. Sci. 8(22), 2103302 (2021). https://doi.org/10.1002/advs.202103302
Z. Zhou, L. Zhao, J. Wang, Y. Zhang, Y. Li et al., Optimizing eg orbital occupancy of transition metal sulfides by building internal electric fields to adjust the adsorption of oxygenated intermediates for Li–O2 batteries. Small 19(41), 2302598 (2023). https://doi.org/10.1002/smll.202302598
Y. Dou, Z. Liu, L. Zhao, J. Zhang, F. Meng et al., Constructing double heterojunctions on 1T/2H-MoS2@Co3S4 electrocatalysts for regulating Li2O2 formation in lithium–oxygen batteries. Nano-Micro Lett. 18(1), 51 (2025). https://doi.org/10.1007/s40820-025-01895-x
E. Zhang, A. Dong, K. Yin, C. Ye, Y. Zhou et al., Electron localization in rationally designed Pt1Pd single-atom alloy catalyst enables high-performance Li–O2 batteries. J. Am. Chem. Soc. 146(4), 2339–2344 (2024). https://doi.org/10.1021/jacs.3c12734
L. Li, M. Hua, J. Li, P. Zhang, Y. Nie et al., Tuning dual catalytic active sites of Pt single atoms paired with high-entropy alloy nanops for advanced Li–O2 batteries. ACS Nano 19(4), 4391–4402 (2025). https://doi.org/10.1021/acsnano.4c12499
X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
D. Du, H. He, R. Zheng, L. Zeng, X. Wang et al., Single-atom immobilization boosting oxygen redox kinetics of high-entropy perovskite oxide toward high-performance lithium–oxygen batteries. Adv. Energy Mater. 14(17), 2304238 (2024). https://doi.org/10.1002/aenm.202304238
P. Wang, Y. Ren, R. Wang, P. Zhang, M. Ding et al., Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium–oxygen batteries. Nat. Commun. 11(1), 1576 (2020). https://doi.org/10.1038/s41467-020-15416-4
L.-N. Song, W. Zhang, Y. Wang, X. Ge, L.-C. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium–oxygen batteries. Nat. Commun. 11(1), 2191 (2020). https://doi.org/10.1038/s41467-020-15712-z
P. Wang, D. Zhao, X. Hui, Z. Qian, P. Zhang et al., Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries. Adv. Energy Mater. 11(32), 2003069 (2021). https://doi.org/10.1002/aenm.202003069
D. Zhang, G. Zhang, R. Liu, R. Yang, X. Li et al., Mutually activated 2D Ti0.87O2/MXene monolayers through electronic compensation effect as highly efficient cathode catalysts of Li–O2 batteries. Adv. Funct. Mater. 35(5), 2414679 (2025). https://doi.org/10.1002/adfm.202414679
X. Zheng, M. Yuan, Y. Zhao, Z. Li, K. Shi et al., Status and prospects of MXene-based lithium–oxygen batteries: theoretical prediction and experimental modulation. Adv. Energy Mater. 13(20), 2204019 (2023). https://doi.org/10.1002/aenm.202204019
X.-W. Lv, J. Gong, S. Wang, X. Yan, C. Sun et al., Engineering orbital hybridization in advanced electrocatalysts for energy conversion: fundamentals, modulations, and perspectives. Adv. Energy Mater. 15(30), 2501129 (2025). https://doi.org/10.1002/aenm.202501129
L. Chen, J. Xia, Z. Lai, D. Wu, J. Zhou et al., Coordinatively unsaturated co single-atom catalysts enhance the performance of lithium-sulfur batteries by triggering strong d–p orbital hybridization. ACS Nano 18(45), 31123–31134 (2024). https://doi.org/10.1021/acsnano.4c08728
X. Leng, K. Yang, L. Sun, J. Weng, J. Xu, Modulating the band structure of two-dimensional black phosphorus via electronic effects of organic functional groups for enhanced hydrogen production activity. Angew. Chem. Int. Ed. 64(5), e202416992 (2025). https://doi.org/10.1002/anie.202416992
K. Chen, Y. Zhu, Z. Huang, B. Han, Q. Xu et al., Strengthened d–p orbital hybridization on metastable cubic Mo2C for highly stable lithium–sulfur batteries. ACS Nano 18(51), 34791–34802 (2024). https://doi.org/10.1021/acsnano.4c11701
S. Cai, M. Zheng, X. Lin, M. Lei, R. Yuan et al., A synergistic catalytic mechanism for oxygen evolution reaction in aprotic Li–O2 battery. ACS Catal. 8(9), 7983–7990 (2018). https://doi.org/10.1021/acscatal.8b02236
T. Zhang, B. Zou, X. Bi, M. Li, J. Wen et al., Selective growth of a discontinuous subnanometer Pd film on carbon defects for Li–O2 batteries. ACS Energy Lett. 4(12), 2782–2786 (2019). https://doi.org/10.1021/acsenergylett.9b02202
K. Song, J. Jung, M. Park, H. Park, H.-J. Kim et al., Anisotropic surface modulation of Pt catalysts for highly reversible Li–O2 batteries: high index facet as a critical descriptor. ACS Catal. 8(10), 9006–9015 (2018). https://doi.org/10.1021/acscatal.8b02172
J. Tian, Y. Rao, W. Shi, J. Yang, W. Ning et al., Sabatier relations in electrocatalysts based on high-entropy alloys with wide-distributed d-band centers for Li–O2 batteries. Angew. Chem. Int. Ed. 62(44), e202310894 (2023). https://doi.org/10.1002/anie.202310894
Y. Zhou, Q. Gu, K. Yin, L. Tao, Y. Li et al., Cascaded orbital-oriented hybridization of intermetallic Pd3Pb boosts electrocatalysis of Li–O2 battery. Proc. Natl. Acad. Sci. U.S.A. 120(25), e2301439120 (2023). https://doi.org/10.1073/pnas.2301439120
Q. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang et al., Atomic ruthenium-riveted metal-organic framework with tunable d-band modulates oxygen redox for lithium–oxygen batteries. J. Am. Chem. Soc. 144(50), 23239–23246 (2022). https://doi.org/10.1021/jacs.2c11676
Y. Rao, J. Yang, J. Tian, W. Ning, S. Guo et al., The spin-selective channels in fully-exposed PtFe clusters enable fast cathodic kinetics of Li–O2 battery. Angew. Chem. Int. Ed. 64(7), e202418893 (2025). https://doi.org/10.1002/anie.202418893
H. Xu, X. Wang, G. Tian, F. Fan, X. Wen et al., Manipulating electron delocalization of metal sites via a high-entropy strategy for accelerating oxygen electrode reactions in lithium–oxygen batteries. ACS Nano 18(40), 27804–27816 (2024). https://doi.org/10.1021/acsnano.4c11909