Anionically-Reinforced Nanocellulose Separator Enables Dual Suppression of Zinc Dendrites and Polyiodide Shuttle for Long-Cycle Zn-I2 Batteries
Corresponding Author: Yagang Yao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 59
Abstract
Zn-I2 batteries have emerged as promising next-generation energy storage systems owing to their inherent safety, environmental compatibility, rapid reaction kinetics, and small voltage hysteresis. Nevertheless, two critical challenges, i.e., zinc dendrite growth and polyiodide shuttle effect, severely impede their commercial viability. To conquer these limitations, this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose, with its negative charge density further reinforced by anionic polyacrylamide incorporation. This modification simultaneously improves the separator’s mechanical properties, ionic conductivity, and Zn2+ ion transfer number. Remarkably, despite its ultrathin 20 μm profile, the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition, enabling Zn//Zn symmetric cells to achieve impressive cycle life (> 1800 h at 2 mA cm−2/2 mAh cm−2) while maintaining robust performance even at ultrahigh areal capacities (25 mAh cm−2). Additionally, the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion, yielding Zn-I2 batteries with outstanding rate capability (120.7 mAh g−1 at 5 A g−1) and excellent cyclability (94.2% capacity retention after 10,000 cycles). And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration. This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.
Highlights:
1 Straw-derived carboxylated nanocellulose separator is modified by anionic polyacrylamide to further enhance the negative charge density.
2 The separator exhibits ultrathin profile and exceptional mechanical strength, as well as enabling rapid zinc ion transport.
3 The separator can not only effectively inhibit zinc dendrites and parasitic reactions but also significantly suppress polyiodide shuttle via electrostatic repulsion, contributing to remarkable performance of Zn-I2 batteries even under high mass loadings.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wang, Y. Li, J. Wang, R. Ji, H. Yuan et al., Recent progress of flexible aqueous multivalent ion batteries. Carbon Energy 4(3), 411–445 (2022). https://doi.org/10.1002/cey2.178
- D. Li, Y. Guo, C. Zhang, X. Chen, W. Zhang et al., Unveiling organic electrode materials in aqueous zinc-ion batteries: from structural design to electrochemical performance. Nano-Micro Lett. 16(1), 194 (2024). https://doi.org/10.1007/s40820-024-01404-6
- C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K.A. Persson et al., Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating. ACS Energy Lett. 7(1), 533–540 (2022). https://doi.org/10.1021/acsenergylett.1c02514
- X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
- J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
- W. Yan, Y. Liu, J. Qiu, F. Tan, J. Liang et al., A tripartite synergistic optimization strategy for zinc-iodine batteries. Nat. Commun. 15(1), 9702 (2024). https://doi.org/10.1038/s41467-024-53800-6
- R. Wang, Y. Liu, Q. Luo, P. Xiong, X. Xie et al., Remolding the interface stability for practical aqueous Zn/I2 batteries via sulfonic acid-rich electrolyte and separator design. Adv. Mater. 37(16), 2419502 (2025). https://doi.org/10.1002/adma.202419502
- P. Lin, G. Chen, Y. Kang, M. Zhang, J. Yang et al., Simultaneous inhibition of Zn dendrites and polyiodide ions shuttle effect by an anion concentrated electrolyte membrane for long lifespan aqueous zinc–iodine batteries. ACS Nano 17(16), 15492–15503 (2023). https://doi.org/10.1021/acsnano.3c01518
- T. Liu, C. Lei, H. Wang, C. Xu, W. Ma et al., Practical four-electron zinc-iodine aqueous batteries enabled by orbital hybridization induced adsorption-catalysis. Sci. Bull. 69(11), 1674–1685 (2024). https://doi.org/10.1016/j.scib.2024.02.014
- T. Wang, Q. Xi, K. Yao, Y. Liu, H. Fu et al., Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode. Nano-Micro Lett. 16(1), 112 (2024). https://doi.org/10.1007/s40820-024-01327-2
- J. Xu, Z. Huang, H. Zhou, G. He, Y. Zhao et al., Holistic optimization strategies for advanced aqueous zinc iodine batteries. Energy Storage Mater. 72, 103596 (2024). https://doi.org/10.1016/j.ensm.2024.103596
- C. Dong, Y. Yu, C. Ma, C. Zhou, J. Wang et al., Tailoring zinc diatomic bidirectional catalysts achieving orbital coupling–hybridization for ultralong-cycling zinc–iodine batteries. Energy Environ. Sci. 18(6), 3014–3025 (2025). https://doi.org/10.1039/D4EE05767H
- L.-H. Pei, D.-M. Xu, Y.-Z. Luo, S.-J. Guo, D.-R. Liu et al., Zinc single-atom catalysts encapsulated in hierarchical porous bio-carbon synergistically enhances fast iodine conversion and efficient polyiodide confinement for Zn-I2 batteries. Adv. Mater. 37(10), 2420005 (2025). https://doi.org/10.1002/adma.202420005
- T.-T. Su, J.-B. Le, K. Wang, K.-N. Liu, C.-Y. Shao et al., Tetraethyl orthosilicate steam induced silicon-based anticorrosion film enables highly reversible zinc metal anodes for zinc-iodine batteries. J. Power. Sour 550, 232136 (2022). https://doi.org/10.1016/j.jpowsour.2022.232136
- W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song et al., Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chem. Eng. J. 428, 131283 (2022). https://doi.org/10.1016/j.cej.2021.131283
- W. Yuan, X. Qu, Y. Wang, X. Li, X. Ru et al., Polycationic polymer functionalized separator to stabilize aqueous zinc-iodine batteries. Energy Storage Mater. 76, 104130 (2025). https://doi.org/10.1016/j.ensm.2025.104130
- Q. Chen, S. Chen, J. Ma, S. Ding, J. Zhang, Synergic anchoring of Fe2N nanoclusters on porous carbon to enhance reversible conversion of iodine for high-temperature zinc-iodine battery. Nano Energy 117, 108897 (2023). https://doi.org/10.1016/j.nanoen.2023.108897
- F. Wei, H. Xu, T. Zhang, W. Li, L. Huang et al., Mesoporous poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) as efficient iodine host for high-performance zinc-iodine batteries. ACS Nano 17(20), 20643–20653 (2023). https://doi.org/10.1021/acsnano.3c07868
- W. Du, L. Miao, Z. Song, X. Zheng, C. Hu et al., Organic iodine electrolyte starting triple I+ storage in in-based metal-organic frameworks for high-capacity aqueous Zn-I2 batteries. Chem. Eng. J. 484, 149535 (2024). https://doi.org/10.1016/j.cej.2024.149535
- S.-J. Zhang, J. Hao, H. Li, P.-F. Zhang, Z.-W. Yin et al., Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries. Adv. Mater. 34(23), e2201716 (2022). https://doi.org/10.1002/adma.202201716
- H. Xu, R. Zhang, D. Luo, J. Wang, H. Dou et al., Synergistic ion sieve and solvation regulation by recyclable clay-based electrolyte membrane for stable Zn-iodine battery. ACS Nano 17(24), 25291–25300 (2023). https://doi.org/10.1021/acsnano.3c08681
- H. Bi, D. Tian, Z. Zhao, Q. Yang, Y. Yuan et al., Multifunctional Janus separator engineering for modulating zinc oriented aspectant growth and iodine conversion kinetics toward advanced zinc-iodine batteries. Adv. Funct. Mater. 35(22), 2423115 (2025). https://doi.org/10.1002/adfm.202423115
- Y. Zong, H. He, Y. Wang, M. Wu, X. Ren et al., Functionalized separator strategies toward advanced aqueous zinc-ion batteries. Adv. Energy Mater. 13(20), 2300403 (2023). https://doi.org/10.1002/aenm.202300403
- H. Chen, X. Li, K. Fang, H. Wang, J. Ning et al., Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv. Energy Mater. 13(41), 2302187 (2023). https://doi.org/10.1002/aenm.202302187
- P. Yang, K. Zhang, S. Liu, W. Zhuang, Z. Shao et al., Ionic selective separator design enables long-life zinc–iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression. Adv. Funct. Mater. 34(52), 2410712 (2024). https://doi.org/10.1002/adfm.202410712
- X. Han, L. Chen, M. Yanilmaz, X. Lu, K. Yang et al., From nature, requite to nature: bio-based cellulose and its derivatives for construction of green zinc batteries. Chem. Eng. J. 454, 140311 (2023). https://doi.org/10.1016/j.cej.2022.140311
- H. Qu, W. Guo, W. Li, L. Shao, Y. Chen et al., Bifunctional high-strength and anti-shuttling separator based on negatively-charged-cellulose-nanofibers for high-energy and stable flexible Zn-I2 batteries. Appl. Surf. Sci. 686, 162180 (2025). https://doi.org/10.1016/j.apsusc.2024.162180
- Y. Lu, J. Han, Q. Ding, Y. Yue, C. Xia et al., TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose 28(3), 1469–1488 (2021). https://doi.org/10.1007/s10570-020-03606-8
- Q. Wang, J. Zhao, J. Zhang, M. Li, F. Tan et al., Biomass chitin nanofiber separators proactively stabilizing zinc anodes for dendrite-free aqueous zinc-ion batteries. Adv. Funct. Mater. 34(41), 2405957 (2024). https://doi.org/10.1002/adfm.202405957
- B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
- Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15(1), 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
- J. Chen, K. Fang, Q. Chen, J. Xu, C.-P. Wong, Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 53, 337–344 (2018). https://doi.org/10.1016/j.nanoen.2018.08.056
- N. Abidi, L. Cabrales, C.H. Haigler, Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 100, 9–16 (2014). https://doi.org/10.1016/j.carbpol.2013.01.074
- N. Masruchin, B.-D. Park, V. Causin, I.C. Um, Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22(3), 1993–2010 (2015). https://doi.org/10.1007/s10570-015-0624-0
- S.-N. Li, B. Li, Z.-R. Yu, S.-W. Dai, S.-C. Shen et al., Mechanically robust polyacrylamide composite hydrogel achieved by integrating lamellar montmorillonite and chitosan microcrystalline structure into covalently cross-linked network. ACS Appl. Polym. Mater. 2(5), 1874–1885 (2020). https://doi.org/10.1021/acsapm.0c00106
- L. Mo, S. Zhang, F. Qi, A. Huang, Highly stable cellulose nanofiber/polyacrylamide aerogel via in situ physical/chemical double crosslinking for highly efficient Cu(II) ions removal. Int. J. Biol. Macromol. 209(Pt B), 1922–1932 (2022). https://doi.org/10.1016/j.ijbiomac.2022.04.167
- M. Cheng, D. Li, J. Cao, T. Sun, Q. Sun et al., “Anions-in-colloid” hydrated deep eutectic electrolyte for high reversible zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202410210 (2024). https://doi.org/10.1002/anie.202410210
- Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32(14), 2109671 (2022). https://doi.org/10.1002/adfm.202109671
- Y. Zhang, C. Peng, Y. Zhang, S. Yang, Z. Zeng et al., In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chem. Eng. J. 448, 137653 (2022). https://doi.org/10.1016/j.cej.2022.137653
- G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
- Z. Mai, Y. Lin, J. Sun, C. Wang, G. Yang et al., Breaking performance limits of Zn anodes in aqueous batteries by tailoring anion and cation additives. Nano-Micro Lett. 17(1), 259 (2025). https://doi.org/10.1007/s40820-025-01773-6
- W. Xin, J. Xiao, J. Li, L. Zhang, H. Peng et al., Metal-organic frameworks with carboxyl functionalized channels as multifunctional ion-conductive interphase for highly reversible Zn anode. Energy Storage Mater. 56, 76–86 (2023). https://doi.org/10.1016/j.ensm.2023.01.006
- Z. Liu, Z. Guo, L. Fan, C. Zhao, A. Chen et al., Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater. 36(5), 2305988 (2024). https://doi.org/10.1002/adma.202305988
- S. Liu, J. Vongsvivut, Y. Wang, R. Zhang, F. Yang et al., Monolithic phosphate interphase for highly reversible and stable Zn metal anode. Angew. Chem. Int. Ed. 62(4), e202215600 (2023). https://doi.org/10.1002/anie.202215600
- H. Ma, H. Chen, M. Chen, A. Li, X. Han et al., Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries. Nat. Commun. 16, 1014 (2025). https://doi.org/10.1038/s41467-025-56325-8
- M. Chen, M. Yang, X. Han, J. Chen, P. Zhang et al., Suppressing rampant and vertical deposition of cathode intermediate product via pH regulation toward large-capacity and high-durability Zn//MnO2 batteries. Adv. Mater. 36(4), 2304997 (2024). https://doi.org/10.1002/adma.202304997
- J. Wang, B. Zhang, Z. Cai, R. Zhan, W. Wang et al., Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci. Bull. 67(7), 716–724 (2022). https://doi.org/10.1016/j.scib.2022.01.010
- C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Stabilizing Zn metal anodes by 4-hydroxybenzaldehyde as the H* scavenger. Energy Storage Mater. 65, 103158 (2024). https://doi.org/10.1016/j.ensm.2023.103158
- Y. Li, Y. Wang, Y. Xu, W. Tian, J. Wang et al., Dynamic biomolecular “mask” stabilizes Zn anode. Small 18(26), e2202214 (2022). https://doi.org/10.1002/smll.202202214
- L. Yang, Y.-J. Zhu, H.-P. Yu, Z.-Y. Wang, L. Cheng et al., A five micron thick aramid nanofiber separator enables highly reversible Zn anode for energy-dense aqueous zinc-ion batteries. Adv. Energy Mater. 14(39), 2401858 (2024). https://doi.org/10.1002/aenm.202401858
- Y. Shang, P. Kumar, U. Mittal, X. Liang, D. Kundu, Targeted leveling of the undercoordinated high field density sites renders effective zinc dendrite inhibition. Energy Storage Mater. 55, 117–129 (2023). https://doi.org/10.1016/j.ensm.2022.11.033
- J. Bu, P. Liu, G. Ou, M. Ye, Z. Wen et al., Interfacial adsorption layers based on amino acid analogues to enable dual stabilization toward long-life aqueous zinc iodine batteries. Adv. Mater. 37(19), 2420221 (2025). https://doi.org/10.1002/adma.202420221
- G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14(1), 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
- Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I–/I2/I+ conversion. Nat. Commun. 12, 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
- Y. Hou, F. Kong, Z. Wang, M. Ren, C. Qiao et al., High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. J. Colloid Interface Sci. 629, 279–287 (2023). https://doi.org/10.1016/j.jcis.2022.09.079
- T. Huang, S. Wang, J. Wu, H. Hu, J. Wang et al., Triazine and hydroxyl covalent organic framework modified separator for Zn-ion fast and Selective transport and dendrite-free deposition in zinc–iodine battery. J. Power. Sour 608, 234658 (2024). https://doi.org/10.1016/j.jpowsour.2024.234658
- Y. Zhang, T. Zhao, S. Yang, Y. Zhang, Y. Ma et al., Flexible PEDOT: PSS nanopapers as “anion-cation regulation” synergistic interlayers enabling ultra-stable aqueous zinc-iodine batteries. J. Energy Chem. 75, 310–320 (2022). https://doi.org/10.1016/j.jechem.2022.08.026
- H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32(38), 2004240 (2020). https://doi.org/10.1002/adma.202004240
- L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian et al., Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 13(13), 2203790 (2023). https://doi.org/10.1002/aenm.202203790
- J.S. Cha, S. Park, Y. Hwang, E.J. Yoon, D. Gueon et al., Stable zinc metal battery development: using fibrous zirconia for rapid surface conduction of zinc ions with modified water solvation structure. Small 21(1), 2406481 (2025). https://doi.org/10.1002/smll.202406481
- D. Yin, B. Li, L. Zhao, N. Gao, Y. Zhang et al., Polymeric iodine transport layer enabled high areal capacity dual plating zinc-iodine battery. Angew. Chem. Int. Ed. 64(6), e202418069 (2025). https://doi.org/10.1002/anie.202418069
- J. Zhang, C. Qiu, C. Zhou, S. Guo, Y. Gao et al., Liner-chain polysaccharide binders with strong chemisorption capability for iodine species enables shuttle-free zinc-iodine batteries. Nano Energy 133, 110519 (2025). https://doi.org/10.1016/j.nanoen.2024.110519
- X. Zhang, C. Qu, X. Zhang, X. Peng, Y. Qiu et al., Atomic Sn encapsulation with visualizing mitigated active zinc loss toward anode-lean zinc metal battery. Adv. Energy Mater. 14(30), 2401139 (2024). https://doi.org/10.1002/aenm.202401139
- X. Hu, H. Dong, N. Gao, T. Wang, H. He et al., Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries. Nat. Commun. 16(1), 2316 (2025). https://doi.org/10.1038/s41467-025-57666-0
- J. Chen, M. Chen, H. Chen, M. Yang, X. Han et al., Wood-inspired anisotropic hydrogel electrolyte with large modulus and low tortuosity realizing durable dendrite-free zinc-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 121(21), e2322944121 (2024). https://doi.org/10.1073/pnas.2322944121
- H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc–iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. 146(24), 16601–16608 (2024). https://doi.org/10.1021/jacs.4c03518
References
Z. Wang, Y. Li, J. Wang, R. Ji, H. Yuan et al., Recent progress of flexible aqueous multivalent ion batteries. Carbon Energy 4(3), 411–445 (2022). https://doi.org/10.1002/cey2.178
D. Li, Y. Guo, C. Zhang, X. Chen, W. Zhang et al., Unveiling organic electrode materials in aqueous zinc-ion batteries: from structural design to electrochemical performance. Nano-Micro Lett. 16(1), 194 (2024). https://doi.org/10.1007/s40820-024-01404-6
C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K.A. Persson et al., Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating. ACS Energy Lett. 7(1), 533–540 (2022). https://doi.org/10.1021/acsenergylett.1c02514
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
W. Yan, Y. Liu, J. Qiu, F. Tan, J. Liang et al., A tripartite synergistic optimization strategy for zinc-iodine batteries. Nat. Commun. 15(1), 9702 (2024). https://doi.org/10.1038/s41467-024-53800-6
R. Wang, Y. Liu, Q. Luo, P. Xiong, X. Xie et al., Remolding the interface stability for practical aqueous Zn/I2 batteries via sulfonic acid-rich electrolyte and separator design. Adv. Mater. 37(16), 2419502 (2025). https://doi.org/10.1002/adma.202419502
P. Lin, G. Chen, Y. Kang, M. Zhang, J. Yang et al., Simultaneous inhibition of Zn dendrites and polyiodide ions shuttle effect by an anion concentrated electrolyte membrane for long lifespan aqueous zinc–iodine batteries. ACS Nano 17(16), 15492–15503 (2023). https://doi.org/10.1021/acsnano.3c01518
T. Liu, C. Lei, H. Wang, C. Xu, W. Ma et al., Practical four-electron zinc-iodine aqueous batteries enabled by orbital hybridization induced adsorption-catalysis. Sci. Bull. 69(11), 1674–1685 (2024). https://doi.org/10.1016/j.scib.2024.02.014
T. Wang, Q. Xi, K. Yao, Y. Liu, H. Fu et al., Surface patterning of metal zinc electrode with an in-region zincophilic interface for high-rate and long-cycle-life zinc metal anode. Nano-Micro Lett. 16(1), 112 (2024). https://doi.org/10.1007/s40820-024-01327-2
J. Xu, Z. Huang, H. Zhou, G. He, Y. Zhao et al., Holistic optimization strategies for advanced aqueous zinc iodine batteries. Energy Storage Mater. 72, 103596 (2024). https://doi.org/10.1016/j.ensm.2024.103596
C. Dong, Y. Yu, C. Ma, C. Zhou, J. Wang et al., Tailoring zinc diatomic bidirectional catalysts achieving orbital coupling–hybridization for ultralong-cycling zinc–iodine batteries. Energy Environ. Sci. 18(6), 3014–3025 (2025). https://doi.org/10.1039/D4EE05767H
L.-H. Pei, D.-M. Xu, Y.-Z. Luo, S.-J. Guo, D.-R. Liu et al., Zinc single-atom catalysts encapsulated in hierarchical porous bio-carbon synergistically enhances fast iodine conversion and efficient polyiodide confinement for Zn-I2 batteries. Adv. Mater. 37(10), 2420005 (2025). https://doi.org/10.1002/adma.202420005
T.-T. Su, J.-B. Le, K. Wang, K.-N. Liu, C.-Y. Shao et al., Tetraethyl orthosilicate steam induced silicon-based anticorrosion film enables highly reversible zinc metal anodes for zinc-iodine batteries. J. Power. Sour 550, 232136 (2022). https://doi.org/10.1016/j.jpowsour.2022.232136
W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song et al., Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chem. Eng. J. 428, 131283 (2022). https://doi.org/10.1016/j.cej.2021.131283
W. Yuan, X. Qu, Y. Wang, X. Li, X. Ru et al., Polycationic polymer functionalized separator to stabilize aqueous zinc-iodine batteries. Energy Storage Mater. 76, 104130 (2025). https://doi.org/10.1016/j.ensm.2025.104130
Q. Chen, S. Chen, J. Ma, S. Ding, J. Zhang, Synergic anchoring of Fe2N nanoclusters on porous carbon to enhance reversible conversion of iodine for high-temperature zinc-iodine battery. Nano Energy 117, 108897 (2023). https://doi.org/10.1016/j.nanoen.2023.108897
F. Wei, H. Xu, T. Zhang, W. Li, L. Huang et al., Mesoporous poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) as efficient iodine host for high-performance zinc-iodine batteries. ACS Nano 17(20), 20643–20653 (2023). https://doi.org/10.1021/acsnano.3c07868
W. Du, L. Miao, Z. Song, X. Zheng, C. Hu et al., Organic iodine electrolyte starting triple I+ storage in in-based metal-organic frameworks for high-capacity aqueous Zn-I2 batteries. Chem. Eng. J. 484, 149535 (2024). https://doi.org/10.1016/j.cej.2024.149535
S.-J. Zhang, J. Hao, H. Li, P.-F. Zhang, Z.-W. Yin et al., Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries. Adv. Mater. 34(23), e2201716 (2022). https://doi.org/10.1002/adma.202201716
H. Xu, R. Zhang, D. Luo, J. Wang, H. Dou et al., Synergistic ion sieve and solvation regulation by recyclable clay-based electrolyte membrane for stable Zn-iodine battery. ACS Nano 17(24), 25291–25300 (2023). https://doi.org/10.1021/acsnano.3c08681
H. Bi, D. Tian, Z. Zhao, Q. Yang, Y. Yuan et al., Multifunctional Janus separator engineering for modulating zinc oriented aspectant growth and iodine conversion kinetics toward advanced zinc-iodine batteries. Adv. Funct. Mater. 35(22), 2423115 (2025). https://doi.org/10.1002/adfm.202423115
Y. Zong, H. He, Y. Wang, M. Wu, X. Ren et al., Functionalized separator strategies toward advanced aqueous zinc-ion batteries. Adv. Energy Mater. 13(20), 2300403 (2023). https://doi.org/10.1002/aenm.202300403
H. Chen, X. Li, K. Fang, H. Wang, J. Ning et al., Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv. Energy Mater. 13(41), 2302187 (2023). https://doi.org/10.1002/aenm.202302187
P. Yang, K. Zhang, S. Liu, W. Zhuang, Z. Shao et al., Ionic selective separator design enables long-life zinc–iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression. Adv. Funct. Mater. 34(52), 2410712 (2024). https://doi.org/10.1002/adfm.202410712
X. Han, L. Chen, M. Yanilmaz, X. Lu, K. Yang et al., From nature, requite to nature: bio-based cellulose and its derivatives for construction of green zinc batteries. Chem. Eng. J. 454, 140311 (2023). https://doi.org/10.1016/j.cej.2022.140311
H. Qu, W. Guo, W. Li, L. Shao, Y. Chen et al., Bifunctional high-strength and anti-shuttling separator based on negatively-charged-cellulose-nanofibers for high-energy and stable flexible Zn-I2 batteries. Appl. Surf. Sci. 686, 162180 (2025). https://doi.org/10.1016/j.apsusc.2024.162180
Y. Lu, J. Han, Q. Ding, Y. Yue, C. Xia et al., TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose 28(3), 1469–1488 (2021). https://doi.org/10.1007/s10570-020-03606-8
Q. Wang, J. Zhao, J. Zhang, M. Li, F. Tan et al., Biomass chitin nanofiber separators proactively stabilizing zinc anodes for dendrite-free aqueous zinc-ion batteries. Adv. Funct. Mater. 34(41), 2405957 (2024). https://doi.org/10.1002/adfm.202405957
B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15(1), 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
J. Chen, K. Fang, Q. Chen, J. Xu, C.-P. Wong, Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 53, 337–344 (2018). https://doi.org/10.1016/j.nanoen.2018.08.056
N. Abidi, L. Cabrales, C.H. Haigler, Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 100, 9–16 (2014). https://doi.org/10.1016/j.carbpol.2013.01.074
N. Masruchin, B.-D. Park, V. Causin, I.C. Um, Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22(3), 1993–2010 (2015). https://doi.org/10.1007/s10570-015-0624-0
S.-N. Li, B. Li, Z.-R. Yu, S.-W. Dai, S.-C. Shen et al., Mechanically robust polyacrylamide composite hydrogel achieved by integrating lamellar montmorillonite and chitosan microcrystalline structure into covalently cross-linked network. ACS Appl. Polym. Mater. 2(5), 1874–1885 (2020). https://doi.org/10.1021/acsapm.0c00106
L. Mo, S. Zhang, F. Qi, A. Huang, Highly stable cellulose nanofiber/polyacrylamide aerogel via in situ physical/chemical double crosslinking for highly efficient Cu(II) ions removal. Int. J. Biol. Macromol. 209(Pt B), 1922–1932 (2022). https://doi.org/10.1016/j.ijbiomac.2022.04.167
M. Cheng, D. Li, J. Cao, T. Sun, Q. Sun et al., “Anions-in-colloid” hydrated deep eutectic electrolyte for high reversible zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202410210 (2024). https://doi.org/10.1002/anie.202410210
Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32(14), 2109671 (2022). https://doi.org/10.1002/adfm.202109671
Y. Zhang, C. Peng, Y. Zhang, S. Yang, Z. Zeng et al., In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chem. Eng. J. 448, 137653 (2022). https://doi.org/10.1016/j.cej.2022.137653
G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
Z. Mai, Y. Lin, J. Sun, C. Wang, G. Yang et al., Breaking performance limits of Zn anodes in aqueous batteries by tailoring anion and cation additives. Nano-Micro Lett. 17(1), 259 (2025). https://doi.org/10.1007/s40820-025-01773-6
W. Xin, J. Xiao, J. Li, L. Zhang, H. Peng et al., Metal-organic frameworks with carboxyl functionalized channels as multifunctional ion-conductive interphase for highly reversible Zn anode. Energy Storage Mater. 56, 76–86 (2023). https://doi.org/10.1016/j.ensm.2023.01.006
Z. Liu, Z. Guo, L. Fan, C. Zhao, A. Chen et al., Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv. Mater. 36(5), 2305988 (2024). https://doi.org/10.1002/adma.202305988
S. Liu, J. Vongsvivut, Y. Wang, R. Zhang, F. Yang et al., Monolithic phosphate interphase for highly reversible and stable Zn metal anode. Angew. Chem. Int. Ed. 62(4), e202215600 (2023). https://doi.org/10.1002/anie.202215600
H. Ma, H. Chen, M. Chen, A. Li, X. Han et al., Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries. Nat. Commun. 16, 1014 (2025). https://doi.org/10.1038/s41467-025-56325-8
M. Chen, M. Yang, X. Han, J. Chen, P. Zhang et al., Suppressing rampant and vertical deposition of cathode intermediate product via pH regulation toward large-capacity and high-durability Zn//MnO2 batteries. Adv. Mater. 36(4), 2304997 (2024). https://doi.org/10.1002/adma.202304997
J. Wang, B. Zhang, Z. Cai, R. Zhan, W. Wang et al., Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci. Bull. 67(7), 716–724 (2022). https://doi.org/10.1016/j.scib.2022.01.010
C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Stabilizing Zn metal anodes by 4-hydroxybenzaldehyde as the H* scavenger. Energy Storage Mater. 65, 103158 (2024). https://doi.org/10.1016/j.ensm.2023.103158
Y. Li, Y. Wang, Y. Xu, W. Tian, J. Wang et al., Dynamic biomolecular “mask” stabilizes Zn anode. Small 18(26), e2202214 (2022). https://doi.org/10.1002/smll.202202214
L. Yang, Y.-J. Zhu, H.-P. Yu, Z.-Y. Wang, L. Cheng et al., A five micron thick aramid nanofiber separator enables highly reversible Zn anode for energy-dense aqueous zinc-ion batteries. Adv. Energy Mater. 14(39), 2401858 (2024). https://doi.org/10.1002/aenm.202401858
Y. Shang, P. Kumar, U. Mittal, X. Liang, D. Kundu, Targeted leveling of the undercoordinated high field density sites renders effective zinc dendrite inhibition. Energy Storage Mater. 55, 117–129 (2023). https://doi.org/10.1016/j.ensm.2022.11.033
J. Bu, P. Liu, G. Ou, M. Ye, Z. Wen et al., Interfacial adsorption layers based on amino acid analogues to enable dual stabilization toward long-life aqueous zinc iodine batteries. Adv. Mater. 37(19), 2420221 (2025). https://doi.org/10.1002/adma.202420221
G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14(1), 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I–/I2/I+ conversion. Nat. Commun. 12, 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
Y. Hou, F. Kong, Z. Wang, M. Ren, C. Qiao et al., High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. J. Colloid Interface Sci. 629, 279–287 (2023). https://doi.org/10.1016/j.jcis.2022.09.079
T. Huang, S. Wang, J. Wu, H. Hu, J. Wang et al., Triazine and hydroxyl covalent organic framework modified separator for Zn-ion fast and Selective transport and dendrite-free deposition in zinc–iodine battery. J. Power. Sour 608, 234658 (2024). https://doi.org/10.1016/j.jpowsour.2024.234658
Y. Zhang, T. Zhao, S. Yang, Y. Zhang, Y. Ma et al., Flexible PEDOT: PSS nanopapers as “anion-cation regulation” synergistic interlayers enabling ultra-stable aqueous zinc-iodine batteries. J. Energy Chem. 75, 310–320 (2022). https://doi.org/10.1016/j.jechem.2022.08.026
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32(38), 2004240 (2020). https://doi.org/10.1002/adma.202004240
L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian et al., Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 13(13), 2203790 (2023). https://doi.org/10.1002/aenm.202203790
J.S. Cha, S. Park, Y. Hwang, E.J. Yoon, D. Gueon et al., Stable zinc metal battery development: using fibrous zirconia for rapid surface conduction of zinc ions with modified water solvation structure. Small 21(1), 2406481 (2025). https://doi.org/10.1002/smll.202406481
D. Yin, B. Li, L. Zhao, N. Gao, Y. Zhang et al., Polymeric iodine transport layer enabled high areal capacity dual plating zinc-iodine battery. Angew. Chem. Int. Ed. 64(6), e202418069 (2025). https://doi.org/10.1002/anie.202418069
J. Zhang, C. Qiu, C. Zhou, S. Guo, Y. Gao et al., Liner-chain polysaccharide binders with strong chemisorption capability for iodine species enables shuttle-free zinc-iodine batteries. Nano Energy 133, 110519 (2025). https://doi.org/10.1016/j.nanoen.2024.110519
X. Zhang, C. Qu, X. Zhang, X. Peng, Y. Qiu et al., Atomic Sn encapsulation with visualizing mitigated active zinc loss toward anode-lean zinc metal battery. Adv. Energy Mater. 14(30), 2401139 (2024). https://doi.org/10.1002/aenm.202401139
X. Hu, H. Dong, N. Gao, T. Wang, H. He et al., Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries. Nat. Commun. 16(1), 2316 (2025). https://doi.org/10.1038/s41467-025-57666-0
J. Chen, M. Chen, H. Chen, M. Yang, X. Han et al., Wood-inspired anisotropic hydrogel electrolyte with large modulus and low tortuosity realizing durable dendrite-free zinc-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 121(21), e2322944121 (2024). https://doi.org/10.1073/pnas.2322944121
H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc–iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. 146(24), 16601–16608 (2024). https://doi.org/10.1021/jacs.4c03518