Exploring Single-Atom Nanozymes Toward Environmental Pollutants: Monitoring and Control
Corresponding Author: Yizhong Shen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 238
Abstract
As environmental pollutants pose a serious threat to socioeconomic and environmental health, the development of simple, efficient, accurate and cost-effective methods for pollution monitoring and control remains a major challenge, but it is an unavoidable issue. In the past decade, the artificial nanozymes have been widely used for environmental pollutant monitoring and control, because of their low cost, high stability, easy mass production, etc. However, the conventional nanozyme technology faces significant challenges in terms of difficulty in regulating the exposed crystal surface, complex composition, low catalytic activity, etc. In contrast, the emerging single-atom nanozymes (SANs) have attracted much attention in the field of environmental monitoring and control, due to their multiple advantages of atomically dispersed active sites, high atom utilization efficiency, tunable coordination environment, etc. To date, the insufficient efforts have been made to comprehensively characterize the applications of SANs in the monitoring and control of environmental pollutants. Building on the recent advances in the field, this review systematically summarizes the main synthesis methods of SANs and highlights their advances in the monitoring and control of environmental pollutants. Finally, we critically evaluate the limitations and challenges of SANs, and provide the insights into their future prospects for the monitoring and control of environmental pollutants.
Highlights:
1 Review of the state-of-the-art synthesis strategies for single-atom nanozymes.
2 Analysis of the recent advances in single-atom nanozymes for monitoring and control of environmental pollutants.
3 Challenges and perspectives of single-atom nanozymes in environmental pollutants monitoring and control.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Sharma, M. Almáši, S.P. Nehra, V.S. Rao, P. Panchal et al., Photocatalytic hydrogen production using graphitic carbon nitride (GCN): a precise review. Renew. Sustain. Energy Rev. 168, 112776 (2022). https://doi.org/10.1016/j.rser.2022.112776
- N. Lopez-Bigas, A. Gonzalez-Perez, Are carcinogens direct mutagens? Nat. Genet. 52(11), 1137–1138 (2020). https://doi.org/10.1038/s41588-020-00730-w
- S.M. Wabaidur, M.A. Khan, M.R. Siddiqui, M. Otero, B.-H. Jeon et al., Oxygenated functionalities enriched MWCNTs decorated with silica coated spinel ferrite–A nanocomposite for potentially rapid and efficient de-colorization of aquatic environment. J. Mol. Liq. 317, 113916 (2020). https://doi.org/10.1016/j.molliq.2020.113916
- E.R. Kenawy, A.A. Ghfar, S.M. Wabaidur, M.A. Khan, M.R. Siddiqui et al., Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. J. Environ. Manage. 219, 285–293 (2018). https://doi.org/10.1016/j.jenvman.2018.04.121
- R. Kaur, D. Choudhary, S. Bali, S.S. Bandral, V. Singh et al., Pesticides: an alarming detrimental to health and environment. Sci. Total. Environ. 915, 170113 (2024). https://doi.org/10.1016/j.scitotenv.2024.170113
- R.B. González-González, P. Sharma, S.P. Singh, J.H.P. Américo-Pinheiro, R. Parra-Saldívar et al., Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. Sci. Total. Environ. 821, 153329 (2022). https://doi.org/10.1016/j.scitotenv.2022.153329
- G. Wu, S. Liu, C. Du, M. Huang, Y. Wu et al., A versatile visual molecular imprinting-driven switchable nanozyme activity-based trimodal assay and logic gate circuits of ethyl carbamate. Anal. Chem. 96(36), 14706–14713 (2024). https://doi.org/10.1021/acs.analchem.4c04051
- M.M. Al-Sulaiti, L. Soubra, M.A. Al-Ghouti, The causes and effects of mercury and methylmercury contamination in the marine environment: a review. Curr. Pollut. Rep. 8(3), 249–272 (2022). https://doi.org/10.1007/s40726-022-00226-7
- Y. Li, Z. Cui, L. Huang, D. Zhang, Y. Shen et al., Aggregation-based analytical chemistry in point-of-care nanosensors. Aggregate 5(5), e559 (2024). https://doi.org/10.1002/agt2.559
- Y. Li, P. Wang, L. Huang, C. Jia, X. Gao et al., Schiff-base chemistry-coupled catechol oxidase-like nanozyme reaction as a universal sensing mode for ultrasensitive biosensing. Anal. Chem. 95(7), 3769–3778 (2023). https://doi.org/10.1021/acs.analchem.2c04897
- L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
- G. Li, H. Liu, T. Hu, F. Pu, J. Ren et al., Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. J. Am. Chem. Soc. 145(30), 16835–16842 (2023). https://doi.org/10.1021/jacs.3c05162
- M. Tang, J. Wan, Y. Wang, G. Ye, Z. Yan et al., Overlooked role of void-nanoconfined effect in emerging pollutant degradation: Modulating the electronic structure of active sites to accelerate catalytic oxidation. Water Res. 249, 120950 (2024). https://doi.org/10.1016/j.watres.2023.120950
- G. Meng, J. Zhang, X. Li, D. Wang, Y. Li, Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Appl. Phys. Rev. 8(2), 021321 (2021). https://doi.org/10.1063/5.0048186
- K. Liu, X. Zhao, G. Ren, T. Yang, Y. Ren et al., Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 11(1), 1263 (2020). https://doi.org/10.1038/s41467-020-14984-9
- J. Wang, Z. Li, Y. Wu, Y. Li, Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 30(48), e1801649 (2018). https://doi.org/10.1002/adma.201801649
- J. Liu, Catalysis by supported single metal atoms. ACS Catal. 7(1), 34–59 (2017). https://doi.org/10.1021/acscatal.6b01534
- L. Shen, D. Ye, H. Zhao, J. Zhang, Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 93(3), 1221–1231 (2021). https://doi.org/10.1021/acs.analchem.0c04084
- X. Zhang, G. Li, G. Chen, D. Wu, X. Zhou et al., Single-atom nanozymes: a rising star for biosensing and biomedicine. Coord. Chem. Rev. 418, 213376 (2020). https://doi.org/10.1016/j.ccr.2020.213376
- J.-X. Liang, X.-F. Yang, A. Wang, T. Zhang, J. Li, Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol. 6, 6886–6892 (2016). https://doi.org/10.1039/C6CY00672H
- C. Wang, K. Wang, Y. Feng, C. Li, X. Zhou et al., Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 33(13), e2003327 (2021). https://doi.org/10.1002/adma.202003327
- C. Peng, R. Pang, J. Li, E. Wang, Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 36(10), e2211724 (2024). https://doi.org/10.1002/adma.202211724
- H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun et al., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8(1), 1070 (2017). https://doi.org/10.1038/s41467-017-01259-z
- H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao et al., Single-atom Pd₁/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 137(33), 10484–10487 (2015). https://doi.org/10.1021/jacs.5b06485
- G. Kwon, G.A. Ferguson, C.J. Heard, E.C. Tyo, C. Yin et al., Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7(7), 5808–5817 (2013). https://doi.org/10.1021/nn400772s
- W.E. Kaden, T. Wu, W.A. Kunkel, S.L. Anderson, Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326(5954), 826–829 (2009). https://doi.org/10.1126/science.1180297
- C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
- T. Gan, Q. He, H. Zhang, H. Xiao, Y. Liu et al., Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 389, 124490 (2020). https://doi.org/10.1016/j.cej.2020.124490
- P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–801 (2016). https://doi.org/10.1126/science.aaf5251
- H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8(1), 1490 (2017). https://doi.org/10.1038/s41467-017-01521-4
- J. Fonseca, J. Lu, Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal. 11(12), 7018–7059 (2021). https://doi.org/10.1021/acscatal.1c01200
- L. Zhou, X. Chang, W. Zheng, X. Liu, J. Zhang, Single atom Rh-sensitized SnO2 via atomic layer deposition for efficient formaldehyde detection. Chem. Eng. J. 475, 146300 (2023). https://doi.org/10.1016/j.cej.2023.146300
- N. Cheng, X. Sun, Single atom catalyst by atomic layer deposition technique. Chin. J. Catal. 38, 1508–1514 (2017). https://doi.org/10.1016/S1872-2067(17)62903-6
- J. Ren, T.-C. Jen, Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coord. Chem. Rev. 430, 213734 (2021). https://doi.org/10.1016/j.ccr.2020.213734
- M. Jarrold, J. Bower, Studies of the reactivity and collision induced dissociation of metal clusters: aluminum cluster ions, Aln+ (n=3–26), with oxygen. In: Jena, P., Rao, B.K., Khanna, S.N. (eds) Physics and Chemistry of Small Clusters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0357-3_106
- S. Abbet, A. Sanchez, U. Heiz, W.D. Schneider, A.M. Ferrari et al., Size-effects in the acetylene cyclotrimerization on supported size-selected Pd n clusters (1≤n≤30). Surf. Sci. 454, 984–989 (2000). https://doi.org/10.1016/S0039-6028(00)00083-2
- G. Chen, R. Li, L. Huang, Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts. Nanoscale 15(34), 13909–13931 (2023). https://doi.org/10.1039/d3nr02475j
- J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang et al., Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Meth. 3(9), 1900159 (2019). https://doi.org/10.1002/smtd.201900159
- N. Jara, N.S. Milán, A. Rahman, L. Mouheb, D.C. Boffito et al., Photochemical synthesis of gold and silver nanops-a review. Molecules 26(15), 4585 (2021). https://doi.org/10.3390/molecules26154585
- Y.-X. Wang, J. Zhang, H.-F. Su, X. Cui, C.-Y. Wei et al., Photochemical synthesis of atomically precise Ag nanoclusters. ACS Nano 17(12), 11607–11615 (2023). https://doi.org/10.1021/acsnano.3c02005
- C.J. Wu, M.Z. Shao, Y. Geng, Y.B. Dong, Photochemical synthesis of covalent organic frameworks. ChemCatChem 15(12), e202300244 (2023). https://doi.org/10.1002/cctc.202300244
- V. Martinez, T. Stolar, B. Karadeniz, I. Brekalo, K. Užarević, Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem. 7(1), 51–65 (2023). https://doi.org/10.1038/s41570-022-00442-1
- A.A. Gečiauskaitė, F. García, Main Group mechanochemistry. Beilstein J. Org. Chem. 13, 2068–2077 (2017). https://doi.org/10.3762/bjoc.13.204
- Y. Hu, B. Li, C. Yu, H. Fang, Z. Li, Mechanochemical preparation of single atom catalysts for versatile catalytic applications: a perspective review. Mater. Today 63, 288–312 (2023). https://doi.org/10.1016/j.mattod.2023.01.019
- R. Tang, H. Wang, X.-A. Dong, S. Zhang, L. Zhang et al., A ball milling method for highly dispersed Ni atoms on g-C3N4 to boost CO2 photoreduction. J. Colloid Interface Sci. 630(Pt B), 290–300 (2023). https://doi.org/10.1016/j.jcis.2022.10.110
- R. Indiarto, L.P.A. Indriana, R. Andoyo, E. Subroto, B. Nurhadi, Bottom–up nanop synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur. Food Res. Technol. 248(1), 1–24 (2022). https://doi.org/10.1007/s00217-021-03867-y
- M. Zain Ul Abidin, M. Ikram, S. Moeen, G. Nazir, M.B. Kanoun et al., A comprehensive review on the synthesis of ferrite nanomaterials via bottom-up and top-down approaches advantages, disadvantages, characterizations and computational insights. Coord. Chem. Rev. 520, 216158 (2024). https://doi.org/10.1016/j.ccr.2024.216158
- L. Xing, Y. Jin, Y. Weng, R. Feng, Y. Ji et al., Top-down synthetic strategies toward single atoms on the rise. Matter 5(3), 788–807 (2022). https://doi.org/10.1016/j.matt.2021.12.015
- W. Zhao, G. Li, Z. Tang, Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today 27, 178–197 (2019). https://doi.org/10.1016/j.nantod.2019.05.007
- G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova et al., A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015). https://doi.org/10.1002/anie.201505073
- W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang et al., Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7(9), 5758–5764 (2016). https://doi.org/10.1039/c6sc02105k
- X.F. Gong, J.B. Zhu, J.Z. Li, R. Gao, Q.Y. Zhou et al., Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 31(8), 2008085 (2021). https://doi.org/10.1002/adfm.202008085
- J. Dong, L. Shen, S. Shan, W. Liu, Z. Qi et al., Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution. Sci. Total. Environ. 806, 151442 (2022). https://doi.org/10.1016/j.scitotenv.2021.151442
- S. Cai, W. Zhang, R. Yang, Emerging single-atom nanozymes for catalytic biomedical uses. Nano Res. 16(12), 13056–13076 (2023). https://doi.org/10.1007/s12274-023-5864-y
- D.-L. Meng, C.-H. Chen, J.-D. Yi, Q. Wu, J. Liang et al., Migration-prevention strategy to fabricate single-atom Fe implanted N-doped porous carbons for efficient oxygen reduction. Research 2019, 1768595 (2019). https://doi.org/10.34133/2019/1768595
- S. Wang, P. Zhou, L. Zhou, F. Lv, Y. Sun et al., A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction. Nano Lett. 21(10), 4262–4269 (2021). https://doi.org/10.1021/acs.nanolett.1c00432
- Y. Li, S. Wang, X.-S. Wang, Y. He, Q. Wang et al., Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction. J. Am. Chem. Soc. 142(45), 19259–19267 (2020). https://doi.org/10.1021/jacs.0c09060
- K. Jeganath, S.D. George, M.S. Murari, Y. Raviprakash, Probing the depth inhomogeneity of spray pyrolyzed CZTS thin films via chemical etching. Inorg. Chem. Commun. 145, 109952 (2022). https://doi.org/10.1016/j.inoche.2022.109952
- J.A. Wood, R. Urban, M. Salomons, M. Cloutier, R.A. Wolkow et al., Iridium single atom tips fabricated by field assisted reactive gas etching. Appl. Surf. Sci. 367, 277–280 (2016). https://doi.org/10.1016/j.apsusc.2016.01.080
- A. Tavakkoli K. G., S.M. Nicaise, A.F. Hannon, K.W. Gotrik, A. Alexander-Katz et al., Sacrificial‐post templating method for block copolymer self‐assembly. Small 10(3), 493–499 (2014). https://doi.org/10.1002/smll.201301066
- X. Li, Y. Zhang, T. Xu, W. Xin, A. Wang et al., Improving the non-free radical activated peroxymonosulfate capability of sludge biochar through sacrificial template method: Efficacy and mechanism evaluation. Sep. Purif. Technol. 352, 128243 (2025). https://doi.org/10.1016/j.seppur.2024.128243
- H. Shin, J. Ko, C. Park, D.H. Kim, J. Ahn et al., Sacrificial template-assisted synthesis of inorganic nanosheets with high-loading single-atom catalysts: a general approach. Adv. Funct. Mater. 32(12), 2110485 (2022). https://doi.org/10.1002/adfm.202110485
- Y. Chen, H. Zou, B. Yan, X. Wu, W. Cao et al., Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci. 9(5), e2103977 (2022). https://doi.org/10.1002/advs.202103977
- Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), e1904496 (2019). https://doi.org/10.1002/adma.201904496
- N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram et al., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Colloid Interface Sci. 300, 102597 (2022). https://doi.org/10.1016/j.cis.2021.102597
- L. Yang, S. Dong, S. Gai, D. Yang, H. Ding et al., Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 16(1), 28 (2023). https://doi.org/10.1007/s40820-023-01224-0
- P.-I. Liang, C.-C. Wang, H.-J. Cheng, S.-S. Wang, Y.-C. Lin et al., Curation of cancer hallmark-based genes and pathways for in silico characterization of chemical carcinogenesis. Database 2020, baaa045 (2020). https://doi.org/10.1093/database/baaa045
- E.C. Wilde, K.E. Chapman, L.M. Stannard, A.L. Seager, K. Brüsehafer et al., A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells. Arch. Toxicol. 92(2), 935–951 (2018). https://doi.org/10.1007/s00204-017-2102-y
- M. Dong, N. Sun, C. Liu, Bromide ion enhancing the phytodegradation of emerging phenolic pollutants and its mechanisms mediating wheat resistance to phenolic pollutants stress. J. Clean. Prod. 411, 137295 (2023). https://doi.org/10.1016/j.jclepro.2023.137295
- N. Zhou, Y. Liu, S. Cao, R. Gu, Y. Ma et al., Biodegradation of bisphenol compounds in the surface water of Taihu Lake and the effect of humic acids. Sci. Total. Environ. 723, 138164 (2020). https://doi.org/10.1016/j.scitotenv.2020.138164
- S. Chu, M. Xia, P. Xu, D. Lin, Y. Jiang et al., Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone. Anal. Bioanal. Chem. 416(27), 6067–6077 (2024). https://doi.org/10.1007/s00216-023-05077-9
- Z. Wang, J. Bao, H. He, S. Mukherji, L. Luo et al., Single-Atom iron catalyst activating peroxydisulfate for efficient organic contaminant degradation relying on electron transfer. Chem. Eng. J. 458, 141513 (2023). https://doi.org/10.1016/j.cej.2023.141513
- Z. Huang, H. Yu, L. Wang, M. Wang, X. Liu et al., Ferrocene doped ZIF-8 derived Fe-N-C single atom catalyst to active peroxymonosulfate for removal of bisphenol A. Sep. Purif. Technol. 305, 122402 (2023). https://doi.org/10.1016/j.seppur.2022.122402
- Bin Liu, Z. Wang, T. Wei, Z. Liu, J. Li, Bimetallic FeMn-N nanops as nanocatalyst with dual enzyme-mimic activities for simultaneous colorimetric detection and degradation of hydroquinone. J. Environ. Chem. Eng. 11(3), 110186 (2023). https://doi.org/10.1016/j.jece.2023.110186
- C. Galli, C. Madzak, R. Vadalà, C. Jolivalt, P. Gentili, Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase. ChemBioChem 14(18), 2500–2505 (2013). https://doi.org/10.1002/cbic.201300531
- V.P. Hitaishi, R. Clément, L. Quattrocchi, P. Parent, D. Duché et al., Interplay between orientation at electrodes and copper activation of Thermus thermophilus laccase for O2 reduction. J. Am. Chem. Soc. 142(3), 1394–1405 (2020). https://doi.org/10.1021/jacs.9b11147
- Y. Lin, F. Wang, J. Yu, X. Zhang, G.-P. Lu, Iron single-atom anchored N-doped carbon as a ‘laccase-like’ nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J. Hazard. Mater. 425, 127763 (2022). https://doi.org/10.1016/j.jhazmat.2021.127763
- B.-Q. Song, Q.-Y. Yang, S.-Q. Wang, M. Vandichel, A. Kumar et al., Reversible switching between nonporous and porous phases of a new SIFSIX coordination network induced by a flexible linker ligand. J. Am. Chem. Soc. 142(15), 6896–6901 (2020). https://doi.org/10.1021/jacs.0c01314
- Q.-Y. Yang, P. Lama, S. Sen, M. Lusi, K.-J. Chen et al., Reversible switching between highly porous and nonporous phases of an interpenetrated diamondoid coordination network that exhibits gate-opening at methane storage pressures. Angew. Chem. Int. Ed. 57(20), 5684–5689 (2018). https://doi.org/10.1002/anie.201800820
- Y. Tang, S. Jiang, W. Li, S. Jalil Shah, Z. Zhao et al., Confined construction of COF@Cu-nanozyme with high activity and stability as laccase biomimetic catalyst for the efficient degradation of phenolic pollutants. Chem. Eng. J. 448, 137701 (2022). https://doi.org/10.1016/j.cej.2022.137701
- D. Gu, N. Shao, Y. Zhu, H. Wu, B. Wang, Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept. J. Hazard. Mater. 321, 703–710 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.069
- J. Zhu, Y. Qu, N. Ye, An automated carcinogenic potency categorization approach for nitrosamine drug substance-related impurities. Green Chem. 26(7), 3717–3721 (2024). https://doi.org/10.1039/d3gc03478j
- G. Song, Z. Zhang, M.-L. Fauconnier, C. Li, L. Chen et al., Bimodal single-atom iron nanozyme biosensor for volatile amine and food freshness detection. Nano Today 53, 102025 (2023). https://doi.org/10.1016/j.nantod.2023.102025
- L. Liu, C. Mao, H. Fu, X. Qu, S. Zheng, ZnO nanorod-immobilized Pt single-atoms as an ultrasensitive sensor for triethylamine detection. ACS Appl. Mater. Interfaces 15(13), 16654–16663 (2023). https://doi.org/10.1021/acsami.2c21410
- D. Li, Y. Li, X. Wang, G. Sun, J. Cao et al., Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO. Appl. Surf. Sci. 613, 155987 (2023). https://doi.org/10.1016/j.apsusc.2022.155987
- P. Wang, S. Guo, Z. Hu, L. Zhou, T. Li et al., Single-atom Cu stabilized on ultrathin WO2.72 nanowire for highly selective and ultrasensitive ppb-level toluene detection. Adv. Sci. 10(26), e2302778 (2023). https://doi.org/10.1002/advs.202302778
- F. Yin, W. Yue, Y. Li, S. Gao, C. Zhang et al., Carbon-based nanomaterials for the detection of volatile organic compounds: a review. Carbon 180, 274–297 (2021). https://doi.org/10.1016/j.carbon.2021.04.080
- N. Yi, M. Shen, D. Erdely, H. Cheng, Stretchable gas sensors for detecting biomarkers from humans and exposed environments. Trends Analyt. Chem. 133, 116085 (2020). https://doi.org/10.1016/j.trac.2020.116085
- B. Niu, N. Wang, Y. Chen, M. Yu, Z. Hou et al., Tourmaline synergized with persulfate for degradation of sulfadiazine: Influencing parameters and reaction mechanism. Sep. Purif. Technol. 257, 117893 (2021). https://doi.org/10.1016/j.seppur.2020.117893
- X. Hu, N. Wang, X. Guo, Z. Liang, H. Sun et al., A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-Micro Lett. 14(1), 101 (2022). https://doi.org/10.1007/s40820-022-00848-y
- X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14(1), 22 (2021). https://doi.org/10.1007/s40820-021-00761-w
- J. Wu, H. Zhang, H. Zhang, M. Qing, Z. Feng et al., A Fe-N/FeS@C composite prepared via mechanical activation and pyrolysis for sulfite activation to degrade organic contaminants: Single atomic irons anchored into carbon matrix with encapsulated FeS nanops. J. Environ. Chem. Eng. 9(6), 106451 (2021). https://doi.org/10.1016/j.jece.2021.106451
- J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, G-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503
- S. An, G. Zhang, T. Wang, W. Zhang, K. Li et al., High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12(9), 9441–9450 (2018). https://doi.org/10.1021/acsnano.8b04693
- S. An, G. Zhang, J. Liu, K. Li, G. Wan et al., A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. Chin. J. Catal. 41(8), 1198–1207 (2020). https://doi.org/10.1016/S1872-2067(20)63529-X
- H. Li, X. Han, J. Li, H. Guo, B. Lv et al., Graphitic carbon nitride anchored Fe single atom towards the highly efficient degradation of dyes under visible light. Mater. Lett. 328, 133045 (2022). https://doi.org/10.1016/j.matlet.2022.133045
- J. Tuček, K.C. Kemp, K.S. Kim, R. Zbořil, Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8(8), 7571–7612 (2014). https://doi.org/10.1021/nn501836x
- S.-N. Zhuo, H. Sun, Z.-Y. Wang, H.-Y. Ren, D.-F. Xing et al., A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant. Chem. Eng. J. 455, 140702 (2023). https://doi.org/10.1016/j.cej.2022.140702
- S. Huang, B. Hu, S. Zhao, S. Zhang, M. Wang et al., Multiple catalytic sites of Fe-Nx and Fe-N-C single atoms embedded N-doped carbon heterostructures for high-efficiency removal of malachite green. Chem. Eng. J. 430, 132933 (2022). https://doi.org/10.1016/j.cej.2021.132933
- Q. Chen, Y. Liu, Y. Lu, Y. Hou, X. Zhang et al., Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. J. Hazard. Mater. 422, 126929 (2022). https://doi.org/10.1016/j.jhazmat.2021.126929
- X. Chen, M. Feng, X. Xie, Y. Zhang, J. Zhang et al., Fe single atoms anchored on fluorine-doped ultrathin carbon nanosheets for sensitive colorimetric detection of p-phenylenediamine. Talanta 246, 123487 (2022). https://doi.org/10.1016/j.talanta.2022.123487
- M. Feng, Q. Zhang, X. Chen, D. Deng, X. Xie et al., Controllable synthesis of boron-doped Zn-N-C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens. Bioelectron. 210, 114294 (2022). https://doi.org/10.1016/j.bios.2022.114294
- Q. Feng, G. Wang, L. Xue, Y. Wang, M. Liu et al., Single-atom nanozyme based on Mn-center with enhanced peroxidase-like activity for organic dye degradation. ACS Appl. Nano Mater. 6(6), 4844–4853 (2023). https://doi.org/10.1021/acsanm.3c00571
- S. Wu, W. Wu, X. Zhu, M. Li, J. Zhao et al., Atomically dispersed hierarchically ordered porous Fe-N-C single-atom nanozymes for dyes degradation. Nano Res. 16(8), 10840–10847 (2023). https://doi.org/10.1007/s12274-023-5847-z
- K.J. Nakarmi, E. Daneshvar, G. Eshaq, L. Puro, A. Maiti et al., Synthesis of biochar from iron-free and iron-containing microalgal biomass for the removal of pharmaceuticals from water. Environ. Res. 214(Pt 3), 114041 (2022). https://doi.org/10.1016/j.envres.2022.114041
- R. Singh, N. Kumar, R. Mehra, H. Kumar, V.P. Singh, Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends Environ. Anal. Chem. 26, e00086 (2020). https://doi.org/10.1016/j.teac.2020.e00086
- X. Luo, Z. Luo, X. Wei, L. Jiao, Q. Fang et al., Iridium single-atomic site catalysts with superior oxygen reduction reaction activity for sensitive monitoring of organophosphorus pesticides. Anal. Chem. 94(2), 1390–1396 (2022). https://doi.org/10.1021/acs.analchem.1c04665
- G. Song, J. Zhang, H. Huang, X. Wang, X. He et al., Single-atom Ce-N-C nanozyme bioactive paper with a 3D-printed platform for rapid detection of organophosphorus and carbamate pesticide residues. Food Chem. 387, 132896 (2022). https://doi.org/10.1016/j.foodchem.2022.132896
- X. Wang, Q. Sun, J. Yu, J. Sun, N. Niu et al., Lignin-based iron single-atom nanozyme for detection of organophosphorus in soil. Microchem. J. 195, 109381 (2023). https://doi.org/10.1016/j.microc.2023.109381
- G. Wu, H. Qiu, C. Du, Z. Zheng, Q. Liu et al., Intelligent onsite dual-modal assay based on oxidase-like fluorescence carbon dots-driven competitive effect for ethyl carbamate detection. J. Hazard. Mater. 474, 134707 (2024). https://doi.org/10.1016/j.jhazmat.2024.134707
- T. Chen, D. Zhou, S. Hou, Y. Li, Y. Liu et al., Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 94(44), 15270–15279 (2022). https://doi.org/10.1021/acs.analchem.2c02540
- H. Yu, C. Wang, X. Xiong, B. Dai, Y. Wang et al., Development of Fe-N-C single-atom nanozymes assisted aptasensor for the detection of acetamiprid in water samples. Microchem. J. 193, 109174 (2023). https://doi.org/10.1016/j.microc.2023.109174
- F. Liu, Z. Li, H. Wei, P. Xu, G. Kang et al., Coordinatively unsaturated cobalt single-atom nanozymes for visual pesticides detection by smartphone-based platform. Nano Res. 17(4), 2298–2307 (2024). https://doi.org/10.1007/s12274-023-6039-6
- Y. Zhang, J. Yang, W. Gao, S.G. Liu, Q. Zhao et al., A smartphone-integrated colorimetric sensor for sensitive detection of organophosphorus pesticides based on large-scale synthesized Fe-N/C single-atom nanozymes. Sens. Actuat. B Chem. 403, 135130 (2024). https://doi.org/10.1016/j.snb.2023.135130
- Y. Wang, L. Yin, G. Qu, C.-H. Leung, L. Han et al., Highly active single-atom nanozymes with high-loading iridium for sensitive detection of pesticides. Anal. Chem. 95(32), 11960–11968 (2023). https://doi.org/10.1021/acs.analchem.3c01569
- G. Wu, J. Luo, C. Du, Z. Zheng, Y. Zhang et al., AIE fluorescent nanozyme-based dual-mode biosensor for analysis of the bioactive component hypoxanthine in meat products. Food Chem. 450, 139242 (2024). https://doi.org/10.1016/j.foodchem.2024.139242
- G. Wu, A. Dilinaer, P. Nie, X. Liu, Z. Zheng et al., Dual-modal bimetallic nanozyme-based sensing platform combining colorimetric and photothermal signal cascade catalytic enhancement for detection of hypoxanthine to judge meat freshness. J. Agric. Food Chem. 71(43), 16381–16390 (2023). https://doi.org/10.1021/acs.jafc.3c05899
- G. Wang, J. Liu, H. Dong, L. Geng, J. Sun et al., A dual-mode biosensor featuring single-atom Fe nanozyme for multi-pesticide detection in vegetables. Food Chem. 437(Pt 2), 137882 (2024). https://doi.org/10.1016/j.foodchem.2023.137882
- X. Xu, M. Ma, J. Gao, T. Sun, Y. Guo et al., Multifunctional Ni-NPC single-atom nanozyme for removal and smartphone-assisted visualization monitoring of carbamate pesticides. Inorg. Chem. 63(2), 1225–1235 (2024). https://doi.org/10.1021/acs.inorgchem.3c03642
- Y. Zhang, X. Liu, S. Qiu, Q. Zhang, W. Tang et al., A flexible acetylcholinesterase-modified graphene for chiral pesticide sensor. J. Am. Chem. Soc. 141(37), 14643–14649 (2019). https://doi.org/10.1021/jacs.9b05724
- S. Naveen Prasad, V. Bansal, R. Ramanathan, Detection of pesticides using nanozymes: trends, challenges and outlook. Trac Trends Anal. Chem. 144, 116429 (2021). https://doi.org/10.1016/j.trac.2021.116429
- H. Yi, C. Dezhi, Z. Rui, D. Yuan, R. Zhong et al., Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. J. Hazard. Mater. 419, 126495 (2021). https://doi.org/10.1016/j.jhazmat.2021.126495
- L. Li, X. Zheng, Y. Chi, Y. Wang, X. Sun et al., Molecularly imprinted carbon nanosheets supported TiO2: Strong selectivity and synergic adsorption-photocatalysis for antibiotics removal. J. Hazard. Mater. 383, 121211 (2020). https://doi.org/10.1016/j.jhazmat.2019.121211
- W. Wu, L. Huang, X. Zhu, J. Chen, D. Chao et al., Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection. Chem. Sci. 13(16), 4566–4572 (2022). https://doi.org/10.1039/d2sc00212d
- Y. Chai, H. Dai, P. Zhan, Z. Liu, Z. Huang et al., Selective degradation of organic micropollutants by activation of peroxymonosulfate by Se@NC: Role of Se doping and nonradical pathway mechanism. J. Hazard. Mater. 452, 131202 (2023). https://doi.org/10.1016/j.jhazmat.2023.131202
- L. Peng, X. Duan, Y. Shang, B. Gao, X. Xu, Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways. Appl. Catal. B Environ. 287, 119963 (2021). https://doi.org/10.1016/j.apcatb.2021.119963
- K. Yin, L. Peng, D. Chen, S. Liu, Y. Zhang et al., High-loading of well dispersed single-atom catalysts derived from Fe-rich marine algae for boosting Fenton-like reaction: Role identification of iron center and catalytic mechanisms. Appl. Catal. B Environ. 336, 122951 (2023). https://doi.org/10.1016/j.apcatb.2023.122951
- X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai et al., Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: Electron-transfer mechanism. Chem. Eng. J. 429, 132245 (2022). https://doi.org/10.1016/j.cej.2021.132245
- W. Ren, L. Xiong, X. Yuan, Z. Yu, H. Zhang et al., Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism. Environ. Sci. Technol. 53(24), 14595–14603 (2019). https://doi.org/10.1021/acs.est.9b05475
- J. Wang, Y. Zhao, C. Li, Z. Yu, Y. Zhang et al., Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons. Sci. Total. Environ. 836, 155670 (2022). https://doi.org/10.1016/j.scitotenv.2022.155670
- G. Zhao, W. Li, H. Zhang, W. Wang, Y. Ren, Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation. Chem. Eng. J. 430, 132937 (2022). https://doi.org/10.1016/j.cej.2021.132937
- F. Chen, X.-L. Wu, L. Yang, C. Chen, H. Lin et al., Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst. Chem. Eng. J. 394, 124904 (2020). https://doi.org/10.1016/j.cej.2020.124904
- W. Yang, P. Hong, D. Yang, Y. Yang, Z. Wu et al., Enhanced Fenton-like degradation of sulfadiazine by single atom iron materials fixed on nitrogen-doped porous carbon. J. Colloid Interface Sci. 597, 56–65 (2021). https://doi.org/10.1016/j.jcis.2021.03.168
- C. Han, W. Yi, Z. Li, C. Dong, H. Zhao et al., Single-atom palladium anchored N-doped carbon enhanced electrochemical detection of furazolidone. Electrochim. Acta 447, 142083 (2023). https://doi.org/10.1016/j.electacta.2023.142083
- U. Toor, T. Duong, S.Y. Ko, F. Hussain, S. Oh, Optimization of Fenton process for removing TOC and color from swine wastewater using response surface method (RSM). J. Environ. Manage. 279, 111625 (2021). https://doi.org/10.1016/j.jenvman.2020.111625
- Q. Yu, Y. Dai, Z. Zhang, B. Feng, Photo-Fenton enhanced degradation of antibiotic by Fe single-atom material: Mechanism, performance and adaptability. Sep. Purif. Technol. 310, 123149 (2023). https://doi.org/10.1016/j.seppur.2023.123149
- P. Fan, L. Li, Y. Sun, J. Qiao, C. Xu et al., Selenate removal by Fe0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: a comparative study. Water Res. 159, 375–384 (2019). https://doi.org/10.1016/j.watres.2019.05.037
- X. Li, J. Hu, Y. Deng, T. Li, Z.-Q. Liu et al., High stable photo-Fenton-like catalyst of FeP/Fe single atom-graphene oxide for long-term antibiotic tetracycline removal. Appl. Catal. B Environ. 324, 122243 (2023). https://doi.org/10.1016/j.apcatb.2022.122243
- Y.M. Wang, J.W. Liu, G.B. Adkins, W. Shen, M.P. Trinh et al., Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal. Chem. 89(22), 12327–12333 (2017). https://doi.org/10.1021/acs.analchem.7b03335
- X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai et al., Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites. Chem. Eng. J. 427, 130803 (2022). https://doi.org/10.1016/j.cej.2021.130803
- C. Liu, H. Dai, C. Tan, Q. Pan, F. Hu et al., Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B Environ. 310, 121326 (2022). https://doi.org/10.1016/j.apcatb.2022.121326
- P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee et al., Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10(1), 940 (2019). https://doi.org/10.1038/s41467-019-08731-y
- Y. Fan, X. Gan, H. Zhao, Z. Zeng, W. You et al., Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chem. Eng. J. 427, 131572 (2022). https://doi.org/10.1016/j.cej.2021.131572
- R. Lang, W. Xi, J.C. Liu, Y.T. Cui, T. Li et al., Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10(1), 234 (2019). https://doi.org/10.1038/s41467-018-08136-3
- K. Selvakumar, Y. Wang, Y. Lu, B. Tian, Z. Zhang et al., Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient photodecomposition of antibiotic residues under visible light illumination. Appl. Catal. B Environ. 300, 120740 (2022). https://doi.org/10.1016/j.apcatb.2021.120740
- Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He et al., In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics. Small 16(29), e2001634 (2020). https://doi.org/10.1002/smll.202001634
- H. Zhang, G. Xu, Y. Yu, Co single atoms anchored on straw biochar as an efficient peroxydisulfate activator for ultrafast removal of antibiotics. Environ. Pollut. 333, 121983 (2023). https://doi.org/10.1016/j.envpol.2023.121983
- L. Santos, F. Ramos, Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: a review. Trends Food Sci. Technol. 52, 16–30 (2016). https://doi.org/10.1016/j.tifs.2016.03.015
- B. Singh, A. Bhat, L. Dutta, K.R. Pati, Y. Korpan et al., Electrochemical biosensors for the detection of antibiotics in milk: recent trends and future perspectives. Biosensors 13, 867 (2023). https://doi.org/10.3390/bios13090867
- X.-W. Wei, Y. Zhang, Y. Zhou, M. Li, Z.-F. Liu et al., A review on pretreatment and analysis methods of polyether antibiotics in complex samples. Crit. Rev. Anal. Chem. 54(8), 3453–3477 (2024). https://doi.org/10.1080/10408347.2023.2251156
- X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
- G. Wu, H. Qiu, X. Liu, P. Luo, Y. Wu et al., Nanomaterials-based fluorescent assays for pathogenic bacteria in food-related matrices. Trends Food Sci. Technol. 142, 104214 (2023). https://doi.org/10.1016/j.tifs.2023.104214
- S. Darvishi, S. Tavakoli, M. Kharaziha, H.H. Girault, C.F. Kaminski et al., Advances in the sensing and treatment of wound biofilms. Angew. Chem. Int. Ed. 61, e202112218 (2022). https://doi.org/10.1002/anie.202112218
- Z. Liu, W. Gao, L. Liu, Y. Gao, C. Zhang et al., Spin polarization induced by atomic strain of MBene promotes the ·O2- production for groundwater disinfection. Nat. Commun. 16(1), 197 (2025). https://doi.org/10.1038/s41467-024-55626-8
- Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 46(7), 4042–4050 (2012). https://doi.org/10.1021/es204079d
- X. Dai, H. Liu, B. Cai, Y. Liu, K. Song et al., A bioinspired atomically thin nanodot supported single-atom nanozyme for antibacterial textile coating. Small 19(47), e2303901 (2023). https://doi.org/10.1002/smll.202303901
- Y. Shen, X. Gao, H. Chen, Y. Wei, H. Yang et al., Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. J. Hazard. Mater. 451, 131171 (2023). https://doi.org/10.1016/j.jhazmat.2023.131171
- F. Vatansever, W.C. de Melo, P. Avci, D. Vecchio, M. Sadasivam et al., Antimicrobial strategies centered around reactive oxygen species: bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37(6), 955–989 (2013). https://doi.org/10.1111/1574-6976.12026
- Y. Feng, J. Qin, Y. Zhou, Q. Yue, J. Wei, Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J. Colloid Interface Sci. 606(Pt 1), 826–836 (2022). https://doi.org/10.1016/j.jcis.2021.08.054
- W. Xu, B. Sun, F. Wu, M. Mohammadniaei, Q. Song et al., Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chem. Eng. J. 438, 135636 (2022). https://doi.org/10.1016/j.cej.2022.135636
- M. Huo, L. Wang, H. Zhang, L. Zhang, Y. Chen et al., Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small 15, 1901834 (2019). https://doi.org/10.1002/smll.201901834
- Q. Xu, Y. Hua, Y. Zhang, M. Lv, H. Wang et al., A biofilm microenvironment-activated single-atom iron nanozyme with NIR-controllable nanocatalytic activities for synergetic bacteria-infected wound therapy. Adv. Healthc. Mater. 10(22), e2101374 (2021). https://doi.org/10.1002/adhm.202101374
- J. Zhang, M. Lv, X. Wang, F. Wu, C. Yao et al., An immunomodulatory biomimetic single-atomic nanozyme for biofilm wound healing management. Small 19(47), e2302587 (2023). https://doi.org/10.1002/smll.202302587
- P. Chowdhary, S.R. Sammi, R. Pandey, G. Kaithwas, A. Raj et al., Bacterial degradation of distillery wastewater pollutants and their metabolites characterization and its toxicity evaluation by using Caenorhabditis elegans as terrestrial test models. Chemosphere 261, 127689 (2020). https://doi.org/10.1016/j.chemosphere.2020.127689
- M. Andriamihaja, A. Lan, M. Beaumont, M. Audebert, X. Wong et al., The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic. Biol. Med. 85, 219–227 (2015). https://doi.org/10.1016/j.freeradbiomed.2015.04.004
- Q. Guo, X. Huang, Y. Huang, Z. Zhang, P. Li et al., Fe-N-C single-atom nanozyme-linked immunosorbent assay for quantitative detection of aflatoxin B1. J. Food Compos. Anal. 125, 105795 (2024). https://doi.org/10.1016/j.jfca.2023.105795
- X. Cai, F. Ma, J. Jiang, X. Yang, Z. Zhang et al., Fe-N-C single-atom nanozyme for ultrasensitive, on-site and multiplex detection of mycotoxins using lateral flow immunoassay. J. Hazard. Mater. 441, 129853 (2023). https://doi.org/10.1016/j.jhazmat.2022.129853
- J. Liu, C. Guo, Z. Liu, F. Cheng, S. Zhang et al., Simultaneous sterilization and biosensing of pathogenic bacteria via copper phthalocyanine-based COF embedded with Cu-N4 single atomic sites and silver nanops. Chem. Eng. J. 494, 153139 (2024). https://doi.org/10.1016/j.cej.2024.153139
- B. Gao, Q. Ye, Y. Ding, Y. Wu, X. Zhao et al., Metal-based nanomaterials with enzyme-like characteristics for bacterial rapid detection and control. Coord. Chem. Rev. 510, 215799 (2024). https://doi.org/10.1016/j.ccr.2024.215799
- X. Xu, H. Hu, Y.A. Hong, Body burden of heavy metals among HIV high risk population in USA. Environ. Pollut. 220, 1121–1126 (2017). https://doi.org/10.1016/j.envpol.2016.11.023
- K.H.H. Aziz, F.S. Mustafa, R.F. Hamarawf, K.M. Omer, Adsorptive removal of toxic heavy metals from aquatic environment by metal organic framework (MOF): a review. J. Water Process. Eng. 70, 106867 (2025). https://doi.org/10.1016/j.jwpe.2024.106867
- K. Rehman, F. Fatima, I. Waheed, M.S.H. Akash, Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 119, 157–184 (2018). https://doi.org/10.1002/jcb.26234
- G. Zeng, C. Zhang, D. Huang, C. Lai, L. Tang et al., Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection. Biosens. Bioelectron. 90, 542–548 (2017). https://doi.org/10.1016/j.bios.2016.10.018
- X. Chen, J. Fang, S. Liao, R. Mia, W. Li et al., A smart chitosan nonwoven fabric coated with coumarin-based fluorophore for selective detection and efficient adsorption of mercury (II) in water. Sens. Actuat. B Chem. 342, 130064 (2021). https://doi.org/10.1016/j.snb.2021.130064
- L. Yao, S. Gao, S. Liu, Y. Bi, R. Wang et al., Single-atom enzyme-functionalized solution-gated graphene transistor for real-time detection of mercury ion. ACS Appl. Mater. Interfaces 12(5), 6268–6275 (2020). https://doi.org/10.1021/acsami.9b19434
- R. Li, X. He, R. Javed, J. Cai, H. Cao et al., Switching on-off-on colorimetric sensor based on Fe-N/S-C single-atom nanozyme for ultrasensitive and multimodal detection of Hg2+. Sci. Total. Environ. 834, 155428 (2022). https://doi.org/10.1016/j.scitotenv.2022.155428
- G. Song, J.-C. Li, Z. Majid, W. Xu, X. He et al., Phosphatase-like activity of single-atom CeNC nanozyme for rapid detection of Al3+. Food Chem. 390, 133127 (2022). https://doi.org/10.1016/j.foodchem.2022.133127
- G. Song, Q. Zhang, S. Liang, Y. Yao, M. Feng et al., Oxidation activity modulation of a single atom Ce-N-C nanozyme enabling a time-resolved sensor to detect Fe3+ and Cr6+. J. Mater. Chem. C 10(41), 15656–15663 (2022). https://doi.org/10.1039/D2TC02476D
- Y. Mao, S. Gao, L. Yao, L. Wang, H. Qu et al., Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J. Hazard. Mater. 408, 124898 (2021). https://doi.org/10.1016/j.jhazmat.2020.124898
- F. Han, C. Cheng, J. Zhao, H. Wang, G. Zhao et al., Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Colloids Surf. B Biointerfaces 242, 114093 (2024). https://doi.org/10.1016/j.colsurfb.2024.114093
- M. Lei, P. Wang, X. Ke, Low-temperature chemical vapor deposition growth of 2D materials. Electron 3(1), e43 (2025). https://doi.org/10.1002/elt2.43
- J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15(12), 10063–10069 (2022). https://doi.org/10.1007/s12274-022-4467-3
- X. Wang, D. Li, Y.-T. Pan, K. Chen, K. Burns et al., Effect of the catalyst metal content and the carbon support on proton-exchange membrane fuel cells performance and durability. Electrochim. Acta 512, 145490 (2025). https://doi.org/10.1016/j.electacta.2024.145490
- J. Xu, R. Chen, L. Jia, X. Shen, T. Zhao et al., Janus applications: a mutifunctional nano-platform with integrated visual detection and photodegradation of tetracyclines. Appl. Surf. Sci. 484, 1–10 (2019). https://doi.org/10.1016/j.apsusc.2019.04.101
- Y. Li, S. Wang, Z. Lv, Z. Wang, Y. Zhao et al., Transforming the synthesis of carbon nanotubes with machine learning models and automation. Matter 8(1), 101913 (2024). https://doi.org/10.1016/j.matt.2024.11.007
References
R. Sharma, M. Almáši, S.P. Nehra, V.S. Rao, P. Panchal et al., Photocatalytic hydrogen production using graphitic carbon nitride (GCN): a precise review. Renew. Sustain. Energy Rev. 168, 112776 (2022). https://doi.org/10.1016/j.rser.2022.112776
N. Lopez-Bigas, A. Gonzalez-Perez, Are carcinogens direct mutagens? Nat. Genet. 52(11), 1137–1138 (2020). https://doi.org/10.1038/s41588-020-00730-w
S.M. Wabaidur, M.A. Khan, M.R. Siddiqui, M. Otero, B.-H. Jeon et al., Oxygenated functionalities enriched MWCNTs decorated with silica coated spinel ferrite–A nanocomposite for potentially rapid and efficient de-colorization of aquatic environment. J. Mol. Liq. 317, 113916 (2020). https://doi.org/10.1016/j.molliq.2020.113916
E.R. Kenawy, A.A. Ghfar, S.M. Wabaidur, M.A. Khan, M.R. Siddiqui et al., Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. J. Environ. Manage. 219, 285–293 (2018). https://doi.org/10.1016/j.jenvman.2018.04.121
R. Kaur, D. Choudhary, S. Bali, S.S. Bandral, V. Singh et al., Pesticides: an alarming detrimental to health and environment. Sci. Total. Environ. 915, 170113 (2024). https://doi.org/10.1016/j.scitotenv.2024.170113
R.B. González-González, P. Sharma, S.P. Singh, J.H.P. Américo-Pinheiro, R. Parra-Saldívar et al., Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. Sci. Total. Environ. 821, 153329 (2022). https://doi.org/10.1016/j.scitotenv.2022.153329
G. Wu, S. Liu, C. Du, M. Huang, Y. Wu et al., A versatile visual molecular imprinting-driven switchable nanozyme activity-based trimodal assay and logic gate circuits of ethyl carbamate. Anal. Chem. 96(36), 14706–14713 (2024). https://doi.org/10.1021/acs.analchem.4c04051
M.M. Al-Sulaiti, L. Soubra, M.A. Al-Ghouti, The causes and effects of mercury and methylmercury contamination in the marine environment: a review. Curr. Pollut. Rep. 8(3), 249–272 (2022). https://doi.org/10.1007/s40726-022-00226-7
Y. Li, Z. Cui, L. Huang, D. Zhang, Y. Shen et al., Aggregation-based analytical chemistry in point-of-care nanosensors. Aggregate 5(5), e559 (2024). https://doi.org/10.1002/agt2.559
Y. Li, P. Wang, L. Huang, C. Jia, X. Gao et al., Schiff-base chemistry-coupled catechol oxidase-like nanozyme reaction as a universal sensing mode for ultrasensitive biosensing. Anal. Chem. 95(7), 3769–3778 (2023). https://doi.org/10.1021/acs.analchem.2c04897
L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
G. Li, H. Liu, T. Hu, F. Pu, J. Ren et al., Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. J. Am. Chem. Soc. 145(30), 16835–16842 (2023). https://doi.org/10.1021/jacs.3c05162
M. Tang, J. Wan, Y. Wang, G. Ye, Z. Yan et al., Overlooked role of void-nanoconfined effect in emerging pollutant degradation: Modulating the electronic structure of active sites to accelerate catalytic oxidation. Water Res. 249, 120950 (2024). https://doi.org/10.1016/j.watres.2023.120950
G. Meng, J. Zhang, X. Li, D. Wang, Y. Li, Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Appl. Phys. Rev. 8(2), 021321 (2021). https://doi.org/10.1063/5.0048186
K. Liu, X. Zhao, G. Ren, T. Yang, Y. Ren et al., Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 11(1), 1263 (2020). https://doi.org/10.1038/s41467-020-14984-9
J. Wang, Z. Li, Y. Wu, Y. Li, Fabrication of single-atom catalysts with precise structure and high metal loading. Adv. Mater. 30(48), e1801649 (2018). https://doi.org/10.1002/adma.201801649
J. Liu, Catalysis by supported single metal atoms. ACS Catal. 7(1), 34–59 (2017). https://doi.org/10.1021/acscatal.6b01534
L. Shen, D. Ye, H. Zhao, J. Zhang, Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 93(3), 1221–1231 (2021). https://doi.org/10.1021/acs.analchem.0c04084
X. Zhang, G. Li, G. Chen, D. Wu, X. Zhou et al., Single-atom nanozymes: a rising star for biosensing and biomedicine. Coord. Chem. Rev. 418, 213376 (2020). https://doi.org/10.1016/j.ccr.2020.213376
J.-X. Liang, X.-F. Yang, A. Wang, T. Zhang, J. Li, Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol. 6, 6886–6892 (2016). https://doi.org/10.1039/C6CY00672H
C. Wang, K. Wang, Y. Feng, C. Li, X. Zhou et al., Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 33(13), e2003327 (2021). https://doi.org/10.1002/adma.202003327
C. Peng, R. Pang, J. Li, E. Wang, Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 36(10), e2211724 (2024). https://doi.org/10.1002/adma.202211724
H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun et al., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8(1), 1070 (2017). https://doi.org/10.1038/s41467-017-01259-z
H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao et al., Single-atom Pd₁/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 137(33), 10484–10487 (2015). https://doi.org/10.1021/jacs.5b06485
G. Kwon, G.A. Ferguson, C.J. Heard, E.C. Tyo, C. Yin et al., Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7(7), 5808–5817 (2013). https://doi.org/10.1021/nn400772s
W.E. Kaden, T. Wu, W.A. Kunkel, S.L. Anderson, Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326(5954), 826–829 (2009). https://doi.org/10.1126/science.1180297
C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
T. Gan, Q. He, H. Zhang, H. Xiao, Y. Liu et al., Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 389, 124490 (2020). https://doi.org/10.1016/j.cej.2020.124490
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–801 (2016). https://doi.org/10.1126/science.aaf5251
H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8(1), 1490 (2017). https://doi.org/10.1038/s41467-017-01521-4
J. Fonseca, J. Lu, Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal. 11(12), 7018–7059 (2021). https://doi.org/10.1021/acscatal.1c01200
L. Zhou, X. Chang, W. Zheng, X. Liu, J. Zhang, Single atom Rh-sensitized SnO2 via atomic layer deposition for efficient formaldehyde detection. Chem. Eng. J. 475, 146300 (2023). https://doi.org/10.1016/j.cej.2023.146300
N. Cheng, X. Sun, Single atom catalyst by atomic layer deposition technique. Chin. J. Catal. 38, 1508–1514 (2017). https://doi.org/10.1016/S1872-2067(17)62903-6
J. Ren, T.-C. Jen, Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coord. Chem. Rev. 430, 213734 (2021). https://doi.org/10.1016/j.ccr.2020.213734
M. Jarrold, J. Bower, Studies of the reactivity and collision induced dissociation of metal clusters: aluminum cluster ions, Aln+ (n=3–26), with oxygen. In: Jena, P., Rao, B.K., Khanna, S.N. (eds) Physics and Chemistry of Small Clusters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0357-3_106
S. Abbet, A. Sanchez, U. Heiz, W.D. Schneider, A.M. Ferrari et al., Size-effects in the acetylene cyclotrimerization on supported size-selected Pd n clusters (1≤n≤30). Surf. Sci. 454, 984–989 (2000). https://doi.org/10.1016/S0039-6028(00)00083-2
G. Chen, R. Li, L. Huang, Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts. Nanoscale 15(34), 13909–13931 (2023). https://doi.org/10.1039/d3nr02475j
J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang et al., Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Meth. 3(9), 1900159 (2019). https://doi.org/10.1002/smtd.201900159
N. Jara, N.S. Milán, A. Rahman, L. Mouheb, D.C. Boffito et al., Photochemical synthesis of gold and silver nanops-a review. Molecules 26(15), 4585 (2021). https://doi.org/10.3390/molecules26154585
Y.-X. Wang, J. Zhang, H.-F. Su, X. Cui, C.-Y. Wei et al., Photochemical synthesis of atomically precise Ag nanoclusters. ACS Nano 17(12), 11607–11615 (2023). https://doi.org/10.1021/acsnano.3c02005
C.J. Wu, M.Z. Shao, Y. Geng, Y.B. Dong, Photochemical synthesis of covalent organic frameworks. ChemCatChem 15(12), e202300244 (2023). https://doi.org/10.1002/cctc.202300244
V. Martinez, T. Stolar, B. Karadeniz, I. Brekalo, K. Užarević, Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem. 7(1), 51–65 (2023). https://doi.org/10.1038/s41570-022-00442-1
A.A. Gečiauskaitė, F. García, Main Group mechanochemistry. Beilstein J. Org. Chem. 13, 2068–2077 (2017). https://doi.org/10.3762/bjoc.13.204
Y. Hu, B. Li, C. Yu, H. Fang, Z. Li, Mechanochemical preparation of single atom catalysts for versatile catalytic applications: a perspective review. Mater. Today 63, 288–312 (2023). https://doi.org/10.1016/j.mattod.2023.01.019
R. Tang, H. Wang, X.-A. Dong, S. Zhang, L. Zhang et al., A ball milling method for highly dispersed Ni atoms on g-C3N4 to boost CO2 photoreduction. J. Colloid Interface Sci. 630(Pt B), 290–300 (2023). https://doi.org/10.1016/j.jcis.2022.10.110
R. Indiarto, L.P.A. Indriana, R. Andoyo, E. Subroto, B. Nurhadi, Bottom–up nanop synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur. Food Res. Technol. 248(1), 1–24 (2022). https://doi.org/10.1007/s00217-021-03867-y
M. Zain Ul Abidin, M. Ikram, S. Moeen, G. Nazir, M.B. Kanoun et al., A comprehensive review on the synthesis of ferrite nanomaterials via bottom-up and top-down approaches advantages, disadvantages, characterizations and computational insights. Coord. Chem. Rev. 520, 216158 (2024). https://doi.org/10.1016/j.ccr.2024.216158
L. Xing, Y. Jin, Y. Weng, R. Feng, Y. Ji et al., Top-down synthetic strategies toward single atoms on the rise. Matter 5(3), 788–807 (2022). https://doi.org/10.1016/j.matt.2021.12.015
W. Zhao, G. Li, Z. Tang, Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today 27, 178–197 (2019). https://doi.org/10.1016/j.nantod.2019.05.007
G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova et al., A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015). https://doi.org/10.1002/anie.201505073
W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang et al., Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7(9), 5758–5764 (2016). https://doi.org/10.1039/c6sc02105k
X.F. Gong, J.B. Zhu, J.Z. Li, R. Gao, Q.Y. Zhou et al., Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 31(8), 2008085 (2021). https://doi.org/10.1002/adfm.202008085
J. Dong, L. Shen, S. Shan, W. Liu, Z. Qi et al., Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution. Sci. Total. Environ. 806, 151442 (2022). https://doi.org/10.1016/j.scitotenv.2021.151442
S. Cai, W. Zhang, R. Yang, Emerging single-atom nanozymes for catalytic biomedical uses. Nano Res. 16(12), 13056–13076 (2023). https://doi.org/10.1007/s12274-023-5864-y
D.-L. Meng, C.-H. Chen, J.-D. Yi, Q. Wu, J. Liang et al., Migration-prevention strategy to fabricate single-atom Fe implanted N-doped porous carbons for efficient oxygen reduction. Research 2019, 1768595 (2019). https://doi.org/10.34133/2019/1768595
S. Wang, P. Zhou, L. Zhou, F. Lv, Y. Sun et al., A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction. Nano Lett. 21(10), 4262–4269 (2021). https://doi.org/10.1021/acs.nanolett.1c00432
Y. Li, S. Wang, X.-S. Wang, Y. He, Q. Wang et al., Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction. J. Am. Chem. Soc. 142(45), 19259–19267 (2020). https://doi.org/10.1021/jacs.0c09060
K. Jeganath, S.D. George, M.S. Murari, Y. Raviprakash, Probing the depth inhomogeneity of spray pyrolyzed CZTS thin films via chemical etching. Inorg. Chem. Commun. 145, 109952 (2022). https://doi.org/10.1016/j.inoche.2022.109952
J.A. Wood, R. Urban, M. Salomons, M. Cloutier, R.A. Wolkow et al., Iridium single atom tips fabricated by field assisted reactive gas etching. Appl. Surf. Sci. 367, 277–280 (2016). https://doi.org/10.1016/j.apsusc.2016.01.080
A. Tavakkoli K. G., S.M. Nicaise, A.F. Hannon, K.W. Gotrik, A. Alexander-Katz et al., Sacrificial‐post templating method for block copolymer self‐assembly. Small 10(3), 493–499 (2014). https://doi.org/10.1002/smll.201301066
X. Li, Y. Zhang, T. Xu, W. Xin, A. Wang et al., Improving the non-free radical activated peroxymonosulfate capability of sludge biochar through sacrificial template method: Efficacy and mechanism evaluation. Sep. Purif. Technol. 352, 128243 (2025). https://doi.org/10.1016/j.seppur.2024.128243
H. Shin, J. Ko, C. Park, D.H. Kim, J. Ahn et al., Sacrificial template-assisted synthesis of inorganic nanosheets with high-loading single-atom catalysts: a general approach. Adv. Funct. Mater. 32(12), 2110485 (2022). https://doi.org/10.1002/adfm.202110485
Y. Chen, H. Zou, B. Yan, X. Wu, W. Cao et al., Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci. 9(5), e2103977 (2022). https://doi.org/10.1002/advs.202103977
Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), e1904496 (2019). https://doi.org/10.1002/adma.201904496
N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram et al., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Colloid Interface Sci. 300, 102597 (2022). https://doi.org/10.1016/j.cis.2021.102597
L. Yang, S. Dong, S. Gai, D. Yang, H. Ding et al., Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 16(1), 28 (2023). https://doi.org/10.1007/s40820-023-01224-0
P.-I. Liang, C.-C. Wang, H.-J. Cheng, S.-S. Wang, Y.-C. Lin et al., Curation of cancer hallmark-based genes and pathways for in silico characterization of chemical carcinogenesis. Database 2020, baaa045 (2020). https://doi.org/10.1093/database/baaa045
E.C. Wilde, K.E. Chapman, L.M. Stannard, A.L. Seager, K. Brüsehafer et al., A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells. Arch. Toxicol. 92(2), 935–951 (2018). https://doi.org/10.1007/s00204-017-2102-y
M. Dong, N. Sun, C. Liu, Bromide ion enhancing the phytodegradation of emerging phenolic pollutants and its mechanisms mediating wheat resistance to phenolic pollutants stress. J. Clean. Prod. 411, 137295 (2023). https://doi.org/10.1016/j.jclepro.2023.137295
N. Zhou, Y. Liu, S. Cao, R. Gu, Y. Ma et al., Biodegradation of bisphenol compounds in the surface water of Taihu Lake and the effect of humic acids. Sci. Total. Environ. 723, 138164 (2020). https://doi.org/10.1016/j.scitotenv.2020.138164
S. Chu, M. Xia, P. Xu, D. Lin, Y. Jiang et al., Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone. Anal. Bioanal. Chem. 416(27), 6067–6077 (2024). https://doi.org/10.1007/s00216-023-05077-9
Z. Wang, J. Bao, H. He, S. Mukherji, L. Luo et al., Single-Atom iron catalyst activating peroxydisulfate for efficient organic contaminant degradation relying on electron transfer. Chem. Eng. J. 458, 141513 (2023). https://doi.org/10.1016/j.cej.2023.141513
Z. Huang, H. Yu, L. Wang, M. Wang, X. Liu et al., Ferrocene doped ZIF-8 derived Fe-N-C single atom catalyst to active peroxymonosulfate for removal of bisphenol A. Sep. Purif. Technol. 305, 122402 (2023). https://doi.org/10.1016/j.seppur.2022.122402
Bin Liu, Z. Wang, T. Wei, Z. Liu, J. Li, Bimetallic FeMn-N nanops as nanocatalyst with dual enzyme-mimic activities for simultaneous colorimetric detection and degradation of hydroquinone. J. Environ. Chem. Eng. 11(3), 110186 (2023). https://doi.org/10.1016/j.jece.2023.110186
C. Galli, C. Madzak, R. Vadalà, C. Jolivalt, P. Gentili, Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase. ChemBioChem 14(18), 2500–2505 (2013). https://doi.org/10.1002/cbic.201300531
V.P. Hitaishi, R. Clément, L. Quattrocchi, P. Parent, D. Duché et al., Interplay between orientation at electrodes and copper activation of Thermus thermophilus laccase for O2 reduction. J. Am. Chem. Soc. 142(3), 1394–1405 (2020). https://doi.org/10.1021/jacs.9b11147
Y. Lin, F. Wang, J. Yu, X. Zhang, G.-P. Lu, Iron single-atom anchored N-doped carbon as a ‘laccase-like’ nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J. Hazard. Mater. 425, 127763 (2022). https://doi.org/10.1016/j.jhazmat.2021.127763
B.-Q. Song, Q.-Y. Yang, S.-Q. Wang, M. Vandichel, A. Kumar et al., Reversible switching between nonporous and porous phases of a new SIFSIX coordination network induced by a flexible linker ligand. J. Am. Chem. Soc. 142(15), 6896–6901 (2020). https://doi.org/10.1021/jacs.0c01314
Q.-Y. Yang, P. Lama, S. Sen, M. Lusi, K.-J. Chen et al., Reversible switching between highly porous and nonporous phases of an interpenetrated diamondoid coordination network that exhibits gate-opening at methane storage pressures. Angew. Chem. Int. Ed. 57(20), 5684–5689 (2018). https://doi.org/10.1002/anie.201800820
Y. Tang, S. Jiang, W. Li, S. Jalil Shah, Z. Zhao et al., Confined construction of COF@Cu-nanozyme with high activity and stability as laccase biomimetic catalyst for the efficient degradation of phenolic pollutants. Chem. Eng. J. 448, 137701 (2022). https://doi.org/10.1016/j.cej.2022.137701
D. Gu, N. Shao, Y. Zhu, H. Wu, B. Wang, Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept. J. Hazard. Mater. 321, 703–710 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.069
J. Zhu, Y. Qu, N. Ye, An automated carcinogenic potency categorization approach for nitrosamine drug substance-related impurities. Green Chem. 26(7), 3717–3721 (2024). https://doi.org/10.1039/d3gc03478j
G. Song, Z. Zhang, M.-L. Fauconnier, C. Li, L. Chen et al., Bimodal single-atom iron nanozyme biosensor for volatile amine and food freshness detection. Nano Today 53, 102025 (2023). https://doi.org/10.1016/j.nantod.2023.102025
L. Liu, C. Mao, H. Fu, X. Qu, S. Zheng, ZnO nanorod-immobilized Pt single-atoms as an ultrasensitive sensor for triethylamine detection. ACS Appl. Mater. Interfaces 15(13), 16654–16663 (2023). https://doi.org/10.1021/acsami.2c21410
D. Li, Y. Li, X. Wang, G. Sun, J. Cao et al., Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO. Appl. Surf. Sci. 613, 155987 (2023). https://doi.org/10.1016/j.apsusc.2022.155987
P. Wang, S. Guo, Z. Hu, L. Zhou, T. Li et al., Single-atom Cu stabilized on ultrathin WO2.72 nanowire for highly selective and ultrasensitive ppb-level toluene detection. Adv. Sci. 10(26), e2302778 (2023). https://doi.org/10.1002/advs.202302778
F. Yin, W. Yue, Y. Li, S. Gao, C. Zhang et al., Carbon-based nanomaterials for the detection of volatile organic compounds: a review. Carbon 180, 274–297 (2021). https://doi.org/10.1016/j.carbon.2021.04.080
N. Yi, M. Shen, D. Erdely, H. Cheng, Stretchable gas sensors for detecting biomarkers from humans and exposed environments. Trends Analyt. Chem. 133, 116085 (2020). https://doi.org/10.1016/j.trac.2020.116085
B. Niu, N. Wang, Y. Chen, M. Yu, Z. Hou et al., Tourmaline synergized with persulfate for degradation of sulfadiazine: Influencing parameters and reaction mechanism. Sep. Purif. Technol. 257, 117893 (2021). https://doi.org/10.1016/j.seppur.2020.117893
X. Hu, N. Wang, X. Guo, Z. Liang, H. Sun et al., A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-Micro Lett. 14(1), 101 (2022). https://doi.org/10.1007/s40820-022-00848-y
X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14(1), 22 (2021). https://doi.org/10.1007/s40820-021-00761-w
J. Wu, H. Zhang, H. Zhang, M. Qing, Z. Feng et al., A Fe-N/FeS@C composite prepared via mechanical activation and pyrolysis for sulfite activation to degrade organic contaminants: Single atomic irons anchored into carbon matrix with encapsulated FeS nanops. J. Environ. Chem. Eng. 9(6), 106451 (2021). https://doi.org/10.1016/j.jece.2021.106451
J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, G-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503
S. An, G. Zhang, T. Wang, W. Zhang, K. Li et al., High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12(9), 9441–9450 (2018). https://doi.org/10.1021/acsnano.8b04693
S. An, G. Zhang, J. Liu, K. Li, G. Wan et al., A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. Chin. J. Catal. 41(8), 1198–1207 (2020). https://doi.org/10.1016/S1872-2067(20)63529-X
H. Li, X. Han, J. Li, H. Guo, B. Lv et al., Graphitic carbon nitride anchored Fe single atom towards the highly efficient degradation of dyes under visible light. Mater. Lett. 328, 133045 (2022). https://doi.org/10.1016/j.matlet.2022.133045
J. Tuček, K.C. Kemp, K.S. Kim, R. Zbořil, Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8(8), 7571–7612 (2014). https://doi.org/10.1021/nn501836x
S.-N. Zhuo, H. Sun, Z.-Y. Wang, H.-Y. Ren, D.-F. Xing et al., A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant. Chem. Eng. J. 455, 140702 (2023). https://doi.org/10.1016/j.cej.2022.140702
S. Huang, B. Hu, S. Zhao, S. Zhang, M. Wang et al., Multiple catalytic sites of Fe-Nx and Fe-N-C single atoms embedded N-doped carbon heterostructures for high-efficiency removal of malachite green. Chem. Eng. J. 430, 132933 (2022). https://doi.org/10.1016/j.cej.2021.132933
Q. Chen, Y. Liu, Y. Lu, Y. Hou, X. Zhang et al., Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. J. Hazard. Mater. 422, 126929 (2022). https://doi.org/10.1016/j.jhazmat.2021.126929
X. Chen, M. Feng, X. Xie, Y. Zhang, J. Zhang et al., Fe single atoms anchored on fluorine-doped ultrathin carbon nanosheets for sensitive colorimetric detection of p-phenylenediamine. Talanta 246, 123487 (2022). https://doi.org/10.1016/j.talanta.2022.123487
M. Feng, Q. Zhang, X. Chen, D. Deng, X. Xie et al., Controllable synthesis of boron-doped Zn-N-C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens. Bioelectron. 210, 114294 (2022). https://doi.org/10.1016/j.bios.2022.114294
Q. Feng, G. Wang, L. Xue, Y. Wang, M. Liu et al., Single-atom nanozyme based on Mn-center with enhanced peroxidase-like activity for organic dye degradation. ACS Appl. Nano Mater. 6(6), 4844–4853 (2023). https://doi.org/10.1021/acsanm.3c00571
S. Wu, W. Wu, X. Zhu, M. Li, J. Zhao et al., Atomically dispersed hierarchically ordered porous Fe-N-C single-atom nanozymes for dyes degradation. Nano Res. 16(8), 10840–10847 (2023). https://doi.org/10.1007/s12274-023-5847-z
K.J. Nakarmi, E. Daneshvar, G. Eshaq, L. Puro, A. Maiti et al., Synthesis of biochar from iron-free and iron-containing microalgal biomass for the removal of pharmaceuticals from water. Environ. Res. 214(Pt 3), 114041 (2022). https://doi.org/10.1016/j.envres.2022.114041
R. Singh, N. Kumar, R. Mehra, H. Kumar, V.P. Singh, Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends Environ. Anal. Chem. 26, e00086 (2020). https://doi.org/10.1016/j.teac.2020.e00086
X. Luo, Z. Luo, X. Wei, L. Jiao, Q. Fang et al., Iridium single-atomic site catalysts with superior oxygen reduction reaction activity for sensitive monitoring of organophosphorus pesticides. Anal. Chem. 94(2), 1390–1396 (2022). https://doi.org/10.1021/acs.analchem.1c04665
G. Song, J. Zhang, H. Huang, X. Wang, X. He et al., Single-atom Ce-N-C nanozyme bioactive paper with a 3D-printed platform for rapid detection of organophosphorus and carbamate pesticide residues. Food Chem. 387, 132896 (2022). https://doi.org/10.1016/j.foodchem.2022.132896
X. Wang, Q. Sun, J. Yu, J. Sun, N. Niu et al., Lignin-based iron single-atom nanozyme for detection of organophosphorus in soil. Microchem. J. 195, 109381 (2023). https://doi.org/10.1016/j.microc.2023.109381
G. Wu, H. Qiu, C. Du, Z. Zheng, Q. Liu et al., Intelligent onsite dual-modal assay based on oxidase-like fluorescence carbon dots-driven competitive effect for ethyl carbamate detection. J. Hazard. Mater. 474, 134707 (2024). https://doi.org/10.1016/j.jhazmat.2024.134707
T. Chen, D. Zhou, S. Hou, Y. Li, Y. Liu et al., Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 94(44), 15270–15279 (2022). https://doi.org/10.1021/acs.analchem.2c02540
H. Yu, C. Wang, X. Xiong, B. Dai, Y. Wang et al., Development of Fe-N-C single-atom nanozymes assisted aptasensor for the detection of acetamiprid in water samples. Microchem. J. 193, 109174 (2023). https://doi.org/10.1016/j.microc.2023.109174
F. Liu, Z. Li, H. Wei, P. Xu, G. Kang et al., Coordinatively unsaturated cobalt single-atom nanozymes for visual pesticides detection by smartphone-based platform. Nano Res. 17(4), 2298–2307 (2024). https://doi.org/10.1007/s12274-023-6039-6
Y. Zhang, J. Yang, W. Gao, S.G. Liu, Q. Zhao et al., A smartphone-integrated colorimetric sensor for sensitive detection of organophosphorus pesticides based on large-scale synthesized Fe-N/C single-atom nanozymes. Sens. Actuat. B Chem. 403, 135130 (2024). https://doi.org/10.1016/j.snb.2023.135130
Y. Wang, L. Yin, G. Qu, C.-H. Leung, L. Han et al., Highly active single-atom nanozymes with high-loading iridium for sensitive detection of pesticides. Anal. Chem. 95(32), 11960–11968 (2023). https://doi.org/10.1021/acs.analchem.3c01569
G. Wu, J. Luo, C. Du, Z. Zheng, Y. Zhang et al., AIE fluorescent nanozyme-based dual-mode biosensor for analysis of the bioactive component hypoxanthine in meat products. Food Chem. 450, 139242 (2024). https://doi.org/10.1016/j.foodchem.2024.139242
G. Wu, A. Dilinaer, P. Nie, X. Liu, Z. Zheng et al., Dual-modal bimetallic nanozyme-based sensing platform combining colorimetric and photothermal signal cascade catalytic enhancement for detection of hypoxanthine to judge meat freshness. J. Agric. Food Chem. 71(43), 16381–16390 (2023). https://doi.org/10.1021/acs.jafc.3c05899
G. Wang, J. Liu, H. Dong, L. Geng, J. Sun et al., A dual-mode biosensor featuring single-atom Fe nanozyme for multi-pesticide detection in vegetables. Food Chem. 437(Pt 2), 137882 (2024). https://doi.org/10.1016/j.foodchem.2023.137882
X. Xu, M. Ma, J. Gao, T. Sun, Y. Guo et al., Multifunctional Ni-NPC single-atom nanozyme for removal and smartphone-assisted visualization monitoring of carbamate pesticides. Inorg. Chem. 63(2), 1225–1235 (2024). https://doi.org/10.1021/acs.inorgchem.3c03642
Y. Zhang, X. Liu, S. Qiu, Q. Zhang, W. Tang et al., A flexible acetylcholinesterase-modified graphene for chiral pesticide sensor. J. Am. Chem. Soc. 141(37), 14643–14649 (2019). https://doi.org/10.1021/jacs.9b05724
S. Naveen Prasad, V. Bansal, R. Ramanathan, Detection of pesticides using nanozymes: trends, challenges and outlook. Trac Trends Anal. Chem. 144, 116429 (2021). https://doi.org/10.1016/j.trac.2021.116429
H. Yi, C. Dezhi, Z. Rui, D. Yuan, R. Zhong et al., Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. J. Hazard. Mater. 419, 126495 (2021). https://doi.org/10.1016/j.jhazmat.2021.126495
L. Li, X. Zheng, Y. Chi, Y. Wang, X. Sun et al., Molecularly imprinted carbon nanosheets supported TiO2: Strong selectivity and synergic adsorption-photocatalysis for antibiotics removal. J. Hazard. Mater. 383, 121211 (2020). https://doi.org/10.1016/j.jhazmat.2019.121211
W. Wu, L. Huang, X. Zhu, J. Chen, D. Chao et al., Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection. Chem. Sci. 13(16), 4566–4572 (2022). https://doi.org/10.1039/d2sc00212d
Y. Chai, H. Dai, P. Zhan, Z. Liu, Z. Huang et al., Selective degradation of organic micropollutants by activation of peroxymonosulfate by Se@NC: Role of Se doping and nonradical pathway mechanism. J. Hazard. Mater. 452, 131202 (2023). https://doi.org/10.1016/j.jhazmat.2023.131202
L. Peng, X. Duan, Y. Shang, B. Gao, X. Xu, Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways. Appl. Catal. B Environ. 287, 119963 (2021). https://doi.org/10.1016/j.apcatb.2021.119963
K. Yin, L. Peng, D. Chen, S. Liu, Y. Zhang et al., High-loading of well dispersed single-atom catalysts derived from Fe-rich marine algae for boosting Fenton-like reaction: Role identification of iron center and catalytic mechanisms. Appl. Catal. B Environ. 336, 122951 (2023). https://doi.org/10.1016/j.apcatb.2023.122951
X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai et al., Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: Electron-transfer mechanism. Chem. Eng. J. 429, 132245 (2022). https://doi.org/10.1016/j.cej.2021.132245
W. Ren, L. Xiong, X. Yuan, Z. Yu, H. Zhang et al., Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism. Environ. Sci. Technol. 53(24), 14595–14603 (2019). https://doi.org/10.1021/acs.est.9b05475
J. Wang, Y. Zhao, C. Li, Z. Yu, Y. Zhang et al., Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons. Sci. Total. Environ. 836, 155670 (2022). https://doi.org/10.1016/j.scitotenv.2022.155670
G. Zhao, W. Li, H. Zhang, W. Wang, Y. Ren, Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation. Chem. Eng. J. 430, 132937 (2022). https://doi.org/10.1016/j.cej.2021.132937
F. Chen, X.-L. Wu, L. Yang, C. Chen, H. Lin et al., Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst. Chem. Eng. J. 394, 124904 (2020). https://doi.org/10.1016/j.cej.2020.124904
W. Yang, P. Hong, D. Yang, Y. Yang, Z. Wu et al., Enhanced Fenton-like degradation of sulfadiazine by single atom iron materials fixed on nitrogen-doped porous carbon. J. Colloid Interface Sci. 597, 56–65 (2021). https://doi.org/10.1016/j.jcis.2021.03.168
C. Han, W. Yi, Z. Li, C. Dong, H. Zhao et al., Single-atom palladium anchored N-doped carbon enhanced electrochemical detection of furazolidone. Electrochim. Acta 447, 142083 (2023). https://doi.org/10.1016/j.electacta.2023.142083
U. Toor, T. Duong, S.Y. Ko, F. Hussain, S. Oh, Optimization of Fenton process for removing TOC and color from swine wastewater using response surface method (RSM). J. Environ. Manage. 279, 111625 (2021). https://doi.org/10.1016/j.jenvman.2020.111625
Q. Yu, Y. Dai, Z. Zhang, B. Feng, Photo-Fenton enhanced degradation of antibiotic by Fe single-atom material: Mechanism, performance and adaptability. Sep. Purif. Technol. 310, 123149 (2023). https://doi.org/10.1016/j.seppur.2023.123149
P. Fan, L. Li, Y. Sun, J. Qiao, C. Xu et al., Selenate removal by Fe0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: a comparative study. Water Res. 159, 375–384 (2019). https://doi.org/10.1016/j.watres.2019.05.037
X. Li, J. Hu, Y. Deng, T. Li, Z.-Q. Liu et al., High stable photo-Fenton-like catalyst of FeP/Fe single atom-graphene oxide for long-term antibiotic tetracycline removal. Appl. Catal. B Environ. 324, 122243 (2023). https://doi.org/10.1016/j.apcatb.2022.122243
Y.M. Wang, J.W. Liu, G.B. Adkins, W. Shen, M.P. Trinh et al., Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal. Chem. 89(22), 12327–12333 (2017). https://doi.org/10.1021/acs.analchem.7b03335
X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai et al., Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites. Chem. Eng. J. 427, 130803 (2022). https://doi.org/10.1016/j.cej.2021.130803
C. Liu, H. Dai, C. Tan, Q. Pan, F. Hu et al., Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B Environ. 310, 121326 (2022). https://doi.org/10.1016/j.apcatb.2022.121326
P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee et al., Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10(1), 940 (2019). https://doi.org/10.1038/s41467-019-08731-y
Y. Fan, X. Gan, H. Zhao, Z. Zeng, W. You et al., Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chem. Eng. J. 427, 131572 (2022). https://doi.org/10.1016/j.cej.2021.131572
R. Lang, W. Xi, J.C. Liu, Y.T. Cui, T. Li et al., Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10(1), 234 (2019). https://doi.org/10.1038/s41467-018-08136-3
K. Selvakumar, Y. Wang, Y. Lu, B. Tian, Z. Zhang et al., Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient photodecomposition of antibiotic residues under visible light illumination. Appl. Catal. B Environ. 300, 120740 (2022). https://doi.org/10.1016/j.apcatb.2021.120740
Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He et al., In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics. Small 16(29), e2001634 (2020). https://doi.org/10.1002/smll.202001634
H. Zhang, G. Xu, Y. Yu, Co single atoms anchored on straw biochar as an efficient peroxydisulfate activator for ultrafast removal of antibiotics. Environ. Pollut. 333, 121983 (2023). https://doi.org/10.1016/j.envpol.2023.121983
L. Santos, F. Ramos, Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: a review. Trends Food Sci. Technol. 52, 16–30 (2016). https://doi.org/10.1016/j.tifs.2016.03.015
B. Singh, A. Bhat, L. Dutta, K.R. Pati, Y. Korpan et al., Electrochemical biosensors for the detection of antibiotics in milk: recent trends and future perspectives. Biosensors 13, 867 (2023). https://doi.org/10.3390/bios13090867
X.-W. Wei, Y. Zhang, Y. Zhou, M. Li, Z.-F. Liu et al., A review on pretreatment and analysis methods of polyether antibiotics in complex samples. Crit. Rev. Anal. Chem. 54(8), 3453–3477 (2024). https://doi.org/10.1080/10408347.2023.2251156
X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
G. Wu, H. Qiu, X. Liu, P. Luo, Y. Wu et al., Nanomaterials-based fluorescent assays for pathogenic bacteria in food-related matrices. Trends Food Sci. Technol. 142, 104214 (2023). https://doi.org/10.1016/j.tifs.2023.104214
S. Darvishi, S. Tavakoli, M. Kharaziha, H.H. Girault, C.F. Kaminski et al., Advances in the sensing and treatment of wound biofilms. Angew. Chem. Int. Ed. 61, e202112218 (2022). https://doi.org/10.1002/anie.202112218
Z. Liu, W. Gao, L. Liu, Y. Gao, C. Zhang et al., Spin polarization induced by atomic strain of MBene promotes the ·O2- production for groundwater disinfection. Nat. Commun. 16(1), 197 (2025). https://doi.org/10.1038/s41467-024-55626-8
Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 46(7), 4042–4050 (2012). https://doi.org/10.1021/es204079d
X. Dai, H. Liu, B. Cai, Y. Liu, K. Song et al., A bioinspired atomically thin nanodot supported single-atom nanozyme for antibacterial textile coating. Small 19(47), e2303901 (2023). https://doi.org/10.1002/smll.202303901
Y. Shen, X. Gao, H. Chen, Y. Wei, H. Yang et al., Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. J. Hazard. Mater. 451, 131171 (2023). https://doi.org/10.1016/j.jhazmat.2023.131171
F. Vatansever, W.C. de Melo, P. Avci, D. Vecchio, M. Sadasivam et al., Antimicrobial strategies centered around reactive oxygen species: bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37(6), 955–989 (2013). https://doi.org/10.1111/1574-6976.12026
Y. Feng, J. Qin, Y. Zhou, Q. Yue, J. Wei, Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J. Colloid Interface Sci. 606(Pt 1), 826–836 (2022). https://doi.org/10.1016/j.jcis.2021.08.054
W. Xu, B. Sun, F. Wu, M. Mohammadniaei, Q. Song et al., Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chem. Eng. J. 438, 135636 (2022). https://doi.org/10.1016/j.cej.2022.135636
M. Huo, L. Wang, H. Zhang, L. Zhang, Y. Chen et al., Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small 15, 1901834 (2019). https://doi.org/10.1002/smll.201901834
Q. Xu, Y. Hua, Y. Zhang, M. Lv, H. Wang et al., A biofilm microenvironment-activated single-atom iron nanozyme with NIR-controllable nanocatalytic activities for synergetic bacteria-infected wound therapy. Adv. Healthc. Mater. 10(22), e2101374 (2021). https://doi.org/10.1002/adhm.202101374
J. Zhang, M. Lv, X. Wang, F. Wu, C. Yao et al., An immunomodulatory biomimetic single-atomic nanozyme for biofilm wound healing management. Small 19(47), e2302587 (2023). https://doi.org/10.1002/smll.202302587
P. Chowdhary, S.R. Sammi, R. Pandey, G. Kaithwas, A. Raj et al., Bacterial degradation of distillery wastewater pollutants and their metabolites characterization and its toxicity evaluation by using Caenorhabditis elegans as terrestrial test models. Chemosphere 261, 127689 (2020). https://doi.org/10.1016/j.chemosphere.2020.127689
M. Andriamihaja, A. Lan, M. Beaumont, M. Audebert, X. Wong et al., The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic. Biol. Med. 85, 219–227 (2015). https://doi.org/10.1016/j.freeradbiomed.2015.04.004
Q. Guo, X. Huang, Y. Huang, Z. Zhang, P. Li et al., Fe-N-C single-atom nanozyme-linked immunosorbent assay for quantitative detection of aflatoxin B1. J. Food Compos. Anal. 125, 105795 (2024). https://doi.org/10.1016/j.jfca.2023.105795
X. Cai, F. Ma, J. Jiang, X. Yang, Z. Zhang et al., Fe-N-C single-atom nanozyme for ultrasensitive, on-site and multiplex detection of mycotoxins using lateral flow immunoassay. J. Hazard. Mater. 441, 129853 (2023). https://doi.org/10.1016/j.jhazmat.2022.129853
J. Liu, C. Guo, Z. Liu, F. Cheng, S. Zhang et al., Simultaneous sterilization and biosensing of pathogenic bacteria via copper phthalocyanine-based COF embedded with Cu-N4 single atomic sites and silver nanops. Chem. Eng. J. 494, 153139 (2024). https://doi.org/10.1016/j.cej.2024.153139
B. Gao, Q. Ye, Y. Ding, Y. Wu, X. Zhao et al., Metal-based nanomaterials with enzyme-like characteristics for bacterial rapid detection and control. Coord. Chem. Rev. 510, 215799 (2024). https://doi.org/10.1016/j.ccr.2024.215799
X. Xu, H. Hu, Y.A. Hong, Body burden of heavy metals among HIV high risk population in USA. Environ. Pollut. 220, 1121–1126 (2017). https://doi.org/10.1016/j.envpol.2016.11.023
K.H.H. Aziz, F.S. Mustafa, R.F. Hamarawf, K.M. Omer, Adsorptive removal of toxic heavy metals from aquatic environment by metal organic framework (MOF): a review. J. Water Process. Eng. 70, 106867 (2025). https://doi.org/10.1016/j.jwpe.2024.106867
K. Rehman, F. Fatima, I. Waheed, M.S.H. Akash, Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 119, 157–184 (2018). https://doi.org/10.1002/jcb.26234
G. Zeng, C. Zhang, D. Huang, C. Lai, L. Tang et al., Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection. Biosens. Bioelectron. 90, 542–548 (2017). https://doi.org/10.1016/j.bios.2016.10.018
X. Chen, J. Fang, S. Liao, R. Mia, W. Li et al., A smart chitosan nonwoven fabric coated with coumarin-based fluorophore for selective detection and efficient adsorption of mercury (II) in water. Sens. Actuat. B Chem. 342, 130064 (2021). https://doi.org/10.1016/j.snb.2021.130064
L. Yao, S. Gao, S. Liu, Y. Bi, R. Wang et al., Single-atom enzyme-functionalized solution-gated graphene transistor for real-time detection of mercury ion. ACS Appl. Mater. Interfaces 12(5), 6268–6275 (2020). https://doi.org/10.1021/acsami.9b19434
R. Li, X. He, R. Javed, J. Cai, H. Cao et al., Switching on-off-on colorimetric sensor based on Fe-N/S-C single-atom nanozyme for ultrasensitive and multimodal detection of Hg2+. Sci. Total. Environ. 834, 155428 (2022). https://doi.org/10.1016/j.scitotenv.2022.155428
G. Song, J.-C. Li, Z. Majid, W. Xu, X. He et al., Phosphatase-like activity of single-atom CeNC nanozyme for rapid detection of Al3+. Food Chem. 390, 133127 (2022). https://doi.org/10.1016/j.foodchem.2022.133127
G. Song, Q. Zhang, S. Liang, Y. Yao, M. Feng et al., Oxidation activity modulation of a single atom Ce-N-C nanozyme enabling a time-resolved sensor to detect Fe3+ and Cr6+. J. Mater. Chem. C 10(41), 15656–15663 (2022). https://doi.org/10.1039/D2TC02476D
Y. Mao, S. Gao, L. Yao, L. Wang, H. Qu et al., Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J. Hazard. Mater. 408, 124898 (2021). https://doi.org/10.1016/j.jhazmat.2020.124898
F. Han, C. Cheng, J. Zhao, H. Wang, G. Zhao et al., Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Colloids Surf. B Biointerfaces 242, 114093 (2024). https://doi.org/10.1016/j.colsurfb.2024.114093
M. Lei, P. Wang, X. Ke, Low-temperature chemical vapor deposition growth of 2D materials. Electron 3(1), e43 (2025). https://doi.org/10.1002/elt2.43
J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15(12), 10063–10069 (2022). https://doi.org/10.1007/s12274-022-4467-3
X. Wang, D. Li, Y.-T. Pan, K. Chen, K. Burns et al., Effect of the catalyst metal content and the carbon support on proton-exchange membrane fuel cells performance and durability. Electrochim. Acta 512, 145490 (2025). https://doi.org/10.1016/j.electacta.2024.145490
J. Xu, R. Chen, L. Jia, X. Shen, T. Zhao et al., Janus applications: a mutifunctional nano-platform with integrated visual detection and photodegradation of tetracyclines. Appl. Surf. Sci. 484, 1–10 (2019). https://doi.org/10.1016/j.apsusc.2019.04.101
Y. Li, S. Wang, Z. Lv, Z. Wang, Y. Zhao et al., Transforming the synthesis of carbon nanotubes with machine learning models and automation. Matter 8(1), 101913 (2024). https://doi.org/10.1016/j.matt.2024.11.007