Probing Interfacial Nanostructures of Electrochemical Energy Storage Systems by In-Situ Transmission Electron Microscopy
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 245
Abstract
The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance. However, achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions. In-situ transmission electron microscopy (TEM) is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments. These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries. This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems, including atomic-scale structural imaging, strain field imaging, electron holography, and integrated differential phase contrast imaging. Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution, ionic valence state changes, and strain mapping, ion transport dynamics. The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems.
Highlights:
1 An in-depth look into the latest developments of in-situ transmission electron microscopy (TEM) imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems.
2 Selected examples to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms by employing some of the state-of-the-art imaging techniques to visualize the interfacial nanostructural evolution.
3 The challenges and future directions of the development and application of in-situ TEM techniques in the cutting-edge areas of electrochemical energy storage research are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Goodenough, M.S. Whittingham, A. Yoshino, The nobel prize in chemistry (2019). https://www.nobelprize.org/prizes/chemistry/2019/press-release/. Accessed 27 Dec 2024
- M.S. Whittingham, Special editorial perspective: beyond Li-ion battery chemistry. Chem. Rev. 120, 6328–6330 (2020). https://doi.org/10.1021/acs.chemrev.0c00438
- M. Stanley Whittingham, Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 20(12), 8435–8437 (2020). https://doi.org/10.1021/acs.nanolett.0c04347
- M.S. Whittingham, J. Xiao, Fiftyyears of lithium-ion batteries and what is next? MRS Bull. 48(11), 1118–1124 (2023). https://doi.org/10.1557/s43577-023-00627-z
- X. Zhang, N. Zhao, H. Zhang, Y. Fan, F. Jin et al., Recent advances in wide-range temperature metal-CO2 batteries: a mini review. Nano-Micro Lett. 17(1), 99 (2024). https://doi.org/10.1007/s40820-024-01607-x
- J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16(1), 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
- T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14(1), 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
- S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8(1), 4 (2021). https://doi.org/10.1186/s40580-021-00254-x
- Z.-P. Wu, D.T. Caracciolo, Y. Maswadeh, J. Wen, Z. Kong et al., Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanop fuel cell catalysts. Nat. Commun. 12(1), 859 (2021). https://doi.org/10.1038/s41467-021-21017-6
- Z.P. Wu, D. Dinh, Y. Maswadeh, D.T. Caracciolo, H. Zhang et al., Interfacial reactivity-triggered oscillatory lattice strains of nanoalloys. J. Am. Chem. Soc. 146(51), 35264–35274 (2024). https://doi.org/10.1021/jacs.4c12550
- Z. Kong, Y. Maswadeh, J.A. Vargas, S. Shan, Z.-P. Wu et al., Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J. Am. Chem. Soc. 142(3), 1287–1299 (2020). https://doi.org/10.1021/jacs.9b10239
- Z. Kong, Z.-P. Wu, Y. Maswadeh, G. Yu, J.A. Vargas et al., Self-sustainable lattice strains of morphology-tuned nanowires in electrocatalysis. ACS Catal. 14(7), 4709–4718 (2024). https://doi.org/10.1021/acscatal.4c00451
- A.Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J.-F. Magnan et al., How to make lithium extraction cleaner, faster and cheaper–in six steps. Nature 616(7956), 245–248 (2023). https://doi.org/10.1038/d41586-023-00978-2
- Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8(9), 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
- A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich et al., Current status and challenges for automotive battery production technologies. Nat. Energy 3(4), 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3
- S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16(1), 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
- Z. Fan, R. Li, X. Zhang, W. Zhao, Z. Pan et al., Defect engineering: can it mitigate strong coulomb effect of Mg2+ in cathode materials for rechargeable magnesium batteries? Nano-Micro Lett. 16(1), 4 (2024). https://doi.org/10.1007/s40820-024-01495-1
- X. Xue, L. Feng, Q. Ren, C. Tran, S. Eisenberg et al., Interpenetrated structures for enhancing ion diffusion kinetics in electrochemical energy storage devices. Nano-Micro Lett. 16(1), 255 (2024). https://doi.org/10.1007/s40820-024-01472-8
- D. Eum, S.-O. Park, H.-Y. Jang, Y. Jeon, J.-H. Song et al., Electrochemomechanical failure in layered oxide cathodes caused by rotational stacking faults. Nat. Mater. 23(8), 1093–1099 (2024). https://doi.org/10.1038/s41563-024-01899-9
- H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- E. Gabriel, C. Ma, K. Graff, A. Conrado, D. Hou et al., Heterostructure engineering in electrode materials for sodium-ion batteries: recent progress and perspectives. eScience 3(5), 100139 (2023). https://doi.org/10.1016/j.esci.2023.100139
- H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J. Rodriguez-Garcia et al., Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- L. Wang, P.E. Vullum, K. Asheim, X. Wang, A.M. Svensson et al., High capacity Mg batteries based on surface-controlled electrochemical reactions. Nano Energy 48, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.03.061
- W. Feng, H. Wang, Y. Jiang, H. Zhang, W. Luo et al., A strain-relaxation red phosphorus feestanding anode for non-aqueous potassium ion batteries. Adv. Energy Mater. 12, 2103343 (2022). https://doi.org/10.1002/aenm.202103343
- X. Wu, Z. Li, W. Feng, W. Luo, L. Liao et al., Insights into electrolyte-induced temporal and spatial evolution of an ultrafast-charging bi-based anode for sodium-ion batteries. Energy Storage Mater. 66, 103219 (2024). https://doi.org/10.1016/j.ensm.2024.103219
- J.-H. Wu, H.-W. Cai, Z.-H. Deng, J.-J. Gaumet, Y. Bao et al., Application of in situ characterization techniques in modern aqueous batteries. Rare Met. 43(8), 3553–3575 (2024). https://doi.org/10.1007/s12598-024-02689-7
- X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
- Q. Yang, Z. Zhang, X.-G. Sun, Y.-S. Hu, H. Xing et al., Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47(6), 2020–2064 (2018). https://doi.org/10.1039/c7cs00464h
- L. Qin, N. Xiao, S. Zhang, X. Chen, Y. Wu, From K–O2 to K-air batteries: realizing superoxide batteries on the basis of dry ambient air. Angew. Chem. Int. Ed. 59(26), 10498–10501 (2020). https://doi.org/10.1002/anie.202003481
- K. Song, D.A. Agyeman, M. Park, J. Yang, Y.M. Kang, High-energy-density metal-oxygen batteries: lithium-oxygen batteries vs sodium-oxygen batteries. Adv. Mater. 29(48), 1606572 (2017). https://doi.org/10.1002/adma.201606572
- X. Liu, Y. Chen, Z.D. Hood, C. Ma, S. Yu et al., Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy. Energy Environ. Sci. 12(3), 945–951 (2019). https://doi.org/10.1039/C8EE02981D
- Y. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017). https://doi.org/10.1038/ncomms15806
- X. Wu, S. Li, B. Yang, C. Wang, In situ transmission electron microscopy studies of electrochemical reaction mechanisms in rechargeable batteries. Electrochem. Energy Rev. 2(3), 467–491 (2019). https://doi.org/10.1007/s41918-019-00046-2
- J. Li, G. Johnson, S. Zhang, D. Su, In situ transmission electron microscopy for energy applications. Joule 3(1), 4–8 (2019). https://doi.org/10.1016/j.joule.2018.12.007
- X. Cheng, Y. Li, T. Cao, R. Wu, M. Wang et al., Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 6, 1703–1710 (2021). https://doi.org/10.1021/acsenergylett.1c00279
- G. Liang, X. Xiong, L. Yang, X. Liu, R. Che, Zero-strain Ca0.4Ce0.6VO4 anode material for high capacity and long-life Na-ion batteries. J. Mater. Chem. A 9(45), 25663–25671 (2021). https://doi.org/10.1039/d1ta06877f
- G. Liang, L. Yang, X. Xiong, X. Liu, X. Zhang et al., High-rate electrochemical lithium-ion storage through Li+ intercalation pseudocapacitance in the Pr1/3NbO3 anode. J. Mater. Chem. A 10(44), 23675–23682 (2022). https://doi.org/10.1039/D2TA03741F
- L. Yang, G. Liang, H. Cao, S. Ma, X. Liu et al., A new sodium calcium cyclotetravanadate framework: “zero-strain” during large-capacity lithium intercalation. Adv. Funct. Mater. 32(1), 2105026 (2022). https://doi.org/10.1002/adfm.202105026
- G. Liang, L. Yang, Q. Han, G. Chen, C. Lin et al., Conductive Li3.08Cr0.02Si0.09V0.9O4 anode material: novel “zero-strain” characteristic and superior electrochemical Li+ storage. Adv. Energy Mater. 10(20), 1904267 (2020). https://doi.org/10.1002/aenm.201904267
- Z. Liang, Y. Xiang, K. Wang, J. Zhu, Y. Jin et al., Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14(1), 259 (2023). https://doi.org/10.1038/s41467-023-35920-7
- N.-H. Yang, Y.-F. Song, R.-S. Liu, In operando transmission X-ray microscopy illuminated by synchrotron radiation for Li-ion batteries. ACS Energy Lett. 3(8), 1911–1928 (2018). https://doi.org/10.1021/acsenergylett.8b00850
- L.M. de Kort, M. Lazemi, A. Longo, V. Gulino, H.P. Rodenburg et al., Deciphering the origin of interface-induced high Li and Na ion conductivity in nanocomposite solid electrolytes using X-ray Raman spectroscopy. Adv. Energy Mater. 14(9), 2303381 (2024). https://doi.org/10.1002/aenm.202303381
- G. Rong, X. Zhang, W. Zhao, Y. Qiu, M. Liu et al., Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution. Adv. Mater. 29(13), 1606187 (2017). https://doi.org/10.1002/adma.201606187
- Z.-P. Wu, S. Shan, S.-Q. Zang, C.-J. Zhong, Dynamic core-shell and alloy structures of multimetallic nanomaterials and their catalytic synergies. Acc. Chem. Res. 53(12), 2913–2924 (2020). https://doi.org/10.1021/acs.accounts.0c00564
- H.W. Cheng, S. Wang, G. Chen, Z. Liu, D. Caracciolo et al., Insights into heterogeneous catalysts under reaction conditions by in situ/operando electron microscopy. Adv. Energy Mater. 12(38), 2202097 (2022). https://doi.org/10.1002/aenm.202202097
- S. Hwang, X. Chen, G. Zhou, D. Su, In situ transmission electron microscopy on energy-related catalysis. Adv. Energy Mater. 10(11), 1902105 (2020). https://doi.org/10.1002/aenm.201902105
- X. Sun, D. Wu, L. Zou, S.D. House, X. Chen et al., Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607(7920), 708–713 (2022). https://doi.org/10.1038/s41586-022-04880-1
- L. Luo, S. Chen, Q. Xu, Y. He, Z. Dong et al., Dynamic atom clusters on AuCu nanop surface during CO oxidation. J. Am. Chem. Soc. 142(8), 4022–4027 (2020). https://doi.org/10.1021/jacs.9b13901
- L. Luo, L. Li, D.K. Schreiber, Y. He, D.R. Baer et al., Deciphering atomistic mechanisms of the gas-solid interfacial reaction during alloy oxidation. Sci. Adv. 6(17), 8491 (2020). https://doi.org/10.1126/sciadv.aay8491
- Y. Jiang, Z. Zhang, W. Yuan, X. Zhang, Y. Wang et al., Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 11(1), 42–67 (2018). https://doi.org/10.1007/s12274-017-1645-9
- W. Yuan, B. Zhu, K. Fang, X.-Y. Li, T.W. Hansen et al., In situ manipulation of the active Au–TiO2 interface with atomic precision during CO oxidation. Science 371(6528), 517–521 (2021). https://doi.org/10.1126/science.abe3558
- W. Yuan, B. Zhu, X.-Y. Li, T.W. Hansen, Y. Ou et al., Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 367(6476), 428–430 (2020). https://doi.org/10.1126/science.aay2474
- J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1520 (2010). https://doi.org/10.1126/science.1195628
- Y. Cheng, L. Zhang, Q. Zhang, J. Li, Y. Tang et al., Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Mater. Today 42, 137–161 (2021). https://doi.org/10.1016/j.mattod.2020.09.003
- Z. Sun, M. Li, B. Xiao, X. Liu, H. Lin et al., In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. eTransportation 14, 100203 (2022). https://doi.org/10.1016/j.etran.2022.100203
- R. Yang, L. Mei, Z. Lin, Y. Fan, J. Lim et al., Intercalation in 2D materials and in situ studies. Nat. Rev. Chem. 8(6), 410–432 (2024). https://doi.org/10.1038/s41570-024-00605-2
- Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5(4), 1235–1250 (2022). https://doi.org/10.1016/j.matt.2022.01.015
- H. Hu, R. Yang, Z. Zeng, Advances in electrochemical liquid-phase transmission electron microscopy for visualizing rechargeable battery reactions. ACS Nano 18(20), 12598–12609 (2024). https://doi.org/10.1021/acsnano.4c03319
- R. Yang, L. Mei, Y. Fan, Q. Zhang, H.-G. Liao et al., Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat. Protoc. 18(2), 555–578 (2023). https://doi.org/10.1038/s41596-022-00762-y
- R. Na, M.N. Madiou, D. Caracciolo, Z.-P. Wu, C. Kanyuk et al., Synergy of carbon nanotube-supported bimetallic nanoalloy catalysts in rechargeable lithium–oxygen batteries. J. Phys. Chem. C 127(28), 13547–13555 (2023). https://doi.org/10.1021/acs.jpcc.3c02890
- R. Na, N. Madiou, N. Kang, S. Yan, J. Luo et al., A multifunctional anode with P-doped Si nanops in a stress-buffering network of poly-γ-glutamate and graphene. Chem. Commun. 56(92), 14412–14415 (2020). https://doi.org/10.1039/d0cc06623k
- R. Na, Y. Liu, Z.-P. Wu, X. Cheng, Z. Shan et al., Nano-silicon composite materials with N-doped graphene of controllable and optimal pyridinic-to-pyrrolic structural ratios for lithium ion battery. Electrochim. Acta 321, 134742 (2019). https://doi.org/10.1016/j.electacta.2019.134742
- J. Yin, J. Luo, B. Wanjala, B. Fang, R. Loukrakpam et al., Chapter 11–nanoalloy catalysts in electrochemical energy conversion and storage, in Suib new & future developments in catalysis. ed. by L. Steven (Elsevier, Amsterdam p, 2013), pp.307–344. https://doi.org/10.1016/B978-0-444-53880-2.00016-8
- J. Yin, B. Fang, J. Luo, B. Wanjala, D. Mott et al., Nanoscale alloying effect of gold-platinum nanops as cathode catalysts on the performance of a rechargeable lithium-oxygen battery. Nanotechnology 23(30), 305404 (2012). https://doi.org/10.1088/0957-4484/23/30/305404
- N. Kang, M.S. Ng, S. Shan, J. Wu, W. Zhao et al., Synergistic catalytic properties of bifunctional nanoalloy catalysts in rechargeable lithium-oxygen battery. J. Power Sources 326, 60–69 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.106
- G. Liang, L. Yang, X. Xiong, K. Pei, X. Zhao et al., Interfacial space charge enhanced sodium storage in a zero-strain cerium niobite perovskite anode. Adv. Funct. Mater. 32(43), 2206129 (2022). https://doi.org/10.1002/adfm.202206129
- X. Huang, M. Wang, R. Che, Modulating the Li+/Ni2+ replacement and electrochemical performance optimizing of layered lithium-rich Li1.2Ni0.2Mn0.6O2 by minor Co dopant. J. Mater. Chem. A 2(25), 9656–9665 (2014). https://doi.org/10.1039/C4TA01217H
- Q. Li, Y. Zhao, H. Liu, P. Xu, L. Yang et al., Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 13(10), 11921–11934 (2019). https://doi.org/10.1021/acsnano.9b06005
- L. Yang, X. Xiong, G. Liang, X. Li, C. Wang et al., Atomic short-range order in a cation-deficient perovskite anode for fast-charging and long-life lithium-ion batteries. Adv. Mater. 34(17), e2200914 (2022). https://doi.org/10.1002/adma.202200914
- L. Yang, X. Li, K. Pei, W. You, X. Liu et al., Direct view on the origin of high Li+ transfer impedance in all-solid-state battery. Adv. Funct. Mater. 31(35), 2103971 (2021). https://doi.org/10.1002/adfm.202103971
- L. Yang, X. Zhu, X. Li, X. Zhao, K. Pei et al., Conductive copper niobate: superior Li+-storage capability and novel Li+-transport mechanism. Adv. Energy Mater. 9(39), 1902174 (2019). https://doi.org/10.1002/aenm.201902174
- H.-W. Cheng, J. Wang, Y.-J. Li, J. Li, S. Yan et al., Nanoscale lacing by electrons. Small 14(20), e1800598 (2018). https://doi.org/10.1002/smll.201800598
- H.-W. Cheng, S. Yan, J. Li, J. Wang, L. Wang et al., Electron dose-controlled formation, growth, and assembly of nanoclusters and nanops from aurophilic Au(I)-thiolate ensemble on surfaces. ACS Appl. Mater. Interfaces 10(46), 40348–40357 (2018). https://doi.org/10.1021/acsami.8b17941
- L. Zhao, G. Chen, H. Zheng, S. Jia, K. Li et al., Strong size effect on deformation twin-mediated plasticity in body-centered-cubic iron. J. Mater. Sci. Technol. 144, 235–242 (2023). https://doi.org/10.1016/j.jmst.2022.11.004
- Z. Wu, H. Zhang, C. Chen, G. Li, Y. Han, Applications of in situ electron microscopy in oxygen electrocatalysis. Microstructures 2, 2022002 (2022). https://doi.org/10.20517/microstructures.2021.12
- J. Zhu, M. Guo, Y. Liu, X. Shi, F. Fan et al., In situ TEM of phosphorus-dopant-induced nanopore formation in delithiated silicon nanowires. ACS Appl. Mater. Interfaces 11(19), 17313–17320 (2019). https://doi.org/10.1021/acsami.8b20436
- X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011). https://doi.org/10.1021/nl201684d
- D. Ruzmetov, V.P. Oleshko, P.M. Haney, H.J. Lezec, K. Karki et al., Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12(1), 505–511 (2012). https://doi.org/10.1021/nl204047z
- L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15(2), 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
- Z. Wang, D. Santhanagopalan, W. Zhang, F. Wang, H.L. Xin et al., In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16(6), 3760–3767 (2016). https://doi.org/10.1021/acs.nanolett.6b01119
- L. Luo, B. Liu, S. Song, W. Xu, J.-G. Zhang et al., Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12(6), 535–539 (2017). https://doi.org/10.1038/nnano.2017.27
- S. Han, C. Cai, F. Yang, Y. Zhu, Q. Sun et al., Interrogation of the reaction mechanism in a Na–O2 battery using in situ transmission electron microscopy. ACS Nano 14(3), 3669–3677 (2020). https://doi.org/10.1021/acsnano.0c00283
- Z. Zeng, W.-I. Liang, H.-G. Liao, H.L. Xin, Y.-H. Chu et al., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14(4), 1745–1750 (2014). https://doi.org/10.1021/nl403922u
- Y. Gong, J. Zhang, L. Jiang, J.-A. Shi, Q. Zhang et al., In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J. Am. Chem. Soc. 139(12), 4274–4277 (2017). https://doi.org/10.1021/jacs.6b13344
- X. Zhu, A. Huang, I. Martens, N. Vostrov, Y. Sun et al., High-voltage spinel cathode materials: navigating the structural evolution for lithium-ion batteries. Adv. Mater. 36(30), 2403482 (2024). https://doi.org/10.1002/adma.202403482
- G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li et al., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
- B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009). https://doi.org/10.1038/nature07853
- M.N. Obrovac, L.J. Krause, Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154(2), A103 (2007). https://doi.org/10.1149/1.2402112
- X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6(2), 1522–1531 (2012). https://doi.org/10.1021/nn204476h
- Y. Cheng, Z. Yao, Q. Zhang, J. Chen, W. Ye et al., In situ atomic-scale observation of reversible potassium storage in Sb2S3@Carbon nanowire anodes. Adv. Funct. Mater. 30(52), 2005417 (2020). https://doi.org/10.1002/adfm.202005417
- A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama et al., Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017). https://doi.org/10.1016/j.nanoen.2016.12.001
- X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3(3), 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5
- Q.Q. Liu, R. Petibon, C.Y. Du, J.R. Dahn, Effects of electrolyte additives and solvents on unwanted lithium plating in lithium-ion cells. J. Electrochem. Soc. 164(6), A1173–A1183 (2017). https://doi.org/10.1149/2.1081706jes
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- H. Gao, X. Ai, H. Wang, W. Li, P. Wei et al., Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption. Nat. Commun. 13(1), 5050 (2022). https://doi.org/10.1038/s41467-022-32732-z
- J.Y. Cheong, J.H. Chang, H.K. Seo, J.M. Yuk, J.W. Shin et al., Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy. Nano Energy 25, 154–160 (2016). https://doi.org/10.1016/j.nanoen.2016.04.040
- G. Lu, J. Nai, D. Luan, X. Tao, X.W.D. Lou, Surface engineering toward stable lithium metal anodes. Sci. Adv. 9(14), 1550 (2023). https://doi.org/10.1126/sciadv.adf1550
- G. Lu, Q. Qiao, M. Zhang, J. Zhang, S. Li et al., High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport. Sci. Adv. 10(32), 7348 (2024). https://doi.org/10.1126/sciadv.ado7348
- Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
- S.M. Collins, P.A. Midgley, Progress and opportunities in EELS and EDS tomography. Ultramicroscopy 180, 133–141 (2017). https://doi.org/10.1016/j.ultramic.2017.01.003
- J. Lu, T. Wu, K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2(3), 17011 (2017). https://doi.org/10.1038/nenergy.2017.11
- H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255
- C. Dwyer, T. Aoki, P. Rez, S.Y. Chang, T.C. Lovejoy et al., Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett. 117(25), 256101 (2016). https://doi.org/10.1103/PhysRevLett.117.256101
- Z.W. Yin, W. Zhao, J. Li, X.X. Peng, C. Lin et al., Advanced electron energy loss spectroscopy for battery studies. Adv. Funct. Mater. 32(1), 2107190 (2022). https://doi.org/10.1002/adfm.202107190
- C. Sun, X. Liao, F. Xia, Y. Zhao, L. Zhang et al., High-voltage cycling induced thermal vulnerability in LiCoO2 cathode: cation loss and oxygen release driven by oxygen vacancy migration. ACS Nano 14(5), 6181–6190 (2020). https://doi.org/10.1021/acsnano.0c02237
- W. Zhan, C.S. Granerød, V. Venkatachalapathy, K.M.H. Johansen, I.J.T. Jensen et al., Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy. Nanotechnology 28(10), 105703 (2017). https://doi.org/10.1088/1361-6528/aa5962
- L.H.G. Tizei, Y.-C. Lin, M. Mukai, H. Sawada, A.-Y. Lu et al., Exciton mapping at subwavelength scales in two-dimensional materials. Phys. Rev. Lett. 114(10), 107601 (2015). https://doi.org/10.1103/physrevlett.114.107601
- X. Liu, R. Garcia-Mendez, A.R. Lupini, Y. Cheng, Z.D. Hood et al., Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20(11), 1485–1490 (2021). https://doi.org/10.1038/s41563-021-01019-x
- H. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012). https://doi.org/10.1016/j.ultramic.2012.03.002
- Z.L. Wang, J.S. Yin, Y.D. Jiang, EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 31(5), 571–580 (2000). https://doi.org/10.1016/s0968-4328(99)00139-0
- R.D. Leapman, L.A. Grunes, P.L. Fejes, Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 26(2), 614–635 (1982). https://doi.org/10.1103/physrevb.26.614
- Z. Ji, M. Hu, H.L. Xin, MnEdgeNet for accurate decomposition of mixed oxidation states for Mn XAS and EELS L2, 3 edges without reference and calibration. Sci. Rep. 13(1), 14132 (2023). https://doi.org/10.1038/s41598-023-40616-5
- R. Colby, R.E.A. Williams, D.L. Carpenter 3rd., N. Bagués, B.R. Ford et al., Identifying and imaging polymer functionality at high spatial resolution with core-loss EELS. Ultramicroscopy 246, 113688 (2023). https://doi.org/10.1016/j.ultramic.2023.113688
- P. Yan, J. Zheng, Z.-K. Tang, A. Devaraj, G. Chen et al., Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14(6), 602–608 (2019). https://doi.org/10.1038/s41565-019-0428-8
- Y. Zhang, X. Wen, Z. Shi, B. Qiu, G. Chen et al., Oxygen-defects evolution to stimulate continuous capacity increase in Co-free Li-rich layered oxides. J. Energy Chem. 82, 259–267 (2023). https://doi.org/10.1016/j.jechem.2023.03.005
- Q. Liu, L. Geng, T. Yang, Y. Tang, P. Jia et al., In-situ imaging electrocatalysis in a Na–O2 battery with Au-coated MnO2 nanowires air cathode. Energy Storage Mater. 19, 48–55 (2019). https://doi.org/10.1016/j.ensm.2018.08.026
- J. Kikkawa, S. Terada, A. Gunji, M. Haruta, T. Nagai et al., Understanding Li–K edge structure and interband transitions in LixCoO2 by electron energy-loss spectroscopy. Appl. Phys. Lett. 104(11), 114105 (2014). https://doi.org/10.1063/1.4869225
- Y. Nomura, K. Yamamoto, T. Hirayama, Visualizing asymmetric phase separation driven by surface ionic diffusion in lithium titanate. J. Mater. Chem. A 11(43), 23243–23248 (2023). https://doi.org/10.1039/D3TA04956F
- Y. Nomura, K. Yamamoto, T. Hirayama, E. Igaki, K. Saitoh, Visualization of lithium transfer resistance in secondary p cathodes of bulk-type solid-state batteries. ACS Energy Lett. 5(6), 2098–2105 (2020). https://doi.org/10.1021/acsenergylett.0c00942
- J.J. Lodico, M. Mecklenburg, H.L. Chan, Y. Chen, X.Y. Ling et al., operando spectral imaging of the lithium ion battery’s solid-electrolyte interphase. Sci. Adv. 9(28), 5135 (2023). https://doi.org/10.1126/sciadv.adg5135
- M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature 560(7718), 345–349 (2018). https://doi.org/10.1038/s41586-018-0397-3
- F. Wang, L. Wu, C. Ma, D. Su, Y. Zhu et al., Excess lithium storage and charge compensation in nanoscale Li(4+x)Ti5O12. Nanotechnology 24(42), 424006 (2013). https://doi.org/10.1088/0957-4484/24/42/424006
- W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367(6481), 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
- H. Shinada, Development of holography electron microscope with atomic resolution. Hitachi Rev. 64, 533–546 (2015)
- T. Hirayama, K. Tanabe, K. Yamamoto, Y. Iriyama, Z. Ogumi, Electric potential profiling of an all-solid-state lithium ion battery by in situ electron holography. Microsc. Microanal. 18, 1328–1329 (2012). https://doi.org/10.1017/S1431927612008495
- M. Brodovoi, K. Gruel, A. Masseboeuf, L. Chapuis, M. Hÿtch et al., Mapping electric fields in real nanodevices by operando electron holography. Appl. Phys. Lett. 120(23), 233501 (2022). https://doi.org/10.1063/5.0092019
- C. Gatel, R. Serra, K. Gruel, A. Masseboeuf, L. Chapuis et al., Extended charge layers in metal-oxide-semiconductor nanocapacitors revealed by operando electron holography. Phys. Rev. Lett. 129(13), 137701 (2022). https://doi.org/10.1103/PhysRevLett.129.137701
- D. Shindo, T. Tanigaki, H.S. Park, Advanced electron holography applied to electromagnetic field study in materials science. Adv. Mater. 29(25), 1602216 (2017). https://doi.org/10.1002/adma.201602216
- T. Hirayama, Y. Aizawa, K. Yamamoto, T. Sato, H. Murata et al., Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors. Ultramicroscopy 176, 86–92 (2017). https://doi.org/10.1016/j.ultramic.2017.03.012
- Y. Lu, F. Zheng, Q. Lan, M. Schnedler, P. Ebert et al., Counting point defects at nanop surfaces by electron holography. Nano Lett. 22(17), 6936–6941 (2022). https://doi.org/10.1021/acs.nanolett.2c01510
- Y. Yang, J. Cui, H.J. Guo, X. Shen, Y. Yao et al., In situ electron holography for characterizing Li ion accumulation in the interface between electrode and solid-state-electrolyte. J. Mater. Chem. A 9(26), 15038–15044 (2021). https://doi.org/10.1039/D1TA03517G
- C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato et al., Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). https://doi.org/10.1002/aenm.201301416
- K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita et al., Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed. 49(26), 4414–4417 (2010). https://doi.org/10.1002/anie.200907319
- Z. Gan, M. Gu, J. Tang, C.-Y. Wang, Y. He et al., Direct mapping of charge distribution during lithiation of Ge nanowires using off-axis electron holography. Nano Lett. 16(6), 3748–3753 (2016). https://doi.org/10.1021/acs.nanolett.6b01099
- Y. Wen, X. Chen, X. Lu, L. Gu, Interface charges boosted ultrafast lithiation in Li4Ti5O12 revealed by in situ electron holography. J. Energy Chem. 27(5), 1397–1401 (2018). https://doi.org/10.1016/j.jechem.2018.02.019
- C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P.J. Reeves et al., Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20(1), 84–92 (2021). https://doi.org/10.1038/s41563-020-0767-8
- M. Li, J. Lu, Cobalt in lithium-ion batteries. Science 367(6481), 979–980 (2020). https://doi.org/10.1126/science.aba9168
- T.M.M. Heenan, W.A.C. Tan, J.E. Parker, D. Matras et al., Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode ps for lithium-ion batteries. Adv. Energy Mater. 10(47), 2002655 (2020). https://doi.org/10.1002/aenm.202002655
- C.S. Yoon, D.-W. Jun, S.-T. Myung, Y.-K. Sun, Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett. 2(5), 1150–1155 (2017). https://doi.org/10.1021/acsenergylett.7b00304
- P. Byeon, H.B. Bae, H.S. Chung, S.G. Lee, J.G. Kim et al., Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions. Adv. Funct. Mater. 28(45), 1804564 (2018). https://doi.org/10.1002/adfm.201804564
- Z. Xu, X. Guo, W. Song, J. Wang, T. Qin et al., Sulfur-assisted surface modification of lithium-rich manganese-based oxide toward high anionic redox reversibility. Adv. Mater. 36(1), e2303612 (2024). https://doi.org/10.1002/adma.202303612
- S. Yao, Y. Ji, S. Wang, Y. Liu, Z. Hou et al., Unlocking spin gates of transition metal oxides via strain stimuli to augment potassium ion storage. Angew. Chem. Int. Ed. 63(23), e202404834 (2024). https://doi.org/10.1002/anie.202404834
- F. Zhu, M.S. Islam, L. Zhou, Z. Gu, T. Liu et al., Single-atom-layer traps in a solid electrolyte for lithium batteries. Nat. Commun. 11(1), 1828 (2020). https://doi.org/10.1038/s41467-020-15544-x
- J. Yi, Q. Deng, H. Cheng, D. Zhu, K. Zhang et al., Unique hierarchically structured high-entropy alloys with multiple adsorption sites for rechargeable Li–CO2 batteries with high capacity. Small 20(34), e2401146 (2024). https://doi.org/10.1002/smll.202401146
- M.A. Roldan, A. Mayence, A. López-Ortega, R. Ishikawa, J. Salafranca et al., Probing the meta-stability of oxide core/shell nanop systems at atomic resolution. Chem. Eng. J. 405, 126820 (2021). https://doi.org/10.1016/j.cej.2020.126820
- Z. Li, Q. Wang, X. Bai, M. Wang, Z. Yang et al., Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy Environ. Sci. 14(9), 5035–5043 (2021). https://doi.org/10.1039/d1ee01271a
- M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74(3), 131–146 (1998). https://doi.org/10.1016/S0304-3991(98)00035-7
- P. Yan, J. Zheng, M. Gu, J. Xiao, J.-G. Zhang et al., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017). https://doi.org/10.1038/ncomms14101
- W. Huang, T. Liu, L. Yu, J. Wang, T. Zhou et al., Unrecoverable lattice rotation governs structural degradation of single-crystalline cathodes. Science 384(6698), 912–919 (2024). https://doi.org/10.1126/science.ado1675
- L. Wu, H. Fu, S. Li, J. Zhu, J. Zhou et al., Phase-engineered cathode for super-stable potassium storage. Nat. Commun. 14(1), 644 (2023). https://doi.org/10.1038/s41467-023-36385-4
- Y. Li, G. Liu, J. Che, Review on layered oxide cathodes for sodium-ion batteries: degradation mechanisms, modification strategies, and applications. Interdiscip. Mater. 4(1), 24–51 (2025). https://doi.org/10.1002/idm2.12213
- N. Li, W. Yin, B. Wang, F. Wang, X. Xiao et al., Lowering sodium-storage lattice strains of layered oxide cathodes by pushing charge transfer on anions. Energy Environ. Mater. 7(4), e12671 (2024). https://doi.org/10.1002/eem2.12671
- Y. Wang, X. Zhao, J. Jin, Q. Shen, Y. Hu et al., Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc. 145(41), 22708–22719 (2023). https://doi.org/10.1021/jacs.3c08070
- R. Zhang, C. Wang, P. Zou, R. Lin, L. Ma et al., Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610(7930), 67–73 (2022). https://doi.org/10.1038/s41586-022-05115-z
- Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang et al., Revealing Li-ion diffusion kinetic limitations in micron-sized Li-rich layered oxides. Energy Storage Mater. 53, 763–773 (2022). https://doi.org/10.1016/j.ensm.2022.10.008
- J. Alvarado, C. Wei, D. Nordlund, T. Kroll, D. Sokaras et al., Thermal stress-induced charge and structure heterogeneity in emerging cathode materials. Mater. Today 35, 87–98 (2020). https://doi.org/10.1016/j.mattod.2019.11.009
- C. Wang, L. Han, R. Zhang, H. Cheng, L. Mu et al., Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4(6), 2013–2026 (2021). https://doi.org/10.1016/j.matt.2021.03.012
- S. Weng, S. Wu, Z. Liu, Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy 5(1), e224 (2023). https://doi.org/10.1002/cey2.224
References
J.B. Goodenough, M.S. Whittingham, A. Yoshino, The nobel prize in chemistry (2019). https://www.nobelprize.org/prizes/chemistry/2019/press-release/. Accessed 27 Dec 2024
M.S. Whittingham, Special editorial perspective: beyond Li-ion battery chemistry. Chem. Rev. 120, 6328–6330 (2020). https://doi.org/10.1021/acs.chemrev.0c00438
M. Stanley Whittingham, Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 20(12), 8435–8437 (2020). https://doi.org/10.1021/acs.nanolett.0c04347
M.S. Whittingham, J. Xiao, Fiftyyears of lithium-ion batteries and what is next? MRS Bull. 48(11), 1118–1124 (2023). https://doi.org/10.1557/s43577-023-00627-z
X. Zhang, N. Zhao, H. Zhang, Y. Fan, F. Jin et al., Recent advances in wide-range temperature metal-CO2 batteries: a mini review. Nano-Micro Lett. 17(1), 99 (2024). https://doi.org/10.1007/s40820-024-01607-x
J. Qiu, Y. Duan, S. Li, H. Zhao, W. Ma et al., Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. Nano-Micro Lett. 16(1), 130 (2024). https://doi.org/10.1007/s40820-024-01341-4
T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14(1), 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8(1), 4 (2021). https://doi.org/10.1186/s40580-021-00254-x
Z.-P. Wu, D.T. Caracciolo, Y. Maswadeh, J. Wen, Z. Kong et al., Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanop fuel cell catalysts. Nat. Commun. 12(1), 859 (2021). https://doi.org/10.1038/s41467-021-21017-6
Z.P. Wu, D. Dinh, Y. Maswadeh, D.T. Caracciolo, H. Zhang et al., Interfacial reactivity-triggered oscillatory lattice strains of nanoalloys. J. Am. Chem. Soc. 146(51), 35264–35274 (2024). https://doi.org/10.1021/jacs.4c12550
Z. Kong, Y. Maswadeh, J.A. Vargas, S. Shan, Z.-P. Wu et al., Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J. Am. Chem. Soc. 142(3), 1287–1299 (2020). https://doi.org/10.1021/jacs.9b10239
Z. Kong, Z.-P. Wu, Y. Maswadeh, G. Yu, J.A. Vargas et al., Self-sustainable lattice strains of morphology-tuned nanowires in electrocatalysis. ACS Catal. 14(7), 4709–4718 (2024). https://doi.org/10.1021/acscatal.4c00451
A.Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J.-F. Magnan et al., How to make lithium extraction cleaner, faster and cheaper–in six steps. Nature 616(7956), 245–248 (2023). https://doi.org/10.1038/d41586-023-00978-2
Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8(9), 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich et al., Current status and challenges for automotive battery production technologies. Nat. Energy 3(4), 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3
S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16(1), 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
Z. Fan, R. Li, X. Zhang, W. Zhao, Z. Pan et al., Defect engineering: can it mitigate strong coulomb effect of Mg2+ in cathode materials for rechargeable magnesium batteries? Nano-Micro Lett. 16(1), 4 (2024). https://doi.org/10.1007/s40820-024-01495-1
X. Xue, L. Feng, Q. Ren, C. Tran, S. Eisenberg et al., Interpenetrated structures for enhancing ion diffusion kinetics in electrochemical energy storage devices. Nano-Micro Lett. 16(1), 255 (2024). https://doi.org/10.1007/s40820-024-01472-8
D. Eum, S.-O. Park, H.-Y. Jang, Y. Jeon, J.-H. Song et al., Electrochemomechanical failure in layered oxide cathodes caused by rotational stacking faults. Nat. Mater. 23(8), 1093–1099 (2024). https://doi.org/10.1038/s41563-024-01899-9
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
E. Gabriel, C. Ma, K. Graff, A. Conrado, D. Hou et al., Heterostructure engineering in electrode materials for sodium-ion batteries: recent progress and perspectives. eScience 3(5), 100139 (2023). https://doi.org/10.1016/j.esci.2023.100139
H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J. Rodriguez-Garcia et al., Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384 (2018). https://doi.org/10.1002/aenm.201702384
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
L. Wang, P.E. Vullum, K. Asheim, X. Wang, A.M. Svensson et al., High capacity Mg batteries based on surface-controlled electrochemical reactions. Nano Energy 48, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.03.061
W. Feng, H. Wang, Y. Jiang, H. Zhang, W. Luo et al., A strain-relaxation red phosphorus feestanding anode for non-aqueous potassium ion batteries. Adv. Energy Mater. 12, 2103343 (2022). https://doi.org/10.1002/aenm.202103343
X. Wu, Z. Li, W. Feng, W. Luo, L. Liao et al., Insights into electrolyte-induced temporal and spatial evolution of an ultrafast-charging bi-based anode for sodium-ion batteries. Energy Storage Mater. 66, 103219 (2024). https://doi.org/10.1016/j.ensm.2024.103219
J.-H. Wu, H.-W. Cai, Z.-H. Deng, J.-J. Gaumet, Y. Bao et al., Application of in situ characterization techniques in modern aqueous batteries. Rare Met. 43(8), 3553–3575 (2024). https://doi.org/10.1007/s12598-024-02689-7
X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
Q. Yang, Z. Zhang, X.-G. Sun, Y.-S. Hu, H. Xing et al., Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47(6), 2020–2064 (2018). https://doi.org/10.1039/c7cs00464h
L. Qin, N. Xiao, S. Zhang, X. Chen, Y. Wu, From K–O2 to K-air batteries: realizing superoxide batteries on the basis of dry ambient air. Angew. Chem. Int. Ed. 59(26), 10498–10501 (2020). https://doi.org/10.1002/anie.202003481
K. Song, D.A. Agyeman, M. Park, J. Yang, Y.M. Kang, High-energy-density metal-oxygen batteries: lithium-oxygen batteries vs sodium-oxygen batteries. Adv. Mater. 29(48), 1606572 (2017). https://doi.org/10.1002/adma.201606572
X. Liu, Y. Chen, Z.D. Hood, C. Ma, S. Yu et al., Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy. Energy Environ. Sci. 12(3), 945–951 (2019). https://doi.org/10.1039/C8EE02981D
Y. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017). https://doi.org/10.1038/ncomms15806
X. Wu, S. Li, B. Yang, C. Wang, In situ transmission electron microscopy studies of electrochemical reaction mechanisms in rechargeable batteries. Electrochem. Energy Rev. 2(3), 467–491 (2019). https://doi.org/10.1007/s41918-019-00046-2
J. Li, G. Johnson, S. Zhang, D. Su, In situ transmission electron microscopy for energy applications. Joule 3(1), 4–8 (2019). https://doi.org/10.1016/j.joule.2018.12.007
X. Cheng, Y. Li, T. Cao, R. Wu, M. Wang et al., Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 6, 1703–1710 (2021). https://doi.org/10.1021/acsenergylett.1c00279
G. Liang, X. Xiong, L. Yang, X. Liu, R. Che, Zero-strain Ca0.4Ce0.6VO4 anode material for high capacity and long-life Na-ion batteries. J. Mater. Chem. A 9(45), 25663–25671 (2021). https://doi.org/10.1039/d1ta06877f
G. Liang, L. Yang, X. Xiong, X. Liu, X. Zhang et al., High-rate electrochemical lithium-ion storage through Li+ intercalation pseudocapacitance in the Pr1/3NbO3 anode. J. Mater. Chem. A 10(44), 23675–23682 (2022). https://doi.org/10.1039/D2TA03741F
L. Yang, G. Liang, H. Cao, S. Ma, X. Liu et al., A new sodium calcium cyclotetravanadate framework: “zero-strain” during large-capacity lithium intercalation. Adv. Funct. Mater. 32(1), 2105026 (2022). https://doi.org/10.1002/adfm.202105026
G. Liang, L. Yang, Q. Han, G. Chen, C. Lin et al., Conductive Li3.08Cr0.02Si0.09V0.9O4 anode material: novel “zero-strain” characteristic and superior electrochemical Li+ storage. Adv. Energy Mater. 10(20), 1904267 (2020). https://doi.org/10.1002/aenm.201904267
Z. Liang, Y. Xiang, K. Wang, J. Zhu, Y. Jin et al., Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14(1), 259 (2023). https://doi.org/10.1038/s41467-023-35920-7
N.-H. Yang, Y.-F. Song, R.-S. Liu, In operando transmission X-ray microscopy illuminated by synchrotron radiation for Li-ion batteries. ACS Energy Lett. 3(8), 1911–1928 (2018). https://doi.org/10.1021/acsenergylett.8b00850
L.M. de Kort, M. Lazemi, A. Longo, V. Gulino, H.P. Rodenburg et al., Deciphering the origin of interface-induced high Li and Na ion conductivity in nanocomposite solid electrolytes using X-ray Raman spectroscopy. Adv. Energy Mater. 14(9), 2303381 (2024). https://doi.org/10.1002/aenm.202303381
G. Rong, X. Zhang, W. Zhao, Y. Qiu, M. Liu et al., Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution. Adv. Mater. 29(13), 1606187 (2017). https://doi.org/10.1002/adma.201606187
Z.-P. Wu, S. Shan, S.-Q. Zang, C.-J. Zhong, Dynamic core-shell and alloy structures of multimetallic nanomaterials and their catalytic synergies. Acc. Chem. Res. 53(12), 2913–2924 (2020). https://doi.org/10.1021/acs.accounts.0c00564
H.W. Cheng, S. Wang, G. Chen, Z. Liu, D. Caracciolo et al., Insights into heterogeneous catalysts under reaction conditions by in situ/operando electron microscopy. Adv. Energy Mater. 12(38), 2202097 (2022). https://doi.org/10.1002/aenm.202202097
S. Hwang, X. Chen, G. Zhou, D. Su, In situ transmission electron microscopy on energy-related catalysis. Adv. Energy Mater. 10(11), 1902105 (2020). https://doi.org/10.1002/aenm.201902105
X. Sun, D. Wu, L. Zou, S.D. House, X. Chen et al., Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607(7920), 708–713 (2022). https://doi.org/10.1038/s41586-022-04880-1
L. Luo, S. Chen, Q. Xu, Y. He, Z. Dong et al., Dynamic atom clusters on AuCu nanop surface during CO oxidation. J. Am. Chem. Soc. 142(8), 4022–4027 (2020). https://doi.org/10.1021/jacs.9b13901
L. Luo, L. Li, D.K. Schreiber, Y. He, D.R. Baer et al., Deciphering atomistic mechanisms of the gas-solid interfacial reaction during alloy oxidation. Sci. Adv. 6(17), 8491 (2020). https://doi.org/10.1126/sciadv.aay8491
Y. Jiang, Z. Zhang, W. Yuan, X. Zhang, Y. Wang et al., Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 11(1), 42–67 (2018). https://doi.org/10.1007/s12274-017-1645-9
W. Yuan, B. Zhu, K. Fang, X.-Y. Li, T.W. Hansen et al., In situ manipulation of the active Au–TiO2 interface with atomic precision during CO oxidation. Science 371(6528), 517–521 (2021). https://doi.org/10.1126/science.abe3558
W. Yuan, B. Zhu, X.-Y. Li, T.W. Hansen, Y. Ou et al., Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 367(6476), 428–430 (2020). https://doi.org/10.1126/science.aay2474
J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1520 (2010). https://doi.org/10.1126/science.1195628
Y. Cheng, L. Zhang, Q. Zhang, J. Li, Y. Tang et al., Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Mater. Today 42, 137–161 (2021). https://doi.org/10.1016/j.mattod.2020.09.003
Z. Sun, M. Li, B. Xiao, X. Liu, H. Lin et al., In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. eTransportation 14, 100203 (2022). https://doi.org/10.1016/j.etran.2022.100203
R. Yang, L. Mei, Z. Lin, Y. Fan, J. Lim et al., Intercalation in 2D materials and in situ studies. Nat. Rev. Chem. 8(6), 410–432 (2024). https://doi.org/10.1038/s41570-024-00605-2
Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5(4), 1235–1250 (2022). https://doi.org/10.1016/j.matt.2022.01.015
H. Hu, R. Yang, Z. Zeng, Advances in electrochemical liquid-phase transmission electron microscopy for visualizing rechargeable battery reactions. ACS Nano 18(20), 12598–12609 (2024). https://doi.org/10.1021/acsnano.4c03319
R. Yang, L. Mei, Y. Fan, Q. Zhang, H.-G. Liao et al., Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat. Protoc. 18(2), 555–578 (2023). https://doi.org/10.1038/s41596-022-00762-y
R. Na, M.N. Madiou, D. Caracciolo, Z.-P. Wu, C. Kanyuk et al., Synergy of carbon nanotube-supported bimetallic nanoalloy catalysts in rechargeable lithium–oxygen batteries. J. Phys. Chem. C 127(28), 13547–13555 (2023). https://doi.org/10.1021/acs.jpcc.3c02890
R. Na, N. Madiou, N. Kang, S. Yan, J. Luo et al., A multifunctional anode with P-doped Si nanops in a stress-buffering network of poly-γ-glutamate and graphene. Chem. Commun. 56(92), 14412–14415 (2020). https://doi.org/10.1039/d0cc06623k
R. Na, Y. Liu, Z.-P. Wu, X. Cheng, Z. Shan et al., Nano-silicon composite materials with N-doped graphene of controllable and optimal pyridinic-to-pyrrolic structural ratios for lithium ion battery. Electrochim. Acta 321, 134742 (2019). https://doi.org/10.1016/j.electacta.2019.134742
J. Yin, J. Luo, B. Wanjala, B. Fang, R. Loukrakpam et al., Chapter 11–nanoalloy catalysts in electrochemical energy conversion and storage, in Suib new & future developments in catalysis. ed. by L. Steven (Elsevier, Amsterdam p, 2013), pp.307–344. https://doi.org/10.1016/B978-0-444-53880-2.00016-8
J. Yin, B. Fang, J. Luo, B. Wanjala, D. Mott et al., Nanoscale alloying effect of gold-platinum nanops as cathode catalysts on the performance of a rechargeable lithium-oxygen battery. Nanotechnology 23(30), 305404 (2012). https://doi.org/10.1088/0957-4484/23/30/305404
N. Kang, M.S. Ng, S. Shan, J. Wu, W. Zhao et al., Synergistic catalytic properties of bifunctional nanoalloy catalysts in rechargeable lithium-oxygen battery. J. Power Sources 326, 60–69 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.106
G. Liang, L. Yang, X. Xiong, K. Pei, X. Zhao et al., Interfacial space charge enhanced sodium storage in a zero-strain cerium niobite perovskite anode. Adv. Funct. Mater. 32(43), 2206129 (2022). https://doi.org/10.1002/adfm.202206129
X. Huang, M. Wang, R. Che, Modulating the Li+/Ni2+ replacement and electrochemical performance optimizing of layered lithium-rich Li1.2Ni0.2Mn0.6O2 by minor Co dopant. J. Mater. Chem. A 2(25), 9656–9665 (2014). https://doi.org/10.1039/C4TA01217H
Q. Li, Y. Zhao, H. Liu, P. Xu, L. Yang et al., Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 13(10), 11921–11934 (2019). https://doi.org/10.1021/acsnano.9b06005
L. Yang, X. Xiong, G. Liang, X. Li, C. Wang et al., Atomic short-range order in a cation-deficient perovskite anode for fast-charging and long-life lithium-ion batteries. Adv. Mater. 34(17), e2200914 (2022). https://doi.org/10.1002/adma.202200914
L. Yang, X. Li, K. Pei, W. You, X. Liu et al., Direct view on the origin of high Li+ transfer impedance in all-solid-state battery. Adv. Funct. Mater. 31(35), 2103971 (2021). https://doi.org/10.1002/adfm.202103971
L. Yang, X. Zhu, X. Li, X. Zhao, K. Pei et al., Conductive copper niobate: superior Li+-storage capability and novel Li+-transport mechanism. Adv. Energy Mater. 9(39), 1902174 (2019). https://doi.org/10.1002/aenm.201902174
H.-W. Cheng, J. Wang, Y.-J. Li, J. Li, S. Yan et al., Nanoscale lacing by electrons. Small 14(20), e1800598 (2018). https://doi.org/10.1002/smll.201800598
H.-W. Cheng, S. Yan, J. Li, J. Wang, L. Wang et al., Electron dose-controlled formation, growth, and assembly of nanoclusters and nanops from aurophilic Au(I)-thiolate ensemble on surfaces. ACS Appl. Mater. Interfaces 10(46), 40348–40357 (2018). https://doi.org/10.1021/acsami.8b17941
L. Zhao, G. Chen, H. Zheng, S. Jia, K. Li et al., Strong size effect on deformation twin-mediated plasticity in body-centered-cubic iron. J. Mater. Sci. Technol. 144, 235–242 (2023). https://doi.org/10.1016/j.jmst.2022.11.004
Z. Wu, H. Zhang, C. Chen, G. Li, Y. Han, Applications of in situ electron microscopy in oxygen electrocatalysis. Microstructures 2, 2022002 (2022). https://doi.org/10.20517/microstructures.2021.12
J. Zhu, M. Guo, Y. Liu, X. Shi, F. Fan et al., In situ TEM of phosphorus-dopant-induced nanopore formation in delithiated silicon nanowires. ACS Appl. Mater. Interfaces 11(19), 17313–17320 (2019). https://doi.org/10.1021/acsami.8b20436
X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011). https://doi.org/10.1021/nl201684d
D. Ruzmetov, V.P. Oleshko, P.M. Haney, H.J. Lezec, K. Karki et al., Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12(1), 505–511 (2012). https://doi.org/10.1021/nl204047z
L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang et al., Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15(2), 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x
Z. Wang, D. Santhanagopalan, W. Zhang, F. Wang, H.L. Xin et al., In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16(6), 3760–3767 (2016). https://doi.org/10.1021/acs.nanolett.6b01119
L. Luo, B. Liu, S. Song, W. Xu, J.-G. Zhang et al., Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12(6), 535–539 (2017). https://doi.org/10.1038/nnano.2017.27
S. Han, C. Cai, F. Yang, Y. Zhu, Q. Sun et al., Interrogation of the reaction mechanism in a Na–O2 battery using in situ transmission electron microscopy. ACS Nano 14(3), 3669–3677 (2020). https://doi.org/10.1021/acsnano.0c00283
Z. Zeng, W.-I. Liang, H.-G. Liao, H.L. Xin, Y.-H. Chu et al., Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14(4), 1745–1750 (2014). https://doi.org/10.1021/nl403922u
Y. Gong, J. Zhang, L. Jiang, J.-A. Shi, Q. Zhang et al., In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J. Am. Chem. Soc. 139(12), 4274–4277 (2017). https://doi.org/10.1021/jacs.6b13344
X. Zhu, A. Huang, I. Martens, N. Vostrov, Y. Sun et al., High-voltage spinel cathode materials: navigating the structural evolution for lithium-ion batteries. Adv. Mater. 36(30), 2403482 (2024). https://doi.org/10.1002/adma.202403482
G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li et al., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009). https://doi.org/10.1038/nature07853
M.N. Obrovac, L.J. Krause, Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154(2), A103 (2007). https://doi.org/10.1149/1.2402112
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6(2), 1522–1531 (2012). https://doi.org/10.1021/nn204476h
Y. Cheng, Z. Yao, Q. Zhang, J. Chen, W. Ye et al., In situ atomic-scale observation of reversible potassium storage in Sb2S3@Carbon nanowire anodes. Adv. Funct. Mater. 30(52), 2005417 (2020). https://doi.org/10.1002/adfm.202005417
A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama et al., Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017). https://doi.org/10.1016/j.nanoen.2016.12.001
X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3(3), 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5
Q.Q. Liu, R. Petibon, C.Y. Du, J.R. Dahn, Effects of electrolyte additives and solvents on unwanted lithium plating in lithium-ion cells. J. Electrochem. Soc. 164(6), A1173–A1183 (2017). https://doi.org/10.1149/2.1081706jes
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
H. Gao, X. Ai, H. Wang, W. Li, P. Wei et al., Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption. Nat. Commun. 13(1), 5050 (2022). https://doi.org/10.1038/s41467-022-32732-z
J.Y. Cheong, J.H. Chang, H.K. Seo, J.M. Yuk, J.W. Shin et al., Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy. Nano Energy 25, 154–160 (2016). https://doi.org/10.1016/j.nanoen.2016.04.040
G. Lu, J. Nai, D. Luan, X. Tao, X.W.D. Lou, Surface engineering toward stable lithium metal anodes. Sci. Adv. 9(14), 1550 (2023). https://doi.org/10.1126/sciadv.adf1550
G. Lu, Q. Qiao, M. Zhang, J. Zhang, S. Li et al., High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport. Sci. Adv. 10(32), 7348 (2024). https://doi.org/10.1126/sciadv.ado7348
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
S.M. Collins, P.A. Midgley, Progress and opportunities in EELS and EDS tomography. Ultramicroscopy 180, 133–141 (2017). https://doi.org/10.1016/j.ultramic.2017.01.003
J. Lu, T. Wu, K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2(3), 17011 (2017). https://doi.org/10.1038/nenergy.2017.11
H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255
C. Dwyer, T. Aoki, P. Rez, S.Y. Chang, T.C. Lovejoy et al., Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett. 117(25), 256101 (2016). https://doi.org/10.1103/PhysRevLett.117.256101
Z.W. Yin, W. Zhao, J. Li, X.X. Peng, C. Lin et al., Advanced electron energy loss spectroscopy for battery studies. Adv. Funct. Mater. 32(1), 2107190 (2022). https://doi.org/10.1002/adfm.202107190
C. Sun, X. Liao, F. Xia, Y. Zhao, L. Zhang et al., High-voltage cycling induced thermal vulnerability in LiCoO2 cathode: cation loss and oxygen release driven by oxygen vacancy migration. ACS Nano 14(5), 6181–6190 (2020). https://doi.org/10.1021/acsnano.0c02237
W. Zhan, C.S. Granerød, V. Venkatachalapathy, K.M.H. Johansen, I.J.T. Jensen et al., Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy. Nanotechnology 28(10), 105703 (2017). https://doi.org/10.1088/1361-6528/aa5962
L.H.G. Tizei, Y.-C. Lin, M. Mukai, H. Sawada, A.-Y. Lu et al., Exciton mapping at subwavelength scales in two-dimensional materials. Phys. Rev. Lett. 114(10), 107601 (2015). https://doi.org/10.1103/physrevlett.114.107601
X. Liu, R. Garcia-Mendez, A.R. Lupini, Y. Cheng, Z.D. Hood et al., Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20(11), 1485–1490 (2021). https://doi.org/10.1038/s41563-021-01019-x
H. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012). https://doi.org/10.1016/j.ultramic.2012.03.002
Z.L. Wang, J.S. Yin, Y.D. Jiang, EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 31(5), 571–580 (2000). https://doi.org/10.1016/s0968-4328(99)00139-0
R.D. Leapman, L.A. Grunes, P.L. Fejes, Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 26(2), 614–635 (1982). https://doi.org/10.1103/physrevb.26.614
Z. Ji, M. Hu, H.L. Xin, MnEdgeNet for accurate decomposition of mixed oxidation states for Mn XAS and EELS L2, 3 edges without reference and calibration. Sci. Rep. 13(1), 14132 (2023). https://doi.org/10.1038/s41598-023-40616-5
R. Colby, R.E.A. Williams, D.L. Carpenter 3rd., N. Bagués, B.R. Ford et al., Identifying and imaging polymer functionality at high spatial resolution with core-loss EELS. Ultramicroscopy 246, 113688 (2023). https://doi.org/10.1016/j.ultramic.2023.113688
P. Yan, J. Zheng, Z.-K. Tang, A. Devaraj, G. Chen et al., Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14(6), 602–608 (2019). https://doi.org/10.1038/s41565-019-0428-8
Y. Zhang, X. Wen, Z. Shi, B. Qiu, G. Chen et al., Oxygen-defects evolution to stimulate continuous capacity increase in Co-free Li-rich layered oxides. J. Energy Chem. 82, 259–267 (2023). https://doi.org/10.1016/j.jechem.2023.03.005
Q. Liu, L. Geng, T. Yang, Y. Tang, P. Jia et al., In-situ imaging electrocatalysis in a Na–O2 battery with Au-coated MnO2 nanowires air cathode. Energy Storage Mater. 19, 48–55 (2019). https://doi.org/10.1016/j.ensm.2018.08.026
J. Kikkawa, S. Terada, A. Gunji, M. Haruta, T. Nagai et al., Understanding Li–K edge structure and interband transitions in LixCoO2 by electron energy-loss spectroscopy. Appl. Phys. Lett. 104(11), 114105 (2014). https://doi.org/10.1063/1.4869225
Y. Nomura, K. Yamamoto, T. Hirayama, Visualizing asymmetric phase separation driven by surface ionic diffusion in lithium titanate. J. Mater. Chem. A 11(43), 23243–23248 (2023). https://doi.org/10.1039/D3TA04956F
Y. Nomura, K. Yamamoto, T. Hirayama, E. Igaki, K. Saitoh, Visualization of lithium transfer resistance in secondary p cathodes of bulk-type solid-state batteries. ACS Energy Lett. 5(6), 2098–2105 (2020). https://doi.org/10.1021/acsenergylett.0c00942
J.J. Lodico, M. Mecklenburg, H.L. Chan, Y. Chen, X.Y. Ling et al., operando spectral imaging of the lithium ion battery’s solid-electrolyte interphase. Sci. Adv. 9(28), 5135 (2023). https://doi.org/10.1126/sciadv.adg5135
M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature 560(7718), 345–349 (2018). https://doi.org/10.1038/s41586-018-0397-3
F. Wang, L. Wu, C. Ma, D. Su, Y. Zhu et al., Excess lithium storage and charge compensation in nanoscale Li(4+x)Ti5O12. Nanotechnology 24(42), 424006 (2013). https://doi.org/10.1088/0957-4484/24/42/424006
W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal et al., Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367(6481), 1030–1034 (2020). https://doi.org/10.1126/science.aax3520
H. Shinada, Development of holography electron microscope with atomic resolution. Hitachi Rev. 64, 533–546 (2015)
T. Hirayama, K. Tanabe, K. Yamamoto, Y. Iriyama, Z. Ogumi, Electric potential profiling of an all-solid-state lithium ion battery by in situ electron holography. Microsc. Microanal. 18, 1328–1329 (2012). https://doi.org/10.1017/S1431927612008495
M. Brodovoi, K. Gruel, A. Masseboeuf, L. Chapuis, M. Hÿtch et al., Mapping electric fields in real nanodevices by operando electron holography. Appl. Phys. Lett. 120(23), 233501 (2022). https://doi.org/10.1063/5.0092019
C. Gatel, R. Serra, K. Gruel, A. Masseboeuf, L. Chapuis et al., Extended charge layers in metal-oxide-semiconductor nanocapacitors revealed by operando electron holography. Phys. Rev. Lett. 129(13), 137701 (2022). https://doi.org/10.1103/PhysRevLett.129.137701
D. Shindo, T. Tanigaki, H.S. Park, Advanced electron holography applied to electromagnetic field study in materials science. Adv. Mater. 29(25), 1602216 (2017). https://doi.org/10.1002/adma.201602216
T. Hirayama, Y. Aizawa, K. Yamamoto, T. Sato, H. Murata et al., Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors. Ultramicroscopy 176, 86–92 (2017). https://doi.org/10.1016/j.ultramic.2017.03.012
Y. Lu, F. Zheng, Q. Lan, M. Schnedler, P. Ebert et al., Counting point defects at nanop surfaces by electron holography. Nano Lett. 22(17), 6936–6941 (2022). https://doi.org/10.1021/acs.nanolett.2c01510
Y. Yang, J. Cui, H.J. Guo, X. Shen, Y. Yao et al., In situ electron holography for characterizing Li ion accumulation in the interface between electrode and solid-state-electrolyte. J. Mater. Chem. A 9(26), 15038–15044 (2021). https://doi.org/10.1039/D1TA03517G
C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato et al., Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). https://doi.org/10.1002/aenm.201301416
K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita et al., Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed. 49(26), 4414–4417 (2010). https://doi.org/10.1002/anie.200907319
Z. Gan, M. Gu, J. Tang, C.-Y. Wang, Y. He et al., Direct mapping of charge distribution during lithiation of Ge nanowires using off-axis electron holography. Nano Lett. 16(6), 3748–3753 (2016). https://doi.org/10.1021/acs.nanolett.6b01099
Y. Wen, X. Chen, X. Lu, L. Gu, Interface charges boosted ultrafast lithiation in Li4Ti5O12 revealed by in situ electron holography. J. Energy Chem. 27(5), 1397–1401 (2018). https://doi.org/10.1016/j.jechem.2018.02.019
C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P.J. Reeves et al., Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20(1), 84–92 (2021). https://doi.org/10.1038/s41563-020-0767-8
M. Li, J. Lu, Cobalt in lithium-ion batteries. Science 367(6481), 979–980 (2020). https://doi.org/10.1126/science.aba9168
T.M.M. Heenan, W.A.C. Tan, J.E. Parker, D. Matras et al., Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode ps for lithium-ion batteries. Adv. Energy Mater. 10(47), 2002655 (2020). https://doi.org/10.1002/aenm.202002655
C.S. Yoon, D.-W. Jun, S.-T. Myung, Y.-K. Sun, Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett. 2(5), 1150–1155 (2017). https://doi.org/10.1021/acsenergylett.7b00304
P. Byeon, H.B. Bae, H.S. Chung, S.G. Lee, J.G. Kim et al., Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions. Adv. Funct. Mater. 28(45), 1804564 (2018). https://doi.org/10.1002/adfm.201804564
Z. Xu, X. Guo, W. Song, J. Wang, T. Qin et al., Sulfur-assisted surface modification of lithium-rich manganese-based oxide toward high anionic redox reversibility. Adv. Mater. 36(1), e2303612 (2024). https://doi.org/10.1002/adma.202303612
S. Yao, Y. Ji, S. Wang, Y. Liu, Z. Hou et al., Unlocking spin gates of transition metal oxides via strain stimuli to augment potassium ion storage. Angew. Chem. Int. Ed. 63(23), e202404834 (2024). https://doi.org/10.1002/anie.202404834
F. Zhu, M.S. Islam, L. Zhou, Z. Gu, T. Liu et al., Single-atom-layer traps in a solid electrolyte for lithium batteries. Nat. Commun. 11(1), 1828 (2020). https://doi.org/10.1038/s41467-020-15544-x
J. Yi, Q. Deng, H. Cheng, D. Zhu, K. Zhang et al., Unique hierarchically structured high-entropy alloys with multiple adsorption sites for rechargeable Li–CO2 batteries with high capacity. Small 20(34), e2401146 (2024). https://doi.org/10.1002/smll.202401146
M.A. Roldan, A. Mayence, A. López-Ortega, R. Ishikawa, J. Salafranca et al., Probing the meta-stability of oxide core/shell nanop systems at atomic resolution. Chem. Eng. J. 405, 126820 (2021). https://doi.org/10.1016/j.cej.2020.126820
Z. Li, Q. Wang, X. Bai, M. Wang, Z. Yang et al., Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy Environ. Sci. 14(9), 5035–5043 (2021). https://doi.org/10.1039/d1ee01271a
M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74(3), 131–146 (1998). https://doi.org/10.1016/S0304-3991(98)00035-7
P. Yan, J. Zheng, M. Gu, J. Xiao, J.-G. Zhang et al., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017). https://doi.org/10.1038/ncomms14101
W. Huang, T. Liu, L. Yu, J. Wang, T. Zhou et al., Unrecoverable lattice rotation governs structural degradation of single-crystalline cathodes. Science 384(6698), 912–919 (2024). https://doi.org/10.1126/science.ado1675
L. Wu, H. Fu, S. Li, J. Zhu, J. Zhou et al., Phase-engineered cathode for super-stable potassium storage. Nat. Commun. 14(1), 644 (2023). https://doi.org/10.1038/s41467-023-36385-4
Y. Li, G. Liu, J. Che, Review on layered oxide cathodes for sodium-ion batteries: degradation mechanisms, modification strategies, and applications. Interdiscip. Mater. 4(1), 24–51 (2025). https://doi.org/10.1002/idm2.12213
N. Li, W. Yin, B. Wang, F. Wang, X. Xiao et al., Lowering sodium-storage lattice strains of layered oxide cathodes by pushing charge transfer on anions. Energy Environ. Mater. 7(4), e12671 (2024). https://doi.org/10.1002/eem2.12671
Y. Wang, X. Zhao, J. Jin, Q. Shen, Y. Hu et al., Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc. 145(41), 22708–22719 (2023). https://doi.org/10.1021/jacs.3c08070
R. Zhang, C. Wang, P. Zou, R. Lin, L. Ma et al., Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610(7930), 67–73 (2022). https://doi.org/10.1038/s41586-022-05115-z
Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang et al., Revealing Li-ion diffusion kinetic limitations in micron-sized Li-rich layered oxides. Energy Storage Mater. 53, 763–773 (2022). https://doi.org/10.1016/j.ensm.2022.10.008
J. Alvarado, C. Wei, D. Nordlund, T. Kroll, D. Sokaras et al., Thermal stress-induced charge and structure heterogeneity in emerging cathode materials. Mater. Today 35, 87–98 (2020). https://doi.org/10.1016/j.mattod.2019.11.009
C. Wang, L. Han, R. Zhang, H. Cheng, L. Mu et al., Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4(6), 2013–2026 (2021). https://doi.org/10.1016/j.matt.2021.03.012
S. Weng, S. Wu, Z. Liu, Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy 5(1), e224 (2023). https://doi.org/10.1002/cey2.224