Enhanced Regional Electric Potential Difference of Graphdiyne Through Asymmetric Substitution Strategy Boosts Li+ Migration in Composite Polymer Solid-State Electrolyte
Corresponding Author: Ning Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 267
Abstract
Low ionic conductivity is a major obstacle for polymer solid-state electrolytes. In response to this issue, a design concept of enhanced regional electric potential difference (EREPD) is proposed to modulate the interaction of nanofillers with other components in the composite polymer solid-state electrolytes (CPSEs). While ensuring the periodic structure of the graphdiyne (GDY) backbone, methoxy-substituted GDY (OGDY) is prepared by an asymmetric substitution strategy, which increases the electric potential differences within each repeating unit of GDY. The staggered distributed electron-rich regions and electron-deficient regions on the two-dimensional plane of OGDY increase the free Li+ concentration through Lewis acid–base pair interaction. The adjacent ERRs and EDRs form uniformly distributed EREPDs, creating a continuous potential gradient that synergistically facilitates the efficient migration of Li+. Impressively, the OGDY/poly(ethylene oxide) (PEO) exhibits a high ionic conductivity (1.1 × 10–3 S cm−1) and ion mobility number (0.71). In addition, the accelerated Li+ migration promotes the formation of uniform and dense SEI layers and inhibits the growth of lithium dendrites. As a proof of concept, Li||Li symmetric cell and Li||LiFePO4 full cell and pouch cell assembled with OGDY/PEO exhibit good performance, highlighting the effectiveness of our EREPD design strategy for improving CPSEs performance.
Highlights:
1 Methoxy-substituted graphdiyne (OGDY) is synthesized via an asymmetric substitution strategy, featuring a periodic alternation of electron-rich regions and electron-deficient regions, which significantly enhances the heterogeneity of charge distribution in OGDY.
2 An enhanced regional electric potential difference design concept is proposed to address the low ionic conductivity of polymer solid-state electrolytes. The OGDY/poly(ethylene oxide) composite polymer solid-state electrolyte achieves an ionic conductivity of 1.1×10−3 S cm−1 and a high lithium-ion transference number of 0.71.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Lan, N. Luo, Z. Li, J. Peng, H.-M. Cheng, Status and prospect of two-dimensional materials in electrolytes for all-solid-state lithium batteries. ACS Nano 18(13), 9285–9310 (2024). https://doi.org/10.1021/acsnano.4c00128
- F. Wang, J. An, H. Shen, Z. Wang, G. Li et al., Gradient graphdiyne induced copper and oxygen vacancies in Cu0.95V2O5 anodes for fast-charging lithium-ion batteries. Angew. Chem. Int. Ed. 62(7), e202216397 (2023). https://doi.org/10.1002/anie.202216397
- G. Li, Y. Li, H. Liu, Y. Guo, Y. Li et al., Architecture of graphdiyne nanoscale films. Chem. Commun. 46(19), 3256–3258 (2010). https://doi.org/10.1039/B922733D
- Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. 51, 2681–2709 (2022). https://doi.org/10.1039/d1cs00592h
- Y. Li, L. Xu, H. Liu, Y. Li, Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572–2586 (2014). https://doi.org/10.1039/c3cs60388a
- C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo et al., Progress in research into 2D graphdiyne-based materials. Chem. Rev. 118(16), 7744–7803 (2018). https://doi.org/10.1021/acs.chemrev.8b00288
- X. Zheng, S. Chen, J. Li, H. Wu, C. Zhang et al., Two-dimensional carbon graphdiyne: advances in fundamental and application research. ACS Nano 17(15), 14309–14346 (2023). https://doi.org/10.1021/acsnano.3c03849
- F. He, Y. Li, Advances on theory and experiments of the energy applications in graphdiyne. CCS Chem. 5(1), 72–94 (2023). https://doi.org/10.31635/ccschem.022.202202328
- J. Wan, Z. Zuo, Z.-Z. Shen, W.-P. Chen, G.-X. Liu et al., Interfacial evolution of the solid electrolyte interphase and lithium deposition in graphdiyne-based lithium-ion batteries. J. Am. Chem. Soc. 144(21), 9354–9362 (2022). https://doi.org/10.1021/jacs.2c01412
- Y. Chang, L. Liu, L. Qi, J. Du, Q. Du et al., Highly oriented and ordered co-assembly monolayers for inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(5), e202418883 (2025). https://doi.org/10.1002/anie.202418883
- J. Gao, X. Yan, C. Huang, Z. Zhang, X. Fu et al., Boosting Fe cationic vacancies with graphdiyne to enhance exceptional pseudocapacitive lithium intercalation. Angew. Chem. Int. Ed. 62(35), e202307874 (2023). https://doi.org/10.1002/anie.202307874
- X. Gao, J. Tian, S. Cheng, Z. Zuo, R. Wen et al., A low-strain cathode by sp-carbon induced conversion in multi-level structure of graphdiyne. Angew. Chem. Int. Ed. 62(33), e202304491 (2023). https://doi.org/10.1002/anie.202304491
- J. An, F. Wang, J.-Y. Yang, G. Li, Y. Li, An ion-pumping interphase on graphdiyne/graphite heterojunction for fast-charging lithium-ion batteries. CCS Chem. 6(1), 110–124 (2024). https://doi.org/10.31635/ccschem.023.202302710
- Y. Gao, Y. Xue, H. Wu, S. Chen, X. Zheng et al., Self-organized gradually single-atom-layer of metal osmium for an unprecedented hydrogen production from seawater. J. Am. Chem. Soc. 146(15), 10573–10580 (2024). https://doi.org/10.1021/jacs.4c00027
- Y. Kong, X. Qiu, Y. Xue, G. Li, L. Qi et al., Sulfonic acid-functionalized graphdiyne for effective Li-S battery separators. J. Am. Chem. Soc. 146(34), 23764–23774 (2024). https://doi.org/10.1021/jacs.4c05107
- Y. Qin, Y. Wang, J. Lu, L. Xu, W.-Y. Wong, A highly conjugated nickel(II)-acetylide framework for efficient photocatalytic carbon dioxide reduction. Angew. Chem. Int. Ed. 64(6), e202418269 (2025). https://doi.org/10.1002/anie.202418269
- Z. Zheng, L. Qi, X. Luan, S. Zhao, Y. Xue et al., Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne. Nat. Commun. 15(1), 7331 (2024). https://doi.org/10.1038/s41467-024-51687-x
- X. Li, C. Huang, K. Wang, L. Qi, C. Zhang et al., Alkyne-to-alkene conversion in graphdiyne driving instant reversible deformation of whole carbon film. Sci. Adv. 9(40), eadi1690 (2023). https://doi.org/10.1126/sciadv.adi1690
- G. Hu, J. He, J. Chen, Y. Li, Synthesis of a wheel-shaped nanographdiyne. J. Am. Chem. Soc. 145(9), 5400–5409 (2023). https://doi.org/10.1021/jacs.2c13604
- J. Li, L. Zhu, C.-H. Tung, L.-Z. Wu, Engineering graphdiyne for solar photocatalysis. Angew. Chem. Int. Ed. 62(22), e202301384 (2023). https://doi.org/10.1002/anie.202301384
- I. Piquero-Zulaica, W. Hu, A.P. Seitsonen, F. Haag, J. Küchle et al., Unconventional band structure via combined molecular orbital and lattice symmetries in a surface-confined metallated graphdiyne sheet. Adv. Mater. 36(31), 2405178 (2024). https://doi.org/10.1002/adma.202405178
- T. Wang, M. Li, L. Yao, W. Yang, Y. Li, Controlled growth lateral/vertical heterostructure interface for lithium storage. Adv. Mater. 36(30), e2402961 (2024). https://doi.org/10.1002/adma.202402961
- J. Liu, L. Zhang, K. Wang, C. Jiang, C. Zhang et al., Adaptive interfacial contact between copper nanops and triazine functionalized graphdiyne substrate for improved lithium/sodium storage. Adv. Funct. Mater. 33(49), 2305254 (2023). https://doi.org/10.1002/adfm.202305254
- Y. Wang, J. An, L. Qi, Y. Xue, G. Li et al., Synthesis of crystalline phosphine-graphdiyne with self-adaptive p-π conjugation. J. Am. Chem. Soc. 145(2), 864–872 (2023). https://doi.org/10.1021/jacs.2c09209
- Y. Gao, Q. Yu, H. Yang, J. Zhang, W. Wang, The enormous potential of sodium/potassium-ion batteries as the mainstream energy storage technology for large-scale commercial applications. Adv. Mater. 36(39), 2405989 (2024). https://doi.org/10.1002/adma.202405989
- Z. Li, Y. Gao, W. Wang, J. Wu, Y. Zhu et al., In situ bridging soft polymer and robust metal-organic frameworks as electrolyte for long-cycling solid-state potassium-organic batteries. Energy Storage Mater. 72, 103732 (2024). https://doi.org/10.1016/j.ensm.2024.103732
- K. Guo, W. Wang, W.-L. Song, S. Li, X. Du et al., A recyclable inert inorganic framework assisted solid-state electrolyte for long-life aluminum ion batteries. ACS Cent. Sci. 11(2), 239–247 (2024). https://doi.org/10.1021/acscentsci.4c01615
- H. Yang, W. Wang, Z. Huang, Z. Wang, L. Hu et al., Weak electrostatic force on K+ in gel polymer electrolyte realizes high ion transference number for quasi solid-state potassium ion batteries. Adv. Mater. 36(24), 2401008 (2024). https://doi.org/10.1002/adma.202401008
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- W. Bao, Z. Hu, Y. Wang, J. Jiang, S. Huo et al., Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries. Chem. Eng. J. 437, 135420 (2022). https://doi.org/10.1016/j.cej.2022.135420
- X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36(13), 2311195 (2024). https://doi.org/10.1002/adma.202311195
- S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4), 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
- Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
- H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12(39), 2201762 (2022). https://doi.org/10.1002/aenm.202201762
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14(1), 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618(7964), 287–293 (2023). https://doi.org/10.1038/s41586-023-05970-4
- Y. Dai, M. Zhuang, Y.-X. Deng, Y. Liao, J. Gu et al., Stable cycling of all-solid-state lithium batteries enabled by cyano-molecular diamond improved polymer electrolytes. Nano-Micro Lett. 16(1), 217 (2024). https://doi.org/10.1007/s40820-024-01415-3
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- J. Li, Y. Cai, F. Zhang, Y. Cui, W. Fang et al., Exceptional interfacial conduction and LiF interphase for ultralong life PEO-based all-solid-state batteries. Nano Energy 118, 108985 (2023). https://doi.org/10.1016/j.nanoen.2023.108985
- Z. Otgonbayar, S. Yang, I.-J. Kim, W.-C. Oh, Recent advances in 2D MXene and solid state electrolyte for energy storage applications: comprehensive review. Chem. Eng. J. 472, 144801 (2023). https://doi.org/10.1016/j.cej.2023.144801
- Z. Cheng, T. Liu, B. Zhao, F. Shen, H. Jin et al., Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 34, 388–416 (2021). https://doi.org/10.1016/j.ensm.2020.09.016
- W. Cao, J. Zhang, H. Li, Batteries with high theoretical energy densities. Energy Storage Mater. 26, 46–55 (2020). https://doi.org/10.1016/j.ensm.2019.12.024
- M. Yuan, J. Erdman, C. Tang, H. Ardebili, High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 4(103), 59637–59642 (2014). https://doi.org/10.1039/c4ra07919a
- L. Wang, H. Shi, Y. Xie, Z.-S. Wu, Fluorinated boron nitride nanosheet enhanced ultrathin and conductive polymer electrolyte for high-rate solid-state lithium metal batteries. Interdiscip. Mater. 2(5), 789–799 (2023). https://doi.org/10.1002/idm2.12121
- A. Saleem, R. Iqbal, M.K. Majeed, A. Hussain, A.R. Akbar et al., Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries. Nano Energy 128, 109848 (2024). https://doi.org/10.1016/j.nanoen.2024.109848
- J. Shen, J. Chen, X. Xu, J. Li, Z. Wang et al., Engineering d-p orbital hybridization in a single-atom-based solid-state electrolyte for lithium-metal batteries. Angew. Chem. Int. Ed. 64(7), e202419367 (2025). https://doi.org/10.1002/anie.202419367
- H. Shen, C. Song, Z. Wang, G. Li, Y. Li, The self-expanding frame of graphydiyne induces rapid transport of lithium ions in all-solid-state lithium metal batteries. Adv. Funct. Mater. 35(7), 2415303 (2025). https://doi.org/10.1002/adfm.202415303
- Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204218 (2023). https://doi.org/10.1002/aenm.202204218
- D. Dong, H. Zhang, B. Zhou, Y. Sun, H. Zhang et al., Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem. Commun. 55(10), 1458–1461 (2019). https://doi.org/10.1039/c8cc08725c
- W. Guo, Q. Liu, K. Wu, X. Hu, X. Liu et al., Tailoring heterogeneous interfacial chemistry enables long-term cycling of all-solid-state lithium-metal batteries. Energy Storage Mater. 63, 103006 (2023). https://doi.org/10.1016/j.ensm.2023.103006
- Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian et al., Highly conductive imidazolate covalent organic frameworks with ether chains as solid electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202402202 (2024). https://doi.org/10.1002/anie.202402202
- G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
- Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
- M. Li, B. Yin, C. Gao, J. Guo, C. Zhao et al., Graphene: preparation, tailoring, and modification. Exploration 3(1), 20210233 (2023). https://doi.org/10.1002/EXP.20210233
- J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7(15), 1602725 (2017). https://doi.org/10.1002/aenm.201602725
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- C.-Y. Fan, D. Xie, X.-H. Zhang, W.-Y. Diao, R. Jiang et al., Homogeneous Li+ flux distribution enables highly stable and temperature-tolerant lithium anode. Adv. Funct. Mater. 31(32), 2102158 (2021). https://doi.org/10.1002/adfm.202102158
- N. Wang, X. Li, Z. Tu, F. Zhao, J. He et al., Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem. Int. Ed. 57(15), 3968–3973 (2018). https://doi.org/10.1002/anie.201800453
- Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu et al., Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte. Adv. Energy Mater. 13(10), 2203547 (2023). https://doi.org/10.1002/aenm.202203547
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 09, revision b.01. (2010).
- J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008). https://doi.org/10.1039/b810189b
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B Condens. Matter 49(23), 16223–16233 (1994). https://doi.org/10.1103/physrevb.49.16223
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/physrevb.46.6671
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- T.K. Woo, P.M. Margl, P.E. Blöchl, T. Ziegler, A combined car–parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J. Phys. Chem. B 101(40), 7877–7880 (1997). https://doi.org/10.1021/jp9717296
- H. Oberhofer, C. Dellago, P.L. Geissler, Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? J. Phys. Chem. B 109(14), 6902–6915 (2005). https://doi.org/10.1021/jp044556a
- Y. Liu, F. Fu, H. Teng, Y. Sun, S. Zhang et al., Dual-phase elastomeric electrolyte with a latitude-longitude interwoven structure for high-energy solid-state lithium metal batteries. Adv. Energy Mater. 14(38), 2402040 (2024). https://doi.org/10.1002/aenm.202402040
- X. Da, J. Chen, Y. Qin, J. Zhao, X. Jia et al., CO2-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries. Adv. Energy Mater. 14(11), 2303527 (2024). https://doi.org/10.1002/aenm.202303527
- J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3PS4 in the SEI layer. Adv. Mater. 34(34), 2203281 (2022). https://doi.org/10.1002/adma.202203281
- A. Du, H. Lu, S. Liu, S. Chen, Z. Chen et al., Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries. Adv. Energy Mater. 14(31), 2400808 (2024). https://doi.org/10.1002/aenm.202400808
- B. Kim, M.-C. Sung, G.-H. Lee, B. Hwang, S. Seo et al., Aligned ion conduction pathway of polyrotaxane-based electrolyte with dispersed hydrophobic chains for solid-state lithium-oxygen batteries. Nano-Micro Lett. 17(1), 31 (2024). https://doi.org/10.1007/s40820-024-01535-w
- S. Xu, Z. Sun, C. Sun, F. Li, K. Chen et al., Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 30(51), 2007172 (2020). https://doi.org/10.1002/adfm.202007172
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- T. Wang, B. Chen, C. Liu, T. Li, X. Liu, Build a high-performance all-solid-state lithium battery through introducing competitive coordination induction effect in polymer-based electrolyte. Angew. Chem. Int. Ed. 136(16), e202400960 (2024). https://doi.org/10.1002/ange.202400960
- Y. Ye, X. Zhu, N. Meng, F. Lian, Largely promoted mechano-electrochemical coupling properties of solid polymer electrolytes by introducing hydrogen bonds-rich network. Adv. Funct. Mater. 33(45), 2307045 (2023). https://doi.org/10.1002/adfm.202307045
- V. Vijayakumar, M. Ghosh, K. Asokan, S.B. Sukumaran, S. Kurungot et al., 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13(15), 2203326 (2023). https://doi.org/10.1002/aenm.202203326
- J. Kang, N. Deng, D. Shi, Y. Feng, Z. Wang et al., Heterojunction-accelerating lithium salt dissociation in polymer solid electrolytes. Adv. Funct. Mater. 33(50), 2307263 (2023). https://doi.org/10.1002/adfm.202307263
- J. Liu, L. Zhang, K. Wang, C. Jiang, C. Zhang et al., Island-like heterogeneous interface generating tandem toroidal built-In electric field for efficient potassium ions diffusion. Small 20(29), 2400093 (2024). https://doi.org/10.1002/smll.202400093
- Y. Jin, R. Lin, Y. Li, X. Zhang, S. Tan et al., Revealing the influence of electron migration inside polymer electrolyte on Li+ transport and interphase reconfiguration for Li metal batteries. Angew. Chem. Int. Ed. 63(24), e202403661 (2024). https://doi.org/10.1002/anie.202403661
- Y. Zhao, L.V. Goncharova, Q. Sun, X. Li, A. Lushington et al., Robust metallic lithium anode protection by the molecular-layer-deposition technique. Small Meth. 2(5), 1700417 (2018). https://doi.org/10.1002/smtd.201700417
- B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7(10), 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
- Y. Sun, Y. Zhao, J. Wang, J. Liang, C. Wang et al., A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater. 31(4), 1806541 (2019). https://doi.org/10.1002/adma.201806541
- Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao et al., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5(7), 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5
- H. Zhang, J. Deng, H. Xu, H. Xu, Z. Xiao et al., Molecule crowding strategy in polymer electrolytes inducing stable interfaces for all-solid-state lithium batteries. Adv. Mater. 36(31), 2403848 (2024). https://doi.org/10.1002/adma.202403848
- B. Jiang, F. Li, T. Hou, Y. Liu, H. Cheng et al., Polymer electrolytes shielded by 2D Li0.46Mn0.77PS3 Li+-conductors for all-solid-state lithium-metal batteries. Energy Storage Mater. 56, 183–191 (2023). https://doi.org/10.1016/j.ensm.2023.01.011
- Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
References
X. Lan, N. Luo, Z. Li, J. Peng, H.-M. Cheng, Status and prospect of two-dimensional materials in electrolytes for all-solid-state lithium batteries. ACS Nano 18(13), 9285–9310 (2024). https://doi.org/10.1021/acsnano.4c00128
F. Wang, J. An, H. Shen, Z. Wang, G. Li et al., Gradient graphdiyne induced copper and oxygen vacancies in Cu0.95V2O5 anodes for fast-charging lithium-ion batteries. Angew. Chem. Int. Ed. 62(7), e202216397 (2023). https://doi.org/10.1002/anie.202216397
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li et al., Architecture of graphdiyne nanoscale films. Chem. Commun. 46(19), 3256–3258 (2010). https://doi.org/10.1039/B922733D
Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. 51, 2681–2709 (2022). https://doi.org/10.1039/d1cs00592h
Y. Li, L. Xu, H. Liu, Y. Li, Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572–2586 (2014). https://doi.org/10.1039/c3cs60388a
C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo et al., Progress in research into 2D graphdiyne-based materials. Chem. Rev. 118(16), 7744–7803 (2018). https://doi.org/10.1021/acs.chemrev.8b00288
X. Zheng, S. Chen, J. Li, H. Wu, C. Zhang et al., Two-dimensional carbon graphdiyne: advances in fundamental and application research. ACS Nano 17(15), 14309–14346 (2023). https://doi.org/10.1021/acsnano.3c03849
F. He, Y. Li, Advances on theory and experiments of the energy applications in graphdiyne. CCS Chem. 5(1), 72–94 (2023). https://doi.org/10.31635/ccschem.022.202202328
J. Wan, Z. Zuo, Z.-Z. Shen, W.-P. Chen, G.-X. Liu et al., Interfacial evolution of the solid electrolyte interphase and lithium deposition in graphdiyne-based lithium-ion batteries. J. Am. Chem. Soc. 144(21), 9354–9362 (2022). https://doi.org/10.1021/jacs.2c01412
Y. Chang, L. Liu, L. Qi, J. Du, Q. Du et al., Highly oriented and ordered co-assembly monolayers for inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(5), e202418883 (2025). https://doi.org/10.1002/anie.202418883
J. Gao, X. Yan, C. Huang, Z. Zhang, X. Fu et al., Boosting Fe cationic vacancies with graphdiyne to enhance exceptional pseudocapacitive lithium intercalation. Angew. Chem. Int. Ed. 62(35), e202307874 (2023). https://doi.org/10.1002/anie.202307874
X. Gao, J. Tian, S. Cheng, Z. Zuo, R. Wen et al., A low-strain cathode by sp-carbon induced conversion in multi-level structure of graphdiyne. Angew. Chem. Int. Ed. 62(33), e202304491 (2023). https://doi.org/10.1002/anie.202304491
J. An, F. Wang, J.-Y. Yang, G. Li, Y. Li, An ion-pumping interphase on graphdiyne/graphite heterojunction for fast-charging lithium-ion batteries. CCS Chem. 6(1), 110–124 (2024). https://doi.org/10.31635/ccschem.023.202302710
Y. Gao, Y. Xue, H. Wu, S. Chen, X. Zheng et al., Self-organized gradually single-atom-layer of metal osmium for an unprecedented hydrogen production from seawater. J. Am. Chem. Soc. 146(15), 10573–10580 (2024). https://doi.org/10.1021/jacs.4c00027
Y. Kong, X. Qiu, Y. Xue, G. Li, L. Qi et al., Sulfonic acid-functionalized graphdiyne for effective Li-S battery separators. J. Am. Chem. Soc. 146(34), 23764–23774 (2024). https://doi.org/10.1021/jacs.4c05107
Y. Qin, Y. Wang, J. Lu, L. Xu, W.-Y. Wong, A highly conjugated nickel(II)-acetylide framework for efficient photocatalytic carbon dioxide reduction. Angew. Chem. Int. Ed. 64(6), e202418269 (2025). https://doi.org/10.1002/anie.202418269
Z. Zheng, L. Qi, X. Luan, S. Zhao, Y. Xue et al., Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne. Nat. Commun. 15(1), 7331 (2024). https://doi.org/10.1038/s41467-024-51687-x
X. Li, C. Huang, K. Wang, L. Qi, C. Zhang et al., Alkyne-to-alkene conversion in graphdiyne driving instant reversible deformation of whole carbon film. Sci. Adv. 9(40), eadi1690 (2023). https://doi.org/10.1126/sciadv.adi1690
G. Hu, J. He, J. Chen, Y. Li, Synthesis of a wheel-shaped nanographdiyne. J. Am. Chem. Soc. 145(9), 5400–5409 (2023). https://doi.org/10.1021/jacs.2c13604
J. Li, L. Zhu, C.-H. Tung, L.-Z. Wu, Engineering graphdiyne for solar photocatalysis. Angew. Chem. Int. Ed. 62(22), e202301384 (2023). https://doi.org/10.1002/anie.202301384
I. Piquero-Zulaica, W. Hu, A.P. Seitsonen, F. Haag, J. Küchle et al., Unconventional band structure via combined molecular orbital and lattice symmetries in a surface-confined metallated graphdiyne sheet. Adv. Mater. 36(31), 2405178 (2024). https://doi.org/10.1002/adma.202405178
T. Wang, M. Li, L. Yao, W. Yang, Y. Li, Controlled growth lateral/vertical heterostructure interface for lithium storage. Adv. Mater. 36(30), e2402961 (2024). https://doi.org/10.1002/adma.202402961
J. Liu, L. Zhang, K. Wang, C. Jiang, C. Zhang et al., Adaptive interfacial contact between copper nanops and triazine functionalized graphdiyne substrate for improved lithium/sodium storage. Adv. Funct. Mater. 33(49), 2305254 (2023). https://doi.org/10.1002/adfm.202305254
Y. Wang, J. An, L. Qi, Y. Xue, G. Li et al., Synthesis of crystalline phosphine-graphdiyne with self-adaptive p-π conjugation. J. Am. Chem. Soc. 145(2), 864–872 (2023). https://doi.org/10.1021/jacs.2c09209
Y. Gao, Q. Yu, H. Yang, J. Zhang, W. Wang, The enormous potential of sodium/potassium-ion batteries as the mainstream energy storage technology for large-scale commercial applications. Adv. Mater. 36(39), 2405989 (2024). https://doi.org/10.1002/adma.202405989
Z. Li, Y. Gao, W. Wang, J. Wu, Y. Zhu et al., In situ bridging soft polymer and robust metal-organic frameworks as electrolyte for long-cycling solid-state potassium-organic batteries. Energy Storage Mater. 72, 103732 (2024). https://doi.org/10.1016/j.ensm.2024.103732
K. Guo, W. Wang, W.-L. Song, S. Li, X. Du et al., A recyclable inert inorganic framework assisted solid-state electrolyte for long-life aluminum ion batteries. ACS Cent. Sci. 11(2), 239–247 (2024). https://doi.org/10.1021/acscentsci.4c01615
H. Yang, W. Wang, Z. Huang, Z. Wang, L. Hu et al., Weak electrostatic force on K+ in gel polymer electrolyte realizes high ion transference number for quasi solid-state potassium ion batteries. Adv. Mater. 36(24), 2401008 (2024). https://doi.org/10.1002/adma.202401008
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
W. Bao, Z. Hu, Y. Wang, J. Jiang, S. Huo et al., Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries. Chem. Eng. J. 437, 135420 (2022). https://doi.org/10.1016/j.cej.2022.135420
X. An, Y. Liu, K. Yang, J. Mi, J. Ma et al., Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity. Adv. Mater. 36(13), 2311195 (2024). https://doi.org/10.1002/adma.202311195
S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4), 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12(39), 2201762 (2022). https://doi.org/10.1002/aenm.202201762
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14(1), 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618(7964), 287–293 (2023). https://doi.org/10.1038/s41586-023-05970-4
Y. Dai, M. Zhuang, Y.-X. Deng, Y. Liao, J. Gu et al., Stable cycling of all-solid-state lithium batteries enabled by cyano-molecular diamond improved polymer electrolytes. Nano-Micro Lett. 16(1), 217 (2024). https://doi.org/10.1007/s40820-024-01415-3
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
J. Li, Y. Cai, F. Zhang, Y. Cui, W. Fang et al., Exceptional interfacial conduction and LiF interphase for ultralong life PEO-based all-solid-state batteries. Nano Energy 118, 108985 (2023). https://doi.org/10.1016/j.nanoen.2023.108985
Z. Otgonbayar, S. Yang, I.-J. Kim, W.-C. Oh, Recent advances in 2D MXene and solid state electrolyte for energy storage applications: comprehensive review. Chem. Eng. J. 472, 144801 (2023). https://doi.org/10.1016/j.cej.2023.144801
Z. Cheng, T. Liu, B. Zhao, F. Shen, H. Jin et al., Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 34, 388–416 (2021). https://doi.org/10.1016/j.ensm.2020.09.016
W. Cao, J. Zhang, H. Li, Batteries with high theoretical energy densities. Energy Storage Mater. 26, 46–55 (2020). https://doi.org/10.1016/j.ensm.2019.12.024
M. Yuan, J. Erdman, C. Tang, H. Ardebili, High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 4(103), 59637–59642 (2014). https://doi.org/10.1039/c4ra07919a
L. Wang, H. Shi, Y. Xie, Z.-S. Wu, Fluorinated boron nitride nanosheet enhanced ultrathin and conductive polymer electrolyte for high-rate solid-state lithium metal batteries. Interdiscip. Mater. 2(5), 789–799 (2023). https://doi.org/10.1002/idm2.12121
A. Saleem, R. Iqbal, M.K. Majeed, A. Hussain, A.R. Akbar et al., Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries. Nano Energy 128, 109848 (2024). https://doi.org/10.1016/j.nanoen.2024.109848
J. Shen, J. Chen, X. Xu, J. Li, Z. Wang et al., Engineering d-p orbital hybridization in a single-atom-based solid-state electrolyte for lithium-metal batteries. Angew. Chem. Int. Ed. 64(7), e202419367 (2025). https://doi.org/10.1002/anie.202419367
H. Shen, C. Song, Z. Wang, G. Li, Y. Li, The self-expanding frame of graphydiyne induces rapid transport of lithium ions in all-solid-state lithium metal batteries. Adv. Funct. Mater. 35(7), 2415303 (2025). https://doi.org/10.1002/adfm.202415303
Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204218 (2023). https://doi.org/10.1002/aenm.202204218
D. Dong, H. Zhang, B. Zhou, Y. Sun, H. Zhang et al., Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem. Commun. 55(10), 1458–1461 (2019). https://doi.org/10.1039/c8cc08725c
W. Guo, Q. Liu, K. Wu, X. Hu, X. Liu et al., Tailoring heterogeneous interfacial chemistry enables long-term cycling of all-solid-state lithium-metal batteries. Energy Storage Mater. 63, 103006 (2023). https://doi.org/10.1016/j.ensm.2023.103006
Y. Yuan, Z. Zhang, Z. Zhang, K.-T. Bang, Y. Tian et al., Highly conductive imidazolate covalent organic frameworks with ether chains as solid electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202402202 (2024). https://doi.org/10.1002/anie.202402202
G. Zhao, H. Ma, C. Zhang, Y. Yang, S. Yu et al., Constructing donor-acceptor-linked COFs electrolytes to regulate electron density and accelerate the Li+ migration in quasi-solid-state battery. Nano-Micro Lett. 17(1), 21 (2024). https://doi.org/10.1007/s40820-024-01509-y
Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
M. Li, B. Yin, C. Gao, J. Guo, C. Zhao et al., Graphene: preparation, tailoring, and modification. Exploration 3(1), 20210233 (2023). https://doi.org/10.1002/EXP.20210233
J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7(15), 1602725 (2017). https://doi.org/10.1002/aenm.201602725
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
C.-Y. Fan, D. Xie, X.-H. Zhang, W.-Y. Diao, R. Jiang et al., Homogeneous Li+ flux distribution enables highly stable and temperature-tolerant lithium anode. Adv. Funct. Mater. 31(32), 2102158 (2021). https://doi.org/10.1002/adfm.202102158
N. Wang, X. Li, Z. Tu, F. Zhao, J. He et al., Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem. Int. Ed. 57(15), 3968–3973 (2018). https://doi.org/10.1002/anie.201800453
Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu et al., Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte. Adv. Energy Mater. 13(10), 2203547 (2023). https://doi.org/10.1002/aenm.202203547
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 09, revision b.01. (2010).
J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008). https://doi.org/10.1039/b810189b
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B Condens. Matter 49(23), 16223–16233 (1994). https://doi.org/10.1103/physrevb.49.16223
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/physrevb.46.6671
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
T.K. Woo, P.M. Margl, P.E. Blöchl, T. Ziegler, A combined car–parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J. Phys. Chem. B 101(40), 7877–7880 (1997). https://doi.org/10.1021/jp9717296
H. Oberhofer, C. Dellago, P.L. Geissler, Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? J. Phys. Chem. B 109(14), 6902–6915 (2005). https://doi.org/10.1021/jp044556a
Y. Liu, F. Fu, H. Teng, Y. Sun, S. Zhang et al., Dual-phase elastomeric electrolyte with a latitude-longitude interwoven structure for high-energy solid-state lithium metal batteries. Adv. Energy Mater. 14(38), 2402040 (2024). https://doi.org/10.1002/aenm.202402040
X. Da, J. Chen, Y. Qin, J. Zhao, X. Jia et al., CO2-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries. Adv. Energy Mater. 14(11), 2303527 (2024). https://doi.org/10.1002/aenm.202303527
J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3PS4 in the SEI layer. Adv. Mater. 34(34), 2203281 (2022). https://doi.org/10.1002/adma.202203281
A. Du, H. Lu, S. Liu, S. Chen, Z. Chen et al., Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries. Adv. Energy Mater. 14(31), 2400808 (2024). https://doi.org/10.1002/aenm.202400808
B. Kim, M.-C. Sung, G.-H. Lee, B. Hwang, S. Seo et al., Aligned ion conduction pathway of polyrotaxane-based electrolyte with dispersed hydrophobic chains for solid-state lithium-oxygen batteries. Nano-Micro Lett. 17(1), 31 (2024). https://doi.org/10.1007/s40820-024-01535-w
S. Xu, Z. Sun, C. Sun, F. Li, K. Chen et al., Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 30(51), 2007172 (2020). https://doi.org/10.1002/adfm.202007172
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
T. Wang, B. Chen, C. Liu, T. Li, X. Liu, Build a high-performance all-solid-state lithium battery through introducing competitive coordination induction effect in polymer-based electrolyte. Angew. Chem. Int. Ed. 136(16), e202400960 (2024). https://doi.org/10.1002/ange.202400960
Y. Ye, X. Zhu, N. Meng, F. Lian, Largely promoted mechano-electrochemical coupling properties of solid polymer electrolytes by introducing hydrogen bonds-rich network. Adv. Funct. Mater. 33(45), 2307045 (2023). https://doi.org/10.1002/adfm.202307045
V. Vijayakumar, M. Ghosh, K. Asokan, S.B. Sukumaran, S. Kurungot et al., 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13(15), 2203326 (2023). https://doi.org/10.1002/aenm.202203326
J. Kang, N. Deng, D. Shi, Y. Feng, Z. Wang et al., Heterojunction-accelerating lithium salt dissociation in polymer solid electrolytes. Adv. Funct. Mater. 33(50), 2307263 (2023). https://doi.org/10.1002/adfm.202307263
J. Liu, L. Zhang, K. Wang, C. Jiang, C. Zhang et al., Island-like heterogeneous interface generating tandem toroidal built-In electric field for efficient potassium ions diffusion. Small 20(29), 2400093 (2024). https://doi.org/10.1002/smll.202400093
Y. Jin, R. Lin, Y. Li, X. Zhang, S. Tan et al., Revealing the influence of electron migration inside polymer electrolyte on Li+ transport and interphase reconfiguration for Li metal batteries. Angew. Chem. Int. Ed. 63(24), e202403661 (2024). https://doi.org/10.1002/anie.202403661
Y. Zhao, L.V. Goncharova, Q. Sun, X. Li, A. Lushington et al., Robust metallic lithium anode protection by the molecular-layer-deposition technique. Small Meth. 2(5), 1700417 (2018). https://doi.org/10.1002/smtd.201700417
B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7(10), 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
Y. Sun, Y. Zhao, J. Wang, J. Liang, C. Wang et al., A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater. 31(4), 1806541 (2019). https://doi.org/10.1002/adma.201806541
Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao et al., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5(7), 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5
H. Zhang, J. Deng, H. Xu, H. Xu, Z. Xiao et al., Molecule crowding strategy in polymer electrolytes inducing stable interfaces for all-solid-state lithium batteries. Adv. Mater. 36(31), 2403848 (2024). https://doi.org/10.1002/adma.202403848
B. Jiang, F. Li, T. Hou, Y. Liu, H. Cheng et al., Polymer electrolytes shielded by 2D Li0.46Mn0.77PS3 Li+-conductors for all-solid-state lithium-metal batteries. Energy Storage Mater. 56, 183–191 (2023). https://doi.org/10.1016/j.ensm.2023.01.011
Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3