Multifunctional Asymmetric Bilayer Aerogels for Highly Efficient Electromagnetic Interference Shielding with Ultrahigh Electromagnetic Wave Absorption
Corresponding Author: Zhong‑Zhen Yu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 291
Abstract
Although multifunctional electromagnetic interference (EMI) shielding materials with ultrahigh electromagnetic wave absorption are highly required to solve increasingly serious electromagnetic radiation and pollution and meet multi-scenario applications, EMI shielding materials usually cause a lot of reflection and have a single function. To realize the broadband absorption-dominated EMI shielding via absorption–reflection–reabsorption mechanisms and the interference cancelation effect, multifunctional asymmetric bilayer aerogels are designed by sequential printing of a MXene-graphene oxide (MG) layer with a MG emulsion ink and a conductive MXene layer with a MXene ink and subsequent freeze-drying for generating and solidifying numerous pores in the aerogels. The top MG layer of the asymmetric bilayer aerogel optimizes impedance matching and achieves re-absorption, while the bottom MXene layer enhances the reflection of the incident electromagnetic waves. As a result, the asymmetric bilayer aerogel achieves an average absorption coefficient of 0.95 in the X-band and shows the tunable absorption ability to electromagnetic wave in the ultrawide band from 8.2 to 40 GHz. Finite element simulations substantiate the effectiveness of the asymmetric bilayer aerogel for electromagnetic wave absorption. The multifunctional bilayer aerogels exhibit hydrophobicity, thermal insulation and Joule heating capacities and are efficient in solar-thermal/electric heating, infrared stealth, and clean-up of spilled oil.
Highlights:
1 The multifunctional asymmetric bilayer MXene-graphene oxide (MG)-MXene aerogel with ultrahigh absorption electromagnetic interference (EMI) shielding is constructed by 3D printing and subsequent freeze-drying.
2 The asymmetric bilayer aerogel achieves ultrahigh electromagnetic wave absorption coefficient of 0.95, and maintains a high EMI shielding effectiveness of over 100 dB.
3 The multifunctional asymmetric aerogel with ultrahigh electromagnetic wave absorption, infrared camouflage, solar-thermal heating, and clean-up of organic solvents and spilled crude oil is developed for multi-scenario applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19(46), 2304278 (2023). https://doi.org/10.1002/smll.202304278
- Y. Zhao, S. Tan, J. Yu, R. Yu, T. Xu et al., A rapidly assembled and camouflage-monitoring-protection integrated modular unit. Adv. Mater. 37(6), e2412845 (2025). https://doi.org/10.1002/adma.202412845
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. 69(17), 2776–2792 (2024). https://doi.org/10.1016/j.scib.2024.07.009
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), 2414085 (2025). https://doi.org/10.1002/adma.202414085
- Y. Chen, X.-M. Shao, L. He, Y.-N. Xu, Q.-Y. Yao et al., Highly conductive Ag/pCF/MVQ composite rubber for efficient electromagnetic interference shielding. Chin. J. Polym. Sci. 42(6), 864–873 (2024). https://doi.org/10.1007/s10118-024-3108-6
- Z. Chai, Z. Wang, Controllable construction of acrylic composite coatings with impedance gradient structure for low-reflectivity electromagnetic shielding in 5G high frequency band. Acta Polym. Sin. 55, 58 (2024). https://doi.org/10.11777/j.issn1000-3304.2023.23173
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2T hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- W. Ma, X. Liu, T. Yang, J. Wang, Z. Qiu et al., Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra-broadband absorption with low-frequency compatibility. Adv. Funct. Mater. 35(18), 2314046 (2025). https://doi.org/10.1002/adfm.202314046
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- S.A. Hashemi, A. Ghaffarkhah, M. Goodarzi, A. Nazemi, G. Banvillet et al., Liquid-templating aerogels. Adv. Mater. 35(42), 2302826 (2023). https://doi.org/10.1002/adma.202302826
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf581 (2021). https://doi.org/10.1126/science.abf1581
- G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu et al., Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 35(18), 2314425 (2025). https://doi.org/10.1002/adfm.202314425
- A. Ghaffarkhah, S.A. Hashemi, F. Ahmadijokani, M. Goodarzi, H. Riazi et al., Functional Janus structured liquids and aerogels. Nat. Commun. 14, 7811 (2023). https://doi.org/10.1038/s41467-023-43319-7
- G. Zhu, P. Ren, J. Yang, J. Hu, Z. Dai et al., Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare. Nano Energy 98, 107327 (2022). https://doi.org/10.1016/j.nanoen.2022.107327
- N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35(1), 2207969 (2023). https://doi.org/10.1002/adma.202207969
- L. Wang, L. Lang, X. Hu, T. Gao, M. He et al., Multifunctional ionic bonding-strengthened (Ti3C2Tx MXene/CNF)-(BNNS/CNF) composite films with Janus structure for outstanding electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 224, 46–55 (2025). https://doi.org/10.1016/j.jmst.2024.11.010
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14(1), 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
- Y. Xia, H. Qin, W. Tong, Y. Qi, K. Li et al., Ultra-stiff yet super-elastic graphene aerogels by topological cellular hierarchy. Adv. Mater. 37(7), e2417462 (2025). https://doi.org/10.1002/adma.202417462
- T.-B. Ma, H. Ma, K.-P. Ruan, X.-T. Shi, H. Qiu et al., Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 40(3), 248–255 (2022). https://doi.org/10.1007/s10118-022-2673-9
- Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16(10), 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
- A.A. Isari, A. Ghaffarkhah, S.A. Hashemi, S. Wuttke, M. Arjmand, Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 36(24), 2310683 (2024). https://doi.org/10.1002/adma.202310683
- Y.-N. Gao, Y. Wang, T.-N. Yue, B. Zhao, R. Che et al., Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 430, 132949 (2022). https://doi.org/10.1016/j.cej.2021.132949
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- Y. Xu, Z. Lin, Y. Yang, H. Duan, G. Zhao et al., Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 9(2), 708–719 (2022). https://doi.org/10.1039/D1MH01346G
- S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. Zhang, Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021). https://doi.org/10.1016/j.mattod.2021.02.010
- S. Pinilla, J. Coelho, K. Li, J. Liu, V. Nicolosi, Two-dimensional material inks. Nat. Rev. Mater. 7(9), 717–735 (2022). https://doi.org/10.1038/s41578-022-00448-7
- J. Liu, Y. Liu, H.-B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
- J. Ma, Z. Luo, S. Tan, J. He, X. Guan et al., Achieving the low emissivity of graphene oxide based film for micron-level electromagnetic waves stealth application. Carbon 218, 118771 (2024). https://doi.org/10.1016/j.carbon.2023.118771
- L. Li, Z. Deng, M. Chen, Z.-Z. Yu, T.P. Russell et al., 3D printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures. Nano Lett. 23(1), 155–162 (2023). https://doi.org/10.1021/acs.nanolett.2c03821
- Y. Zhang, G. Zhu, B. Dong, F. Wang, J. Tang et al., Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix. Nat. Commun. 12(1), 111 (2021). https://doi.org/10.1038/s41467-020-20299-6
- H. Jiang, B. Yuan, H. Guo, F. Pan, F. Meng et al., Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat. Commun. 15(1), 6138 (2024). https://doi.org/10.1038/s41467-024-50541-4
- Q. Wang, B. Niu, Y. Han, Q. Zheng, L. Li et al., Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J. 452, 139042 (2023). https://doi.org/10.1016/j.cej.2022.139042
- X. Zhou, B. Wang, Z. Jia, X. Zhang, X. Liu et al., Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interface Sci. 582(Pt B), 515–525 (2021). https://doi.org/10.1016/j.jcis.2020.08.087
- X. Zhou, Y. Liu, Z. Gao, P. Min, J. Liu et al., Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv. Mater. 36(14), 2310849 (2024). https://doi.org/10.1002/adma.202310849
- Y. Yang, Z. Xiu, F. Pan, H. Liang, H. Jiang et al., Tuning the multilevel hierarchical microarchitecture of MXene/rGO-based aerogels through a magnetic field-guided strategy toward stepwise enhanced electromagnetic wave dissipation. Adv. Funct. Mater. 35(18), 2406133 (2025). https://doi.org/10.1002/adfm.202406133
- X. Zhang, J. Chen, X. Chen, J. Yao, W. Zheng et al., Recyclable and leakage-suppressed microcellular liquid–metal composite foams for stretchable electromagnetic shielding. Chem. Eng. J. 493, 152478 (2024). https://doi.org/10.1016/j.cej.2024.152478
- G. Fang, C. Liu, X. Wei, Q. Cai, C. Chen et al., Determining the preferable polarization loss for magnetoelectric microwave absorbers by strategy of controllably regulating defects. Chem. Eng. J. 463, 142440 (2023). https://doi.org/10.1016/j.cej.2023.142440
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- Y. Zhang, M.-K. Xu, Z. Wang, T. Zhao, L.-X. Liu et al., Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15(6), 4916–4924 (2022). https://doi.org/10.1007/s12274-022-4311-9
- X. Zhou, P. Min, Y. Liu, M. Jin, Z.-Z. Yu et al., Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 385(6714), 1205–1210 (2024). https://doi.org/10.1126/science.adp6581
- C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
- Y. Dai, X. Wu, L. Li, Y. Zhang, Z. Deng et al., 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding. J. Mater. Chem. A 10(21), 11375–11385 (2022). https://doi.org/10.1039/d2ta01388f
- N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176, 88–105 (2021). https://doi.org/10.1016/j.carbon.2021.01.124
- X.-X. Wang, W.-Q. Cao, M.-S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), e2002112 (2020). https://doi.org/10.1002/adma.202002112
- B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- B. Zhao, Z. Yan, L. Liu, Y. Zhang, L. Guan et al., A liquid-metal-assisted competitive galvanic reaction strategy toward indium/oxide core−shell nanops with enhanced microwave absorption. Adv. Funct. Mater. 34(18), 2314008 (2024). https://doi.org/10.1002/adfm.202314008
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- Z. Deng, Y. Li, H.-B. Zhang, Y. Zhang, J.-Q. Luo et al., Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption. Compos. Part B Eng. 177, 107346 (2019). https://doi.org/10.1016/j.compositesb.2019.107346
- Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr.202300224
- Z.-H. Li, Y. Chen, Y. Sun, X.-Z. Zhang, Platinum-doped Prussian blue nanozymes for multiwavelength bioimaging guided photothermal therapy of tumor and anti-inflammation. ACS Nano 15(3), 5189–5200 (2021). https://doi.org/10.1021/acsnano.0c10388
- X. Pan, X. Yang, M. Yu, X. Lu, H. Kang et al., 2D MXenes polar catalysts for multi-renewable energy harvesting applications. Nat. Commun. 14(1), 4183 (2023). https://doi.org/10.1038/s41467-023-39791-w
- L. Li, S. Zhao, X.-J. Luo, H.-B. Zhang, Z.-Z. Yu, Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
- T. Xue, C. Zhu, X. Feng, Q. Wali, W. Fan et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv. Fiber Mater. 4(5), 1118–1128 (2022). https://doi.org/10.1007/s42765-022-00145-8
- L. Li, M. Wu, S. Yao, Y. Hou, R. Yuan et al., Reversible thermo-responsive transitions between aerogel-based porous liquids and solid–liquid–vapor triple-state gels. J. Mater. Chem. A 12(24), 14659–14668 (2024). https://doi.org/10.1039/D4TA02365J
- J. Wang, W. Ming, L. Chen, T. Song, M. Yele et al., MoS2 lubricate-toughened MXene/ANF composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 17(1), 36 (2024). https://doi.org/10.1007/s40820-024-01496-0
- Z. Xu, J. Chen, G. Wang, Y. Zhao, B. Shen et al., Stretchable and translucent liquid-metal composite mesh for multifunctional electromagnetic shielding/sensing and Joule heating. Compos. Sci. Technol. 249, 110512 (2024). https://doi.org/10.1016/j.compscitech.2024.110512
- H. Shi, B. Wang, L. Wang, P. Zhang, X. Ming et al., Large-scale preparation of thermally conductive graphene fiber filaments. Carbon 221, 118947 (2024). https://doi.org/10.1016/j.carbon.2024.118947
References
Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19(46), 2304278 (2023). https://doi.org/10.1002/smll.202304278
Y. Zhao, S. Tan, J. Yu, R. Yu, T. Xu et al., A rapidly assembled and camouflage-monitoring-protection integrated modular unit. Adv. Mater. 37(6), e2412845 (2025). https://doi.org/10.1002/adma.202412845
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Y. Zhou, Y. Zhang, K. Ruan, H. Guo, M. He et al., MXene-based fibers: preparation, applications, and prospects. Sci. Bull. 69(17), 2776–2792 (2024). https://doi.org/10.1016/j.scib.2024.07.009
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), 2414085 (2025). https://doi.org/10.1002/adma.202414085
Y. Chen, X.-M. Shao, L. He, Y.-N. Xu, Q.-Y. Yao et al., Highly conductive Ag/pCF/MVQ composite rubber for efficient electromagnetic interference shielding. Chin. J. Polym. Sci. 42(6), 864–873 (2024). https://doi.org/10.1007/s10118-024-3108-6
Z. Chai, Z. Wang, Controllable construction of acrylic composite coatings with impedance gradient structure for low-reflectivity electromagnetic shielding in 5G high frequency band. Acta Polym. Sin. 55, 58 (2024). https://doi.org/10.11777/j.issn1000-3304.2023.23173
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2T hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
W. Ma, X. Liu, T. Yang, J. Wang, Z. Qiu et al., Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra-broadband absorption with low-frequency compatibility. Adv. Funct. Mater. 35(18), 2314046 (2025). https://doi.org/10.1002/adfm.202314046
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
S.A. Hashemi, A. Ghaffarkhah, M. Goodarzi, A. Nazemi, G. Banvillet et al., Liquid-templating aerogels. Adv. Mater. 35(42), 2302826 (2023). https://doi.org/10.1002/adma.202302826
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf581 (2021). https://doi.org/10.1126/science.abf1581
G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu et al., Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 35(18), 2314425 (2025). https://doi.org/10.1002/adfm.202314425
A. Ghaffarkhah, S.A. Hashemi, F. Ahmadijokani, M. Goodarzi, H. Riazi et al., Functional Janus structured liquids and aerogels. Nat. Commun. 14, 7811 (2023). https://doi.org/10.1038/s41467-023-43319-7
G. Zhu, P. Ren, J. Yang, J. Hu, Z. Dai et al., Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare. Nano Energy 98, 107327 (2022). https://doi.org/10.1016/j.nanoen.2022.107327
N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35(1), 2207969 (2023). https://doi.org/10.1002/adma.202207969
L. Wang, L. Lang, X. Hu, T. Gao, M. He et al., Multifunctional ionic bonding-strengthened (Ti3C2Tx MXene/CNF)-(BNNS/CNF) composite films with Janus structure for outstanding electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 224, 46–55 (2025). https://doi.org/10.1016/j.jmst.2024.11.010
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14(1), 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
Y. Xia, H. Qin, W. Tong, Y. Qi, K. Li et al., Ultra-stiff yet super-elastic graphene aerogels by topological cellular hierarchy. Adv. Mater. 37(7), e2417462 (2025). https://doi.org/10.1002/adma.202417462
T.-B. Ma, H. Ma, K.-P. Ruan, X.-T. Shi, H. Qiu et al., Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 40(3), 248–255 (2022). https://doi.org/10.1007/s10118-022-2673-9
Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16(10), 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
A.A. Isari, A. Ghaffarkhah, S.A. Hashemi, S. Wuttke, M. Arjmand, Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv. Mater. 36(24), 2310683 (2024). https://doi.org/10.1002/adma.202310683
Y.-N. Gao, Y. Wang, T.-N. Yue, B. Zhao, R. Che et al., Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 430, 132949 (2022). https://doi.org/10.1016/j.cej.2021.132949
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
Y. Xu, Z. Lin, Y. Yang, H. Duan, G. Zhao et al., Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 9(2), 708–719 (2022). https://doi.org/10.1039/D1MH01346G
S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. Zhang, Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021). https://doi.org/10.1016/j.mattod.2021.02.010
S. Pinilla, J. Coelho, K. Li, J. Liu, V. Nicolosi, Two-dimensional material inks. Nat. Rev. Mater. 7(9), 717–735 (2022). https://doi.org/10.1038/s41578-022-00448-7
J. Liu, Y. Liu, H.-B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
J. Ma, Z. Luo, S. Tan, J. He, X. Guan et al., Achieving the low emissivity of graphene oxide based film for micron-level electromagnetic waves stealth application. Carbon 218, 118771 (2024). https://doi.org/10.1016/j.carbon.2023.118771
L. Li, Z. Deng, M. Chen, Z.-Z. Yu, T.P. Russell et al., 3D printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures. Nano Lett. 23(1), 155–162 (2023). https://doi.org/10.1021/acs.nanolett.2c03821
Y. Zhang, G. Zhu, B. Dong, F. Wang, J. Tang et al., Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix. Nat. Commun. 12(1), 111 (2021). https://doi.org/10.1038/s41467-020-20299-6
H. Jiang, B. Yuan, H. Guo, F. Pan, F. Meng et al., Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat. Commun. 15(1), 6138 (2024). https://doi.org/10.1038/s41467-024-50541-4
Q. Wang, B. Niu, Y. Han, Q. Zheng, L. Li et al., Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J. 452, 139042 (2023). https://doi.org/10.1016/j.cej.2022.139042
X. Zhou, B. Wang, Z. Jia, X. Zhang, X. Liu et al., Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interface Sci. 582(Pt B), 515–525 (2021). https://doi.org/10.1016/j.jcis.2020.08.087
X. Zhou, Y. Liu, Z. Gao, P. Min, J. Liu et al., Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv. Mater. 36(14), 2310849 (2024). https://doi.org/10.1002/adma.202310849
Y. Yang, Z. Xiu, F. Pan, H. Liang, H. Jiang et al., Tuning the multilevel hierarchical microarchitecture of MXene/rGO-based aerogels through a magnetic field-guided strategy toward stepwise enhanced electromagnetic wave dissipation. Adv. Funct. Mater. 35(18), 2406133 (2025). https://doi.org/10.1002/adfm.202406133
X. Zhang, J. Chen, X. Chen, J. Yao, W. Zheng et al., Recyclable and leakage-suppressed microcellular liquid–metal composite foams for stretchable electromagnetic shielding. Chem. Eng. J. 493, 152478 (2024). https://doi.org/10.1016/j.cej.2024.152478
G. Fang, C. Liu, X. Wei, Q. Cai, C. Chen et al., Determining the preferable polarization loss for magnetoelectric microwave absorbers by strategy of controllably regulating defects. Chem. Eng. J. 463, 142440 (2023). https://doi.org/10.1016/j.cej.2023.142440
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
Y. Zhang, M.-K. Xu, Z. Wang, T. Zhao, L.-X. Liu et al., Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15(6), 4916–4924 (2022). https://doi.org/10.1007/s12274-022-4311-9
X. Zhou, P. Min, Y. Liu, M. Jin, Z.-Z. Yu et al., Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 385(6714), 1205–1210 (2024). https://doi.org/10.1126/science.adp6581
C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
Y. Dai, X. Wu, L. Li, Y. Zhang, Z. Deng et al., 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding. J. Mater. Chem. A 10(21), 11375–11385 (2022). https://doi.org/10.1039/d2ta01388f
N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176, 88–105 (2021). https://doi.org/10.1016/j.carbon.2021.01.124
X.-X. Wang, W.-Q. Cao, M.-S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), e2002112 (2020). https://doi.org/10.1002/adma.202002112
B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
B. Zhao, Z. Yan, L. Liu, Y. Zhang, L. Guan et al., A liquid-metal-assisted competitive galvanic reaction strategy toward indium/oxide core−shell nanops with enhanced microwave absorption. Adv. Funct. Mater. 34(18), 2314008 (2024). https://doi.org/10.1002/adfm.202314008
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
Z. Deng, Y. Li, H.-B. Zhang, Y. Zhang, J.-Q. Luo et al., Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption. Compos. Part B Eng. 177, 107346 (2019). https://doi.org/10.1016/j.compositesb.2019.107346
Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr.202300224
Z.-H. Li, Y. Chen, Y. Sun, X.-Z. Zhang, Platinum-doped Prussian blue nanozymes for multiwavelength bioimaging guided photothermal therapy of tumor and anti-inflammation. ACS Nano 15(3), 5189–5200 (2021). https://doi.org/10.1021/acsnano.0c10388
X. Pan, X. Yang, M. Yu, X. Lu, H. Kang et al., 2D MXenes polar catalysts for multi-renewable energy harvesting applications. Nat. Commun. 14(1), 4183 (2023). https://doi.org/10.1038/s41467-023-39791-w
L. Li, S. Zhao, X.-J. Luo, H.-B. Zhang, Z.-Z. Yu, Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
T. Xue, C. Zhu, X. Feng, Q. Wali, W. Fan et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv. Fiber Mater. 4(5), 1118–1128 (2022). https://doi.org/10.1007/s42765-022-00145-8
L. Li, M. Wu, S. Yao, Y. Hou, R. Yuan et al., Reversible thermo-responsive transitions between aerogel-based porous liquids and solid–liquid–vapor triple-state gels. J. Mater. Chem. A 12(24), 14659–14668 (2024). https://doi.org/10.1039/D4TA02365J
J. Wang, W. Ming, L. Chen, T. Song, M. Yele et al., MoS2 lubricate-toughened MXene/ANF composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 17(1), 36 (2024). https://doi.org/10.1007/s40820-024-01496-0
Z. Xu, J. Chen, G. Wang, Y. Zhao, B. Shen et al., Stretchable and translucent liquid-metal composite mesh for multifunctional electromagnetic shielding/sensing and Joule heating. Compos. Sci. Technol. 249, 110512 (2024). https://doi.org/10.1016/j.compscitech.2024.110512
H. Shi, B. Wang, L. Wang, P. Zhang, X. Ming et al., Large-scale preparation of thermally conductive graphene fiber filaments. Carbon 221, 118947 (2024). https://doi.org/10.1016/j.carbon.2024.118947