Designing Metal Phosphide Solid-Electrolyte Interphase for Stable Lithium Metal Batteries Through Electrified Interface Optimization and Synergistic Conversion
Corresponding Author: Dong‑Wan Kim
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 315
Abstract
Regulating the nucleation and growth of Li metal is crucial for achieving stable high-energy-density Li metal batteries (LMBs) without dendritic Li growth, severe volume expansion, and “dead Li” accumulation. Herein, we present a modulation layer composed of porous SnP0.94/CoP p-n heterojunction particles (SCP), synthesized applying the Kirkendall effect. The unique heterointerfaces in the SCP induce a fully ionized depletion region and built-in electric field. This provides strong Li affinity, additional adsorption sites, and facilitated electron transfer, thereby guiding dendrite-free Li nucleation/growth with a low Li deposition overpotential. Moreover, the strategic design of the SCP, accounting for its reaction with Li, yields electronically conductive Co, lithiophilic Li–Sn alloy, and ionic conductive Li3P during progressive cycles. The mixed electronic and ionic conductor (MEIC) ensure the long-term stability of the SCP modulation layer. With this layer, the SCP@Li symmetric cell maintains a low overpotential for 750 cycles even at a high current density of 5 mA cm−2. Additionally, the LiFePO4//SCP@Li full cell achieves an imperceptible capacity decay of 0.03% per cycle for 800 cycles at 0.5 C. This study provides insight into MEIC heterostructures for high-performance LMBs.
Highlights:
1 Through strategic heterostructure design, it is possible to create electrified interfaces that induce the formation of a fully ionized depletion region and a built-in electric field.
2 These electrified interfaces enhance Li affinity and promote uniform current distribution, leading to stable Li deposition behavior.
3 Owing to intentional design, SnP0.94/CoP heterostructure enables in situ conversion to a mixed ionic/electronic conductor during cycling, ensuring the long lifespan.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lin, X. Zhang, E. Fan, R. Chen, F. Wu et al., Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ. Sci. 16(3), 745–791 (2023). https://doi.org/10.1039/D2EE03257K
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, e1800561 (2018). https://doi.org/10.1002/adma.201800561
- B.C. Min, J.B. Park, C. Choi, D.-W. Kim, Dynamic construction of a composite solid electrolyte interphase for dendrite-free lithium metal batteries via lithium-antimony self-alloying. Adv. Compos. Hybrid Mater. 8(1), 4 (2024). https://doi.org/10.1007/s42114-024-01070-7
- J.B. Park, C. Choi, S. Yu, K.Y. Chung, D.-W. Kim, Porous lithiophilic Li–Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 11(37), 2170146 (2021). https://doi.org/10.1002/aenm.202170146
- Y. Li, W. Huang, Y. Li, A. Pei, D.T. Boyle et al., Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2(10), 2167–2177 (2018). https://doi.org/10.1016/j.joule.2018.08.004
- T. Zhao, S. Li, F. Liu, Z. Wang, H. Wang et al., Molten-Li infusion of ultra-thin interfacial modification layer towards the highly-reversible, energy-dense metallic batteries. Energy Storage Mater. 45, 796–804 (2022). https://doi.org/10.1016/j.ensm.2021.12.032
- X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7(2), 513–537 (2014). https://doi.org/10.1039/C3EE40795K
- H. Xiao, X. Li, Y. Fu, Advances in anion chemistry in the electrolyte design for better lithium batteries. Nano-Micro Lett. 17(1), 149 (2025). https://doi.org/10.1007/s40820-024-01629-5
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
- S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
- T. Zhu, Z. Li, Z. Chen, E. Hu, L. Wang et al., Lithiophilic hollow Co3[Co(CN)6]2 embedded carbon nanotube film for dendrite-free lithium metal anodes. J. Colloid Interface Sci. 623, 532–540 (2022). https://doi.org/10.1016/j.jcis.2022.05.055
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- L. He, Q. Sun, C. Chen, J.A.S. Oh, J. Sun et al., Failure mechanism and interface engineering for NASICON-structured all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11(23), 20895–20904 (2019). https://doi.org/10.1021/acsami.9b05516
- X. Xu, X. Yue, Y. Chen, Z. Liang, Li plating regulation on fast-charging graphite anodes by a triglyme-LiNO3 synergistic electrolyte additive. Angew. Chem. Int. Ed. 62(34), e202306963 (2023). https://doi.org/10.1002/anie.202306963
- E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2(6), 1321–1326 (2017). https://doi.org/10.1021/acsenergylett.7b00300
- X. Li, J. Liu, J. He, S. Qi, M. Wu et al., Separator-wetted, acid- and water-scavenged electrolyte with optimized Li-ion solvation to form dual efficient electrode electrolyte interphases via hexa-functional additive. Adv. Sci. 9(20), e2201297 (2022). https://doi.org/10.1002/advs.202201297
- G. Guo, K. Zhang, K. Zhu, P. Yang, Z. Shao et al., Refined pore structure design and surface modification of 3D porous copper achieving highly stable dendrite-free lithium-metal anode. Adv. Funct. Mater. 34(38), 2402490 (2024). https://doi.org/10.1002/adfm.202402490
- A. Huang, Y. Wu, H. Huang, C. Li, Y. Sun et al., Lithiophilic Mo2C clusters-embedded carbon nanofibers for high energy density lithium metal batteries. Adv. Funct. Mater. 33(36), 2303111 (2023). https://doi.org/10.1002/adfm.202303111
- W. Wu, D. Ning, J. Zhang, G. Liu, L. Zeng et al., Ultralight lithiophilic three-dimensional lithium host for stable high-energy-density anode-free lithium metal batteries. Energy Storage Mater. 63, 102974 (2023). https://doi.org/10.1016/j.ensm.2023.102974
- Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27(18), 1606422 (2017). https://doi.org/10.1002/adfm.201606422
- D. Chen, C. Chen, H. Yu, S. Zheng, T. Jin et al., Formation of N-doped carbon nanofibers decorated with MoP nanoflakes for dendrite-free lithium metal anode. Adv. Funct. Mater. 34(38), 2402951 (2024). https://doi.org/10.1002/adfm.202402951
- Y. Zhang, C. Wang, G. Pastel, Y. Kuang, H. Xie et al., 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 8(18), 1800635 (2018). https://doi.org/10.1002/aenm.201800635
- Z.-X. Wang, Y. Lu, C.-Z. Zhao, W.-Z. Huang, X.-Y. Huang et al., Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation. Joule 8(10), 2794–2810 (2024). https://doi.org/10.1016/j.joule.2024.07.007
- Y.-L. Liao, X.-L. Wang, H. Yuan, Y.-J. Li, C.-M. Xu et al., Ultrafast Li-rich transport in composite solid-state electrolytes. Adv. Mater. 37(10), e2419782 (2025). https://doi.org/10.1002/adma.202419782
- X. Gao, Y. Chen, Z. Zhen, L. Cui, L. Huang et al., Construction of multifunctional conductive carbon-based cathode additives for boosting Li6PS5Cl-based all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 140 (2025). https://doi.org/10.1007/s40820-025-01667-7
- P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3(1), 16–21 (2017). https://doi.org/10.1038/s41560-017-0047-2
- Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu et al., Interfacially Redistributed charge for robust lithium metal anode. Nano Energy 87, 106212 (2021). https://doi.org/10.1016/j.nanoen.2021.106212
- Z. Tu, S. Choudhury, M.J. Zachman, S. Wei, K. Zhang et al., Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1(2), 394–406 (2017). https://doi.org/10.1016/j.joule.2017.06.002
- X.-B. Cheng, C. Yan, X.-Q. Zhang, H. Liu, Q. Zhang, Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 3(7), 1564–1570 (2018). https://doi.org/10.1021/acsenergylett.8b00526
- Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He et al., A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 4(8), 1776–1789 (2020). https://doi.org/10.1016/j.joule.2020.06.011
- Y. Chen, M. He, N. Zhao, J. Fu, H. Huo et al., Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. J. Power. Sources 420, 15–21 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.085
- X. Qiu, M. Yu, G. Fan, J. Liu, Y. Wang et al., Growing nanostructured CuO on copper foil via chemical etching to upgrade metallic lithium anode. ACS Appl. Mater. Interfaces 13(5), 6367–6374 (2021). https://doi.org/10.1021/acsami.0c22046
- D. Xie, H.-H. Li, W.-Y. Diao, R. Jiang, F.-Y. Tao et al., Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode. Energy Storage Mater. 36, 504–513 (2021). https://doi.org/10.1016/j.ensm.2021.01.034
- S. Li, Q. Liu, J. Zhou, T. Pan, L. Gao et al., Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv. Funct. Mater. 29(19), 1808847 (2019). https://doi.org/10.1002/adfm.201808847
- C. Sun, A. Lin, W. Li, J. Jin, Y. Sun et al., In situ conversion of Cu3P nanowires to mixed ion/electron-conducting skeleton for homogeneous lithium deposition. Adv. Energy Mater. 10(3), 1902989 (2020). https://doi.org/10.1002/aenm.201902989
- C. Zhang, R. Lyu, W. Lv, H. Li, W. Jiang et al., A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 31(48), 1904991 (2019). https://doi.org/10.1002/adma.201904991
- H. Jiang, H. Fan, Z. Han, B. Hong, F. Wu et al., A 3D conducting scaffold with in situ grown lithiophilic Ni2P nanoarrays for high stability lithium metal anodes. J. Energy Chem. 54, 301–309 (2021). https://doi.org/10.1016/j.jechem.2020.06.004
- C. Fu, S. Lin, C. Zhao, J. Wang, L. Wang et al., Li migration, nucleation and growth behavior regulated by a lithiophilic cobalt phosphide-doped carbon nanofibers derived ion/electron conductive framework. Energy Storage Mater. 45, 1109–1119 (2022). https://doi.org/10.1016/j.ensm.2021.11.009
- X. Zhang, S. Jin, M.H. Seo, C. Shang, G. Zhou et al., Hierarchical porous structure construction for highly stable self-supporting lithium metal anode. Nano Energy 93, 106905 (2022). https://doi.org/10.1016/j.nanoen.2021.106905
- L. Lin, F. Liang, K. Zhang, H. Mao, J. Yang et al., Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. J. Mater. Chem. A 6(32), 15859–15867 (2018). https://doi.org/10.1039/C8TA05102J
- Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33(27), 2100855 (2021). https://doi.org/10.1002/adma.202100855
- Z. Hao, D. Liu, X. Zuo, H. Yu, T. You et al., Built-In electric field induced uniform Li deposition via construction of CoP/Co2P heterojunction in 3D carbon nanofiber networks. Adv. Funct. Mater. 35(7), 2415251 (2025). https://doi.org/10.1002/adfm.202415251
- X. Shen, S. Shi, B. Li, S. Li, H. Zhang et al., Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes. Adv. Funct. Mater. 32(39), 2206388 (2022). https://doi.org/10.1002/adfm.202206388
- Y. Yang, E. Hu, Y. Zhu, W. Cao, J. Zhang et al., A flexible carbon nanotube film modified with gradient lithiophilic Cu2O/Cu heterojunction for dendrite-free lithium metal anodes. Chem. Eng. J. 477, 146879 (2023). https://doi.org/10.1016/j.cej.2023.146879
- Y. Zhu, Y. Yang, H. Zhang, S. Liu, Z. Wu et al., A highly-lithiophilic Mn3O4/ZnO-modified carbon nanotube film for dendrite-free lithium metal anodes. J. Colloid Interface Sci. 648, 299–307 (2023). https://doi.org/10.1016/j.jcis.2023.05.101
- Q. Meng, M. Guan, Y. Huang, L. Li, F. Wu et al., Multidimensional Co3O4/NiO heterojunctions with rich-boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InfoMat 4(8), e12313 (2022). https://doi.org/10.1002/inf2.12313
- L. Ruan, X. Qin, K. Lin, Z. Yang, Q. Cai et al., TiO2/Cu2O heterostructure enabling selective and uniform lithium deposition towards stable lithium metal anodes. Nano Res. 16(4), 4917–4925 (2023). https://doi.org/10.1007/s12274-022-5066-z
- T. Le, C. Yang, W. Lv, Q. Liang, X. Huang et al., Deeply cyclable and ultrahigh-rate lithium metal anodes enabled by coaxial nanochamber heterojunction on carbon nanofibers. Adv. Sci. 8(23), 2101940 (2021). https://doi.org/10.1002/advs.202101940
- X. Fan, T. Gao, C. Luo, F. Wang, J. Hu et al., Superior reversible tin phosphide-carbon spheres for sodium ion battery anode. Nano Energy 38, 350–357 (2017). https://doi.org/10.1016/j.nanoen.2017.06.014
- D. Liu, X. Li, L. Wei, T. Zhang, A. Wang et al., Disproportionation of hypophosphite and phosphite. Dalton Trans. 46(19), 6366–6378 (2017). https://doi.org/10.1039/c7dt00243b
- J.B. Park, C. Choi, J.H. Park, S. Yu, D.-W. Kim, Synergistic design of multifunctional interfacial Zn host toward practical Zn metal batteries. Adv. Energy Mater. 12(48), 2202937 (2022). https://doi.org/10.1002/aenm.202202937
- J. Zhang, X. Liang, X. Wang, Z. Zhuang, CoP nanotubes formed by Kirkendall effect as efficient hydrogen evolution reaction electrocatalysts. Mater. Lett. 202, 146–149 (2017). https://doi.org/10.1016/j.matlet.2017.04.154
- S. Huang, C. Meng, M. Xiao, S. Ren, S. Wang et al., Multi-shell tin phosphide nanospheres as high performance anode material for a sodium ion battery. Sustain. Energy Fuels 1(9), 1944–1949 (2017). https://doi.org/10.1039/C7SE00355B
- J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu et al., Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS Catal. 5(11), 6874–6878 (2015). https://doi.org/10.1021/acscatal.5b02076
- S. Liu, K. Feng, W. Xu, J. Tong, Study on tin-cobalt bimetallic phosphide nanops as a negative electrode of sodium-ion batteries. Langmuir 40(19), 10270–10280 (2024). https://doi.org/10.1021/acs.langmuir.4c00794
- R. Liang, Y. Wang, C. Qin, X. Chen, Z. Ye et al., P-type cobalt phosphide composites (CoP-Co2P) decorated on titanium oxide for enhanced noble-metal-free photocatalytic H2 evolution activity. Langmuir 37(11), 3321–3330 (2021). https://doi.org/10.1021/acs.langmuir.0c03362
- W. Zhang, N. Han, J. Luo, X. Han, S. Feng et al., Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting. Small 18(4), e2103561 (2022). https://doi.org/10.1002/smll.202103561
- X. Zhao, W. Wang, Z. Hou, G. Wei, Y. Yu et al., SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem. Eng. J. 370, 677–683 (2019). https://doi.org/10.1016/j.cej.2019.03.250
- V. Tallapally, R.J.A. Esteves, L. Nahar, I.U. Arachchige, Multivariate synthesis of tin phosphide nanops: temperature, time, and ligand control of size, shape, and crystal structure. Chem. Mater. 28(15), 5406–5414 (2016). https://doi.org/10.1021/acs.chemmater.6b01749
- Y. Kim, H. Hwang, C.S. Yoon, M.G. Kim, J. Cho, Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 ps: an anode material for lithium-ion batteries. Adv. Mater. 19(1), 92–96 (2007). https://doi.org/10.1002/adma.200600644
- L. Häggström, J. Gullman, T. Ericsson, R. Wäppling, Mössbauer study of tin phosphides. J. Solid State Chem. 13(3), 204–207 (1975). https://doi.org/10.1016/0022-4596(75)90120-6
- Z. Song, Y. Liu, Z. Wang, J. Xing, C. Wei et al., Synergistic modulation of Li nucleation/growth enabled by CNTs-wrapped lithiophilic CoP/Co2P decorated hollow carbon polyhedron host for stable lithium metal anodes. Nano Res. 16(4), 4961–4969 (2023). https://doi.org/10.1007/s12274-022-5179-4
- C.-T. Sah, R.N. Noyce, W. Shockley, Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc. IRE 45(9), 1228–1243 (1957). https://doi.org/10.1109/JRPROC.1957.278528
- S.C. Choo, Carrier generation-recombination in the space-charge region of an asymmetrical p-n junction. Solid State Electron. 11(11), 1069–1077 (1968). https://doi.org/10.1016/0038-1101(68)90129-9
- P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures. Adv. Mater. 33(13), 2006247 (2021). https://doi.org/10.1002/adma.202006247
- Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
- Z. Wu, C. Wang, Z. Hui, H. Liu, S. Wang et al., Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8(4), 340–350 (2023). https://doi.org/10.1038/s41560-023-01202-1
- B.R. Scharifker, J. Mostany, Three-dimensional nucleation with diffusion controlled growth Part I. Number density of active sites and nucleation rates per site. J. Electroanal. Chem. Interfacial Electrochem. 177(1–2), 13–23 (1984). https://doi.org/10.1016/0022-0728(84)80207-7
- W. To-A-Ran, N.R. Mastoi, C.Y. Ha, Y.J. Song, Y.J. Kim, Kelvin probe force microscopy and electrochemical atomic force microscopy investigations of lithium nucleation and growth: influence of the electrode surface potential. J. Phys. Chem. Lett. 15(28), 7265–7271 (2024). https://doi.org/10.1021/acs.jpclett.4c01148
- B. Thirumalraj, T.T. Hagos, C.-J. Huang, M.A. Teshager, J.-H. Cheng et al., Nucleation and growth mechanism of lithium metal electroplating. J. Am. Chem. Soc. 141(46), 18612–18623 (2019). https://doi.org/10.1021/jacs.9b10195
- B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28(7), 879–889 (1983). https://doi.org/10.1016/0013-4686(83)85163-9
- Y. Zhao, S. Guo, M. Chen, B. Lu, X. Zhang et al., Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries. Nat. Commun. 14, 7080 (2023). https://doi.org/10.1038/s41467-023-42919-7
- W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv et al., Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators. Adv. Funct. Mater. 34(18), 2314045 (2024). https://doi.org/10.1002/adfm.202314045
- P. Xu, X. Hu, X. Liu, X. Lin, X. Fan et al., A lithium-metal anode with ultra-high areal capacity (50 mAh Cm−2) by gridding lithium plating/stripping. Energy Storage Mater. 38, 190–199 (2021). https://doi.org/10.1016/j.ensm.2021.03.010
- Y. Liu, W. Guan, S. Li, J. Bi, X. Hu et al., Sustainable dual-layered interface for long-lasting stabilization of lithium metal anodes. Adv. Energy Mater. 13(48), 2302695 (2023). https://doi.org/10.1002/aenm.202302695
- Z. Fu, G. Xia, J. Ye, Z. Zheng, J. Wang et al., A modified separator based on ternary mixed-oxide for stable lithium metal batteries. J. Colloid Interface Sci. 679, 830–839 (2025). https://doi.org/10.1016/j.jcis.2024.10.127
- Y. Wang, F. Liu, G. Fan, X. Qiu, J. Liu et al., Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J. Am. Chem. Soc. 143(7), 2829–2837 (2021). https://doi.org/10.1021/jacs.0c12051
- Z. Hao, C. Wang, Y. Wu, Q. Zhang, H. Xu et al., Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv. Energy Mater. 13(28), 2204007 (2023). https://doi.org/10.1002/aenm.202204007
- G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32(47), 2207969 (2022). https://doi.org/10.1002/adfm.202207969
- K. Jang, H.J. Song, J.B. Park, S.W. Jung, D.-W. Kim, Magnesium fluoride-engineered UiO-66 artificial protection layers for dendrite-free lithium metal batteries. Energy Environ. Sci. 17(13), 4622–4633 (2024). https://doi.org/10.1039/D4EE01428F
- D. Kang, N. Hart, M. Xiao, J.P. Lemmon, Short circuit of symmetrical Li/Li cell in Li metal anode research. Acta Phys. Chim. Sin. 37(2), 2008013 (2021). https://doi.org/10.3866/pku.whxb202008013
- P. Yadav, W. Malik, P.K. Dwivedi, L.A. Jones, M.V. Shelke, Electrospun nanofibers of tin phosphide (SnP0.94) nanops encapsulated in a carbon matrix: a tunable conversion-cum-alloying lithium storage anode. Energy Fuels 34(6), 7648–7657 (2020). https://doi.org/10.1021/acs.energyfuels.0c01046
- H. Wang, D. Lin, J. Xie, Y. Liu, H. Chen et al., An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater. 9(7), 1802720 (2019). https://doi.org/10.1002/aenm.201802720
- C. Fu, H. Yang, P. Jia, C. Zhao, L. Wang et al., Steady cycling of lithium metal anode enabled by alloying Sn-modified carbon nanofibers. J. Mater. Chem. A 11(28), 15237–15245 (2023). https://doi.org/10.1039/D3TA02379F
- X. Xiong, W. Yan, Y. Zhu, L. Liu, L. Fu et al., Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Adv. Energy Mater. 12(13), 2103112 (2022). https://doi.org/10.1002/aenm.202103112
- X. Cao, Y. Xu, L. Zou, J. Bao, Y. Chen et al., Stability of solid electrolyte interphases and calendar life of lithium metal batteries. Energy Environ. Sci. 16(4), 1548–1559 (2023). https://doi.org/10.1039/D2EE03557J
- C. Hu, Y. Hu, A. Chen, X. Duan, H. Jiang et al., Atomic interface catalytically synthesizing SnP/CoP hetero-nanocrystals within dual-carbon hybrids for ultrafast lithium-ion batteries. Engineering 18, 154–160 (2022). https://doi.org/10.1016/j.eng.2021.11.026
- K.K.D. Ehinon, S. Naille, R. Dedryvère, P.-E. Lippens, J.-C. Jumas et al., Ni3Sn4 electrodes for Li-ion batteries: Li–Sn alloying process and electrode/electrolyte interface phenomena. Chem. Mater. 20(16), 5388–5398 (2008). https://doi.org/10.1021/cm8006099
- S.-H. Hwang, S.-D. Seo, D.-W. Kim, A novel time-saving synthesis approach for Li-argyrodite superionic conductor. Adv. Sci. 10(22), e2301707 (2023). https://doi.org/10.1002/advs.202301707
- W. Li, S. Zheng, Y. Gao, D. Feng, Y. Ru et al., High rate and low-temperature stable lithium metal batteries enabled by lithiophilic 3D Cu-CuSn porous framework. Nano Lett. 23(17), 7805–7814 (2023). https://doi.org/10.1021/acs.nanolett.3c01266
- L. Lin, L. Suo, Y.-S. Hu, H. Li, X. Huang et al., Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery. Adv. Energy Mater. 11(9), 2003709 (2021). https://doi.org/10.1002/aenm.202003709
- C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32(4), 2107249 (2022). https://doi.org/10.1002/adfm.202107249
- F. Chu, R. Deng, F. Wu, Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Mater. 56, 141–154 (2023). https://doi.org/10.1016/j.ensm.2023.01.001
- S. Yuan, S. Weng, F. Wang, X. Dong, Y. Wang et al., Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 83, 105847 (2021). https://doi.org/10.1016/j.nanoen.2021.105847
- S.-J. Yang, H. Yuan, N. Yao, J.-K. Hu, X.-L. Wang et al., Intrinsically safe lithium metal batteries enabled by thermo-electrochemical compatible in situ polymerized solid-state electrolytes. Adv. Mater. 36(35), 2405086 (2024). https://doi.org/10.1002/adma.202405086
- X.-L. Wang, Y. Li, J. Liu, S.-J. Yang, J.-K. Hu et al., A robust dual-layered solid electrolyte interphase enabled by cation specific adsorption-induced built-In electrostatic field for long-cycling solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(10), e202421101 (2025). https://doi.org/10.1002/anie.202421101
- M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21(4), 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
- R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao et al., Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28(8), 1705838 (2018). https://doi.org/10.1002/adfm.201705838
- S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng et al., A 3D framework with Li3N–Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater. 35(8), 2209028 (2023). https://doi.org/10.1002/adma.202209028
References
J. Lin, X. Zhang, E. Fan, R. Chen, F. Wu et al., Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ. Sci. 16(3), 745–791 (2023). https://doi.org/10.1039/D2EE03257K
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, e1800561 (2018). https://doi.org/10.1002/adma.201800561
B.C. Min, J.B. Park, C. Choi, D.-W. Kim, Dynamic construction of a composite solid electrolyte interphase for dendrite-free lithium metal batteries via lithium-antimony self-alloying. Adv. Compos. Hybrid Mater. 8(1), 4 (2024). https://doi.org/10.1007/s42114-024-01070-7
J.B. Park, C. Choi, S. Yu, K.Y. Chung, D.-W. Kim, Porous lithiophilic Li–Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 11(37), 2170146 (2021). https://doi.org/10.1002/aenm.202170146
Y. Li, W. Huang, Y. Li, A. Pei, D.T. Boyle et al., Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2(10), 2167–2177 (2018). https://doi.org/10.1016/j.joule.2018.08.004
T. Zhao, S. Li, F. Liu, Z. Wang, H. Wang et al., Molten-Li infusion of ultra-thin interfacial modification layer towards the highly-reversible, energy-dense metallic batteries. Energy Storage Mater. 45, 796–804 (2022). https://doi.org/10.1016/j.ensm.2021.12.032
X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7(2), 513–537 (2014). https://doi.org/10.1039/C3EE40795K
H. Xiao, X. Li, Y. Fu, Advances in anion chemistry in the electrolyte design for better lithium batteries. Nano-Micro Lett. 17(1), 149 (2025). https://doi.org/10.1007/s40820-024-01629-5
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
Z. Fan, X. Chen, J. Shi, H. Nie, X. Zhang et al., Functionalized separators boosting electrochemical performances for lithium batteries. Nano-Micro Lett. 17(1), 128 (2025). https://doi.org/10.1007/s40820-024-01596-x
S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
T. Zhu, Z. Li, Z. Chen, E. Hu, L. Wang et al., Lithiophilic hollow Co3[Co(CN)6]2 embedded carbon nanotube film for dendrite-free lithium metal anodes. J. Colloid Interface Sci. 623, 532–540 (2022). https://doi.org/10.1016/j.jcis.2022.05.055
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
L. He, Q. Sun, C. Chen, J.A.S. Oh, J. Sun et al., Failure mechanism and interface engineering for NASICON-structured all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11(23), 20895–20904 (2019). https://doi.org/10.1021/acsami.9b05516
X. Xu, X. Yue, Y. Chen, Z. Liang, Li plating regulation on fast-charging graphite anodes by a triglyme-LiNO3 synergistic electrolyte additive. Angew. Chem. Int. Ed. 62(34), e202306963 (2023). https://doi.org/10.1002/anie.202306963
E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2(6), 1321–1326 (2017). https://doi.org/10.1021/acsenergylett.7b00300
X. Li, J. Liu, J. He, S. Qi, M. Wu et al., Separator-wetted, acid- and water-scavenged electrolyte with optimized Li-ion solvation to form dual efficient electrode electrolyte interphases via hexa-functional additive. Adv. Sci. 9(20), e2201297 (2022). https://doi.org/10.1002/advs.202201297
G. Guo, K. Zhang, K. Zhu, P. Yang, Z. Shao et al., Refined pore structure design and surface modification of 3D porous copper achieving highly stable dendrite-free lithium-metal anode. Adv. Funct. Mater. 34(38), 2402490 (2024). https://doi.org/10.1002/adfm.202402490
A. Huang, Y. Wu, H. Huang, C. Li, Y. Sun et al., Lithiophilic Mo2C clusters-embedded carbon nanofibers for high energy density lithium metal batteries. Adv. Funct. Mater. 33(36), 2303111 (2023). https://doi.org/10.1002/adfm.202303111
W. Wu, D. Ning, J. Zhang, G. Liu, L. Zeng et al., Ultralight lithiophilic three-dimensional lithium host for stable high-energy-density anode-free lithium metal batteries. Energy Storage Mater. 63, 102974 (2023). https://doi.org/10.1016/j.ensm.2023.102974
Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27(18), 1606422 (2017). https://doi.org/10.1002/adfm.201606422
D. Chen, C. Chen, H. Yu, S. Zheng, T. Jin et al., Formation of N-doped carbon nanofibers decorated with MoP nanoflakes for dendrite-free lithium metal anode. Adv. Funct. Mater. 34(38), 2402951 (2024). https://doi.org/10.1002/adfm.202402951
Y. Zhang, C. Wang, G. Pastel, Y. Kuang, H. Xie et al., 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 8(18), 1800635 (2018). https://doi.org/10.1002/aenm.201800635
Z.-X. Wang, Y. Lu, C.-Z. Zhao, W.-Z. Huang, X.-Y. Huang et al., Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation. Joule 8(10), 2794–2810 (2024). https://doi.org/10.1016/j.joule.2024.07.007
Y.-L. Liao, X.-L. Wang, H. Yuan, Y.-J. Li, C.-M. Xu et al., Ultrafast Li-rich transport in composite solid-state electrolytes. Adv. Mater. 37(10), e2419782 (2025). https://doi.org/10.1002/adma.202419782
X. Gao, Y. Chen, Z. Zhen, L. Cui, L. Huang et al., Construction of multifunctional conductive carbon-based cathode additives for boosting Li6PS5Cl-based all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 140 (2025). https://doi.org/10.1007/s40820-025-01667-7
P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3(1), 16–21 (2017). https://doi.org/10.1038/s41560-017-0047-2
Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu et al., Interfacially Redistributed charge for robust lithium metal anode. Nano Energy 87, 106212 (2021). https://doi.org/10.1016/j.nanoen.2021.106212
Z. Tu, S. Choudhury, M.J. Zachman, S. Wei, K. Zhang et al., Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1(2), 394–406 (2017). https://doi.org/10.1016/j.joule.2017.06.002
X.-B. Cheng, C. Yan, X.-Q. Zhang, H. Liu, Q. Zhang, Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 3(7), 1564–1570 (2018). https://doi.org/10.1021/acsenergylett.8b00526
Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He et al., A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 4(8), 1776–1789 (2020). https://doi.org/10.1016/j.joule.2020.06.011
Y. Chen, M. He, N. Zhao, J. Fu, H. Huo et al., Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. J. Power. Sources 420, 15–21 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.085
X. Qiu, M. Yu, G. Fan, J. Liu, Y. Wang et al., Growing nanostructured CuO on copper foil via chemical etching to upgrade metallic lithium anode. ACS Appl. Mater. Interfaces 13(5), 6367–6374 (2021). https://doi.org/10.1021/acsami.0c22046
D. Xie, H.-H. Li, W.-Y. Diao, R. Jiang, F.-Y. Tao et al., Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode. Energy Storage Mater. 36, 504–513 (2021). https://doi.org/10.1016/j.ensm.2021.01.034
S. Li, Q. Liu, J. Zhou, T. Pan, L. Gao et al., Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv. Funct. Mater. 29(19), 1808847 (2019). https://doi.org/10.1002/adfm.201808847
C. Sun, A. Lin, W. Li, J. Jin, Y. Sun et al., In situ conversion of Cu3P nanowires to mixed ion/electron-conducting skeleton for homogeneous lithium deposition. Adv. Energy Mater. 10(3), 1902989 (2020). https://doi.org/10.1002/aenm.201902989
C. Zhang, R. Lyu, W. Lv, H. Li, W. Jiang et al., A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 31(48), 1904991 (2019). https://doi.org/10.1002/adma.201904991
H. Jiang, H. Fan, Z. Han, B. Hong, F. Wu et al., A 3D conducting scaffold with in situ grown lithiophilic Ni2P nanoarrays for high stability lithium metal anodes. J. Energy Chem. 54, 301–309 (2021). https://doi.org/10.1016/j.jechem.2020.06.004
C. Fu, S. Lin, C. Zhao, J. Wang, L. Wang et al., Li migration, nucleation and growth behavior regulated by a lithiophilic cobalt phosphide-doped carbon nanofibers derived ion/electron conductive framework. Energy Storage Mater. 45, 1109–1119 (2022). https://doi.org/10.1016/j.ensm.2021.11.009
X. Zhang, S. Jin, M.H. Seo, C. Shang, G. Zhou et al., Hierarchical porous structure construction for highly stable self-supporting lithium metal anode. Nano Energy 93, 106905 (2022). https://doi.org/10.1016/j.nanoen.2021.106905
L. Lin, F. Liang, K. Zhang, H. Mao, J. Yang et al., Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. J. Mater. Chem. A 6(32), 15859–15867 (2018). https://doi.org/10.1039/C8TA05102J
Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33(27), 2100855 (2021). https://doi.org/10.1002/adma.202100855
Z. Hao, D. Liu, X. Zuo, H. Yu, T. You et al., Built-In electric field induced uniform Li deposition via construction of CoP/Co2P heterojunction in 3D carbon nanofiber networks. Adv. Funct. Mater. 35(7), 2415251 (2025). https://doi.org/10.1002/adfm.202415251
X. Shen, S. Shi, B. Li, S. Li, H. Zhang et al., Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes. Adv. Funct. Mater. 32(39), 2206388 (2022). https://doi.org/10.1002/adfm.202206388
Y. Yang, E. Hu, Y. Zhu, W. Cao, J. Zhang et al., A flexible carbon nanotube film modified with gradient lithiophilic Cu2O/Cu heterojunction for dendrite-free lithium metal anodes. Chem. Eng. J. 477, 146879 (2023). https://doi.org/10.1016/j.cej.2023.146879
Y. Zhu, Y. Yang, H. Zhang, S. Liu, Z. Wu et al., A highly-lithiophilic Mn3O4/ZnO-modified carbon nanotube film for dendrite-free lithium metal anodes. J. Colloid Interface Sci. 648, 299–307 (2023). https://doi.org/10.1016/j.jcis.2023.05.101
Q. Meng, M. Guan, Y. Huang, L. Li, F. Wu et al., Multidimensional Co3O4/NiO heterojunctions with rich-boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InfoMat 4(8), e12313 (2022). https://doi.org/10.1002/inf2.12313
L. Ruan, X. Qin, K. Lin, Z. Yang, Q. Cai et al., TiO2/Cu2O heterostructure enabling selective and uniform lithium deposition towards stable lithium metal anodes. Nano Res. 16(4), 4917–4925 (2023). https://doi.org/10.1007/s12274-022-5066-z
T. Le, C. Yang, W. Lv, Q. Liang, X. Huang et al., Deeply cyclable and ultrahigh-rate lithium metal anodes enabled by coaxial nanochamber heterojunction on carbon nanofibers. Adv. Sci. 8(23), 2101940 (2021). https://doi.org/10.1002/advs.202101940
X. Fan, T. Gao, C. Luo, F. Wang, J. Hu et al., Superior reversible tin phosphide-carbon spheres for sodium ion battery anode. Nano Energy 38, 350–357 (2017). https://doi.org/10.1016/j.nanoen.2017.06.014
D. Liu, X. Li, L. Wei, T. Zhang, A. Wang et al., Disproportionation of hypophosphite and phosphite. Dalton Trans. 46(19), 6366–6378 (2017). https://doi.org/10.1039/c7dt00243b
J.B. Park, C. Choi, J.H. Park, S. Yu, D.-W. Kim, Synergistic design of multifunctional interfacial Zn host toward practical Zn metal batteries. Adv. Energy Mater. 12(48), 2202937 (2022). https://doi.org/10.1002/aenm.202202937
J. Zhang, X. Liang, X. Wang, Z. Zhuang, CoP nanotubes formed by Kirkendall effect as efficient hydrogen evolution reaction electrocatalysts. Mater. Lett. 202, 146–149 (2017). https://doi.org/10.1016/j.matlet.2017.04.154
S. Huang, C. Meng, M. Xiao, S. Ren, S. Wang et al., Multi-shell tin phosphide nanospheres as high performance anode material for a sodium ion battery. Sustain. Energy Fuels 1(9), 1944–1949 (2017). https://doi.org/10.1039/C7SE00355B
J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu et al., Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS Catal. 5(11), 6874–6878 (2015). https://doi.org/10.1021/acscatal.5b02076
S. Liu, K. Feng, W. Xu, J. Tong, Study on tin-cobalt bimetallic phosphide nanops as a negative electrode of sodium-ion batteries. Langmuir 40(19), 10270–10280 (2024). https://doi.org/10.1021/acs.langmuir.4c00794
R. Liang, Y. Wang, C. Qin, X. Chen, Z. Ye et al., P-type cobalt phosphide composites (CoP-Co2P) decorated on titanium oxide for enhanced noble-metal-free photocatalytic H2 evolution activity. Langmuir 37(11), 3321–3330 (2021). https://doi.org/10.1021/acs.langmuir.0c03362
W. Zhang, N. Han, J. Luo, X. Han, S. Feng et al., Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting. Small 18(4), e2103561 (2022). https://doi.org/10.1002/smll.202103561
X. Zhao, W. Wang, Z. Hou, G. Wei, Y. Yu et al., SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem. Eng. J. 370, 677–683 (2019). https://doi.org/10.1016/j.cej.2019.03.250
V. Tallapally, R.J.A. Esteves, L. Nahar, I.U. Arachchige, Multivariate synthesis of tin phosphide nanops: temperature, time, and ligand control of size, shape, and crystal structure. Chem. Mater. 28(15), 5406–5414 (2016). https://doi.org/10.1021/acs.chemmater.6b01749
Y. Kim, H. Hwang, C.S. Yoon, M.G. Kim, J. Cho, Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 ps: an anode material for lithium-ion batteries. Adv. Mater. 19(1), 92–96 (2007). https://doi.org/10.1002/adma.200600644
L. Häggström, J. Gullman, T. Ericsson, R. Wäppling, Mössbauer study of tin phosphides. J. Solid State Chem. 13(3), 204–207 (1975). https://doi.org/10.1016/0022-4596(75)90120-6
Z. Song, Y. Liu, Z. Wang, J. Xing, C. Wei et al., Synergistic modulation of Li nucleation/growth enabled by CNTs-wrapped lithiophilic CoP/Co2P decorated hollow carbon polyhedron host for stable lithium metal anodes. Nano Res. 16(4), 4961–4969 (2023). https://doi.org/10.1007/s12274-022-5179-4
C.-T. Sah, R.N. Noyce, W. Shockley, Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc. IRE 45(9), 1228–1243 (1957). https://doi.org/10.1109/JRPROC.1957.278528
S.C. Choo, Carrier generation-recombination in the space-charge region of an asymmetrical p-n junction. Solid State Electron. 11(11), 1069–1077 (1968). https://doi.org/10.1016/0038-1101(68)90129-9
P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures. Adv. Mater. 33(13), 2006247 (2021). https://doi.org/10.1002/adma.202006247
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
Z. Wu, C. Wang, Z. Hui, H. Liu, S. Wang et al., Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8(4), 340–350 (2023). https://doi.org/10.1038/s41560-023-01202-1
B.R. Scharifker, J. Mostany, Three-dimensional nucleation with diffusion controlled growth Part I. Number density of active sites and nucleation rates per site. J. Electroanal. Chem. Interfacial Electrochem. 177(1–2), 13–23 (1984). https://doi.org/10.1016/0022-0728(84)80207-7
W. To-A-Ran, N.R. Mastoi, C.Y. Ha, Y.J. Song, Y.J. Kim, Kelvin probe force microscopy and electrochemical atomic force microscopy investigations of lithium nucleation and growth: influence of the electrode surface potential. J. Phys. Chem. Lett. 15(28), 7265–7271 (2024). https://doi.org/10.1021/acs.jpclett.4c01148
B. Thirumalraj, T.T. Hagos, C.-J. Huang, M.A. Teshager, J.-H. Cheng et al., Nucleation and growth mechanism of lithium metal electroplating. J. Am. Chem. Soc. 141(46), 18612–18623 (2019). https://doi.org/10.1021/jacs.9b10195
B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28(7), 879–889 (1983). https://doi.org/10.1016/0013-4686(83)85163-9
Y. Zhao, S. Guo, M. Chen, B. Lu, X. Zhang et al., Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries. Nat. Commun. 14, 7080 (2023). https://doi.org/10.1038/s41467-023-42919-7
W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv et al., Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators. Adv. Funct. Mater. 34(18), 2314045 (2024). https://doi.org/10.1002/adfm.202314045
P. Xu, X. Hu, X. Liu, X. Lin, X. Fan et al., A lithium-metal anode with ultra-high areal capacity (50 mAh Cm−2) by gridding lithium plating/stripping. Energy Storage Mater. 38, 190–199 (2021). https://doi.org/10.1016/j.ensm.2021.03.010
Y. Liu, W. Guan, S. Li, J. Bi, X. Hu et al., Sustainable dual-layered interface for long-lasting stabilization of lithium metal anodes. Adv. Energy Mater. 13(48), 2302695 (2023). https://doi.org/10.1002/aenm.202302695
Z. Fu, G. Xia, J. Ye, Z. Zheng, J. Wang et al., A modified separator based on ternary mixed-oxide for stable lithium metal batteries. J. Colloid Interface Sci. 679, 830–839 (2025). https://doi.org/10.1016/j.jcis.2024.10.127
Y. Wang, F. Liu, G. Fan, X. Qiu, J. Liu et al., Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J. Am. Chem. Soc. 143(7), 2829–2837 (2021). https://doi.org/10.1021/jacs.0c12051
Z. Hao, C. Wang, Y. Wu, Q. Zhang, H. Xu et al., Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv. Energy Mater. 13(28), 2204007 (2023). https://doi.org/10.1002/aenm.202204007
G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32(47), 2207969 (2022). https://doi.org/10.1002/adfm.202207969
K. Jang, H.J. Song, J.B. Park, S.W. Jung, D.-W. Kim, Magnesium fluoride-engineered UiO-66 artificial protection layers for dendrite-free lithium metal batteries. Energy Environ. Sci. 17(13), 4622–4633 (2024). https://doi.org/10.1039/D4EE01428F
D. Kang, N. Hart, M. Xiao, J.P. Lemmon, Short circuit of symmetrical Li/Li cell in Li metal anode research. Acta Phys. Chim. Sin. 37(2), 2008013 (2021). https://doi.org/10.3866/pku.whxb202008013
P. Yadav, W. Malik, P.K. Dwivedi, L.A. Jones, M.V. Shelke, Electrospun nanofibers of tin phosphide (SnP0.94) nanops encapsulated in a carbon matrix: a tunable conversion-cum-alloying lithium storage anode. Energy Fuels 34(6), 7648–7657 (2020). https://doi.org/10.1021/acs.energyfuels.0c01046
H. Wang, D. Lin, J. Xie, Y. Liu, H. Chen et al., An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater. 9(7), 1802720 (2019). https://doi.org/10.1002/aenm.201802720
C. Fu, H. Yang, P. Jia, C. Zhao, L. Wang et al., Steady cycling of lithium metal anode enabled by alloying Sn-modified carbon nanofibers. J. Mater. Chem. A 11(28), 15237–15245 (2023). https://doi.org/10.1039/D3TA02379F
X. Xiong, W. Yan, Y. Zhu, L. Liu, L. Fu et al., Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Adv. Energy Mater. 12(13), 2103112 (2022). https://doi.org/10.1002/aenm.202103112
X. Cao, Y. Xu, L. Zou, J. Bao, Y. Chen et al., Stability of solid electrolyte interphases and calendar life of lithium metal batteries. Energy Environ. Sci. 16(4), 1548–1559 (2023). https://doi.org/10.1039/D2EE03557J
C. Hu, Y. Hu, A. Chen, X. Duan, H. Jiang et al., Atomic interface catalytically synthesizing SnP/CoP hetero-nanocrystals within dual-carbon hybrids for ultrafast lithium-ion batteries. Engineering 18, 154–160 (2022). https://doi.org/10.1016/j.eng.2021.11.026
K.K.D. Ehinon, S. Naille, R. Dedryvère, P.-E. Lippens, J.-C. Jumas et al., Ni3Sn4 electrodes for Li-ion batteries: Li–Sn alloying process and electrode/electrolyte interface phenomena. Chem. Mater. 20(16), 5388–5398 (2008). https://doi.org/10.1021/cm8006099
S.-H. Hwang, S.-D. Seo, D.-W. Kim, A novel time-saving synthesis approach for Li-argyrodite superionic conductor. Adv. Sci. 10(22), e2301707 (2023). https://doi.org/10.1002/advs.202301707
W. Li, S. Zheng, Y. Gao, D. Feng, Y. Ru et al., High rate and low-temperature stable lithium metal batteries enabled by lithiophilic 3D Cu-CuSn porous framework. Nano Lett. 23(17), 7805–7814 (2023). https://doi.org/10.1021/acs.nanolett.3c01266
L. Lin, L. Suo, Y.-S. Hu, H. Li, X. Huang et al., Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery. Adv. Energy Mater. 11(9), 2003709 (2021). https://doi.org/10.1002/aenm.202003709
C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32(4), 2107249 (2022). https://doi.org/10.1002/adfm.202107249
F. Chu, R. Deng, F. Wu, Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Mater. 56, 141–154 (2023). https://doi.org/10.1016/j.ensm.2023.01.001
S. Yuan, S. Weng, F. Wang, X. Dong, Y. Wang et al., Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 83, 105847 (2021). https://doi.org/10.1016/j.nanoen.2021.105847
S.-J. Yang, H. Yuan, N. Yao, J.-K. Hu, X.-L. Wang et al., Intrinsically safe lithium metal batteries enabled by thermo-electrochemical compatible in situ polymerized solid-state electrolytes. Adv. Mater. 36(35), 2405086 (2024). https://doi.org/10.1002/adma.202405086
X.-L. Wang, Y. Li, J. Liu, S.-J. Yang, J.-K. Hu et al., A robust dual-layered solid electrolyte interphase enabled by cation specific adsorption-induced built-In electrostatic field for long-cycling solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(10), e202421101 (2025). https://doi.org/10.1002/anie.202421101
M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21(4), 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao et al., Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28(8), 1705838 (2018). https://doi.org/10.1002/adfm.201705838
S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng et al., A 3D framework with Li3N–Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater. 35(8), 2209028 (2023). https://doi.org/10.1002/adma.202209028