Nature-Inspired Upward Hanging Evaporator with Photothermal 3D Spacer Fabric for Zero-Liquid-Discharge Desalination
Corresponding Author: Zhigang Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 22
Abstract
While desalination is a key solution for global freshwater scarcity, its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems. Solar interfacial evaporation offers sustainable management potential, yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage. Inspired by the mangrove leaf, we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric (PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism. This design enables zero-liquid-discharge (ZLD) desalination through phase-separation crystallization. The interconnected porous architecture and the rough surface of the PPSF enable superior water transport, achieving excellent solar-absorbing efficiency of 97.8%. By adjusting the tilt angle (θ), the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport, minimizing heat dissipation from brine discharge. At an optimal tilt angle of 52°, the evaporator reaches an evaporation rate of 2.81 kg m−2 h−1 with minimal heat loss (0.366 W) under 1-sun illumination while treating a 7 wt% waste brine solution. Furthermore, it sustains an evaporation rate of 2.71 kg m−2 h−1 over 72 h while ensuring efficient salt recovery. These results highlight a scalable, energy-efficient approach for sustainable ZLD desalination.
Highlights:
1 Successful fabrication of photothermal 3D polypyrrole polymerized spacer fabric with excellent water transport capability and high solar absorption efficiency.
2 The upward hanging model evaporator with reverse water feeding achieves an optimized solar evaporation rate of 2.81 kg m−2 h−1 with minimal heat (0.366 W) loss at a 52° tilt.
3 A mangrove leaf-inspired upward hanging model evaporator design separates evaporation and crystallization zones for zero-liquid-discharge desalination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
- M. Al-Furaiji, J.T. Arena, J. Ren, N. Benes, A. Nijmeijer et al., Triple-layer nanofiber membranes for treating high salinity brines using direct contact membrane distillation. Membranes 9(5), 60 (2019). https://doi.org/10.3390/membranes9050060
- D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res. 44(18), 5117–5128 (2010). https://doi.org/10.1016/j.watres.2010.04.036
- T. Tong, M. Elimelech, The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50(13), 6846–6855 (2016). https://doi.org/10.1021/acs.est.6b01000
- X. Chen, N.Y. Yip, Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environ. Sci. Technol. 52(4), 2242–2250 (2018). https://doi.org/10.1021/acs.est.7b05774
- J. Zhao, Z. Liu, S.C. Low, Z. Xu, S.H. Tan, Electrospinning technique meets solar energy: electrospun nanofiber-based evaporation systems for solar steam generation. Adv. Fiber Mater. 5(4), 1318–1348 (2023). https://doi.org/10.1007/s42765-023-00286-4
- J. Hu, Y. Sun, Z. Liu, B. Zhu, L. Zhang et al., Photothermal fabrics for solar-driven seawater desalination. Prog. Mater. Sci. 150, 101407 (2025). https://doi.org/10.1016/j.pmatsci.2024.101407
- K. Mao, Y. Zhang, S.C. Tan, Functionalizing solar-driven steam generation towards water and energy sustainability. Nat. Water 3(2), 144–156 (2025). https://doi.org/10.1038/s44221-024-00363-x
- L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan et al., 3D self-assembly of aluminium nanops for plasmon-enhanced solar desalination. Nat. Photonics 10(6), 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- B. Xu, M. Ganesan, R.K. Devi, X. Ruan, W. Chen et al., Hierarchically promoted light harvesting and management in photothermal solar steam generation. Adv. Mater. 37(5), 2406666 (2025). https://doi.org/10.1002/adma.202406666
- Y. Sun, D. Liu, F. Zhang, X. Gao, J. Xue et al., Multiscale biomimetic evaporators based on liquid metal/polyacrylonitrile composite fibers for highly efficient solar steam generation. Nano-Micro Lett. 17(1), 129 (2025). https://doi.org/10.1007/s40820-025-01661-z
- D. Wei, C. Wang, G. Shi, J. Zhang, F. Wang et al., Enabling self-adaptive water-energy-balance of photothermal water diode evaporator: dynamically maximizing energy utilization under the ever-changing sunlight. Adv. Mater. 36(18), 2309507 (2024). https://doi.org/10.1002/adma.202309507
- J. Liu, S. Zhang, Y. Du, C. Wang, J. Yan, Advances in full-day and year-round freshwater harvesting: Materials and technologies. Matter 7(12), 4161–4179 (2024). https://doi.org/10.1016/j.matt.2024.08.026
- M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
- H. Yang, D. Li, X. Zheng, J. Zuo, B. Zhao et al., High freshwater flux solar desalination via a 3D plasmonic evaporator with an efficient heat-mass evaporation interface. Adv. Mater. 35(47), 2304699 (2023). https://doi.org/10.1002/adma.202304699
- Z. Lei, S. Zhu, X. Sun, S. Yu, X. Liu et al., A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32(40), 2205790 (2022). https://doi.org/10.1002/adfm.202205790
- Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15(6), 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578
- Q. Ding, B. Jin, Y. Zheng, H. Zhao, J. Wang et al., Integration of bio-enzyme-treated super-wood and AIE-based nonwoven fabric for efficient evaporating the wastewater with high concentration of ammonia nitrogen. Nano-Micro Lett. 17(1), 176 (2025). https://doi.org/10.1007/s40820-025-01685-5
- Y. Yang, D. Wang, W. Liao, H. Zeng, Y. Wu et al., Arch-bridge photothermal fabric with efficient warp-direction water paths for continuous solar desalination. Adv. Fiber Mater. 6(4), 1026–1036 (2024). https://doi.org/10.1007/s42765-024-00392-x
- L. Zhang, X. Li, Y. Zhong, A. Leroy, Z. Xu et al., Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat. Commun. 13(1), 849 (2022). https://doi.org/10.1038/s41467-022-28457-8
- X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li et al., All-cold evaporation under one Sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 8(7), 2002501 (2021). https://doi.org/10.1002/advs.202002501
- Y. Wang, X. Wu, B. Shao, X. Yang, G. Owens et al., Boosting solar steam generation by structure enhanced energy management. Sci. Bull. 65(16), 1380–1388 (2020). https://doi.org/10.1016/j.scib.2020.04.036
- L. Ren, Q. Zhang, G. Zhao, T. Chen, Y. Wang et al., Interconnected porous fabric-based scalable evaporator with asymmetric wetting properties for high-yield and salt-rejecting solar brine treatment. Adv. Fiber Mater. 6(4), 1162–1173 (2024). https://doi.org/10.1007/s42765-024-00409-5
- Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12(6), 1840–1847 (2019). https://doi.org/10.1039/C9EE00692C
- M.A. Abdelsalam, M. Sajjad, A. Raza, F. AlMarzooqi, T. Zhang, Sustainable biomimetic solar distillation with edge crystallization for passive salt collection and zero brine discharge. Nat. Commun. 15(1), 874 (2024). https://doi.org/10.1038/s41467-024-45108-2
- Z. Yang, D. Li, K. Yang, L. Chen, J. Wang et al., Optimized water supply in a solar evaporator for simultaneous freshwater production and salt recycle. Environ. Sci. Technol. 57(35), 13047–13055 (2023). https://doi.org/10.1021/acs.est.3c03457
- Y. Zhang, T. Xiong, L. Suresh, H. Qu, X. Zhang et al., Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and In situ energy generation. ACS Energy Lett. 5(11), 3397–3404 (2020). https://doi.org/10.1021/acsenergylett.0c01797
- M. Ding, D. Zhao, P. Feng, B. Wang, Z. Duan et al., Highly efficient three-dimensional solar evaporator for zero liquid discharge desalination of high-salinity brine. Carbon Energy 6(9), e548 (2024). https://doi.org/10.1002/cey2.548
- C. Zhang, Y. Shi, L. Shi, H. Li, R. Li et al., Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12(1), 998 (2021). https://doi.org/10.1038/s41467-021-21124-4
- Y. Shi, C. Zhang, R. Li, S. Zhuo, Y. Jin et al., Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 52(20), 11822–11830 (2018). https://doi.org/10.1021/acs.est.8b03300
- L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
- Q. Xiong, D. Wang, B. Shao, H. Yu, X. Wu et al., Unlocking zero liquid discharge: a parallel water supply strategy to realize selective salt crystallization for long-term interfacial solar evaporation. Adv. Funct. Mater. 35(7), 2409257 (2025). https://doi.org/10.1002/adfm.202409257
- X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31(34), 2102618 (2021). https://doi.org/10.1002/adfm.202102618
- M. Wang, J. Hu, M. Li, L. Zhang, M. Salimi et al., Bioinspired design of photothermal anti-fouling fabrics for solar-driven sustainable seawater desalination. Nano Energy 136, 110726 (2025). https://doi.org/10.1016/j.nanoen.2025.110726
- X. Li, Y. Chen, B. Zhu, M. Salimi, L. Zhang et al., Biomimetic design of photothermal/electrothermal fabric composed of carbon-core/nanorod-array-shell fibers for efficient all-weather seawater evaporation. Adv. Funct. Mater. 35(25), 2423472 (2025). https://doi.org/10.1002/adfm.202423472
- J. Hu, M.-M. Pazuki, R. Li, M. Salimi, H. Cai et al., Biomimetic design of breathable 2D photothermal fabric with three-layered structure for efficient four-plane evaporation of seawater. Adv. Mater. 37(14), 2420482 (2025). https://doi.org/10.1002/adma.202420482
- X. Song, X. Li, B. Zhu, S. Sun, Z. Chen et al., MnO2/poly-L-lysine co-decorated carbon fiber cloth with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance for solar-enabled anti-fouling seawater desalination. Adv. Fiber Mater. 6(5), 1569–1582 (2024). https://doi.org/10.1007/s42765-024-00437-1
- B. Zhu, Z. Liu, Y. Peng, D.K. Macharia, N. Yu et al., Solar-driven watersteam/brine production and brine-driven electricity generation by photothermal fabric coupled with osmotic membrane. Nano Energy 117, 108844 (2023). https://doi.org/10.1016/j.nanoen.2023.108844
- R. Meng, J. Lyu, L. Zou, Q. Zhong, Z. Liu et al., CNT-based gel-coated cotton fabrics for constructing symmetrical evaporator with up/down inversion property for efficient continuous solar desalination. Desalination 554, 116494 (2023). https://doi.org/10.1016/j.desal.2023.116494
- W. Chong, R. Meng, Z. Liu, Q. Liu, J. Hu et al., Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv. Fiber Mater. 5(3), 1063–1075 (2023). https://doi.org/10.1007/s42765-023-00276-6
- Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu et al., Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15(8), 13007–13018 (2021). https://doi.org/10.1021/acsnano.1c01900
- C. Madhavan, S.P. Meera, A. Kumar, Anatomical adaptations of mangroves to the intertidal environment and their dynamic responses to various stresses. Biol. Rev. 100(3), 1019–1046 (2025). https://doi.org/10.1111/brv.13172
- M.S. Sadi, E. Kumpikaitė, Highly conductive composites using polypyrrole and carbon nanotubes on polydopamine functionalized cotton fabric for wearable sensing and heating applications. Cellulose 30(12), 7981–7999 (2023). https://doi.org/10.1007/s10570-023-05356-9
- D. Xu, Y. Heng, X. Qin, D. Hu, Membrane-based symmetric supercapacitors composed of cellulose solution-derived polydopamine-modified separators and polypyrrole/graphene-doped polydopamine-modified electrodes. J. Energy Storage 50, 104640 (2022). https://doi.org/10.1016/j.est.2022.104640
- Y. Heng, D. Xu, H. Fang, C. Zhong, D. Hu, Design of a cellulose-based supercapacitor based on polymerization-doping phase inversion of a polydopamine-modified separator and a polypyrrole/graphene-doped membrane electrode. Langmuir 38(21), 6539–6549 (2022). https://doi.org/10.1021/acs.langmuir.2c00131
- X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
- J. Xu, D. Wang, Y. Yuan, W. Wei, S. Gu et al., Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanops as template. Cellulose 22(2), 1355–1363 (2015). https://doi.org/10.1007/s10570-015-0546-x
- K. Li, Y. Luo, Y. Wen, W. Shan, S. Shi, Reconfigurable liquids enabled by dynamic covalent chemistry. Aggregate 5(6), e621 (2024). https://doi.org/10.1002/agt2.621
- J. Liu, Z. Wang, Q. Liu, S. Li, D. Wang et al., Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chem. Eng. J. 447, 137562 (2022). https://doi.org/10.1016/j.cej.2022.137562
- X. Zhang, Y. Zhang, P. Wang, F. Shi, S. Du et al., Infinite coordination polymer polydopamine nanocomposites dual-pathway multistep induction of long-term hyperimmunity combined with photothermal-chemo synergistic therapy colorectal cancer. Aggregate 6(4), e730 (2025). https://doi.org/10.1002/agt2.730
- Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087–2095 (2020). https://doi.org/10.1039/d0ee00399a
- C.O. Popiel, J. Wojtkowiak, Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0°C to 150°C). Heat Transf. Eng. 19(3), 87–101 (1998). https://doi.org/10.1080/01457639808939929
- X. Geng, P. Yang, Y. Wan, How to reduce enthalpy in the interfacial solar water generation system for enhancing efficiency? Nano Energy 123, 109434 (2024). https://doi.org/10.1016/j.nanoen.2024.109434
- B. Sun, M. Wu, X. Zhao, L. Wang, Y. Jia et al., Insights into Janus interfaces with ordered micro/nanostructures for low-temperature differential evaporation. Adv. Funct. Mater. 34(41), 2406272 (2024). https://doi.org/10.1002/adfm.202406272
- X.-P. Li, X. Li, H. Li, Y. Zhao, J. Wu et al., Reshapable MXene/graphene oxide/polyaniline plastic hybrids with patternable surfaces for highly efficient solar-driven water purification. Adv. Funct. Mater. 32(15), 2110636 (2022). https://doi.org/10.1002/adfm.202110636
- Z. Wang, X. Wu, F. He, S. Peng, Y. Li, Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv. Funct. Mater. 31(22), 2011114 (2021). https://doi.org/10.1002/adfm.202011114
- Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15(1), 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
- Y. Wang, W. Zhao, Y. Lee, Y. Li, Z. Wang et al., Thermo-adaptive interfacial solar evaporation enhanced by dynamic water gating. Nat. Commun. 15(1), 6157 (2024). https://doi.org/10.1038/s41467-024-50279-z
References
M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
M. Al-Furaiji, J.T. Arena, J. Ren, N. Benes, A. Nijmeijer et al., Triple-layer nanofiber membranes for treating high salinity brines using direct contact membrane distillation. Membranes 9(5), 60 (2019). https://doi.org/10.3390/membranes9050060
D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res. 44(18), 5117–5128 (2010). https://doi.org/10.1016/j.watres.2010.04.036
T. Tong, M. Elimelech, The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50(13), 6846–6855 (2016). https://doi.org/10.1021/acs.est.6b01000
X. Chen, N.Y. Yip, Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environ. Sci. Technol. 52(4), 2242–2250 (2018). https://doi.org/10.1021/acs.est.7b05774
J. Zhao, Z. Liu, S.C. Low, Z. Xu, S.H. Tan, Electrospinning technique meets solar energy: electrospun nanofiber-based evaporation systems for solar steam generation. Adv. Fiber Mater. 5(4), 1318–1348 (2023). https://doi.org/10.1007/s42765-023-00286-4
J. Hu, Y. Sun, Z. Liu, B. Zhu, L. Zhang et al., Photothermal fabrics for solar-driven seawater desalination. Prog. Mater. Sci. 150, 101407 (2025). https://doi.org/10.1016/j.pmatsci.2024.101407
K. Mao, Y. Zhang, S.C. Tan, Functionalizing solar-driven steam generation towards water and energy sustainability. Nat. Water 3(2), 144–156 (2025). https://doi.org/10.1038/s44221-024-00363-x
L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan et al., 3D self-assembly of aluminium nanops for plasmon-enhanced solar desalination. Nat. Photonics 10(6), 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
B. Xu, M. Ganesan, R.K. Devi, X. Ruan, W. Chen et al., Hierarchically promoted light harvesting and management in photothermal solar steam generation. Adv. Mater. 37(5), 2406666 (2025). https://doi.org/10.1002/adma.202406666
Y. Sun, D. Liu, F. Zhang, X. Gao, J. Xue et al., Multiscale biomimetic evaporators based on liquid metal/polyacrylonitrile composite fibers for highly efficient solar steam generation. Nano-Micro Lett. 17(1), 129 (2025). https://doi.org/10.1007/s40820-025-01661-z
D. Wei, C. Wang, G. Shi, J. Zhang, F. Wang et al., Enabling self-adaptive water-energy-balance of photothermal water diode evaporator: dynamically maximizing energy utilization under the ever-changing sunlight. Adv. Mater. 36(18), 2309507 (2024). https://doi.org/10.1002/adma.202309507
J. Liu, S. Zhang, Y. Du, C. Wang, J. Yan, Advances in full-day and year-round freshwater harvesting: Materials and technologies. Matter 7(12), 4161–4179 (2024). https://doi.org/10.1016/j.matt.2024.08.026
M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
H. Yang, D. Li, X. Zheng, J. Zuo, B. Zhao et al., High freshwater flux solar desalination via a 3D plasmonic evaporator with an efficient heat-mass evaporation interface. Adv. Mater. 35(47), 2304699 (2023). https://doi.org/10.1002/adma.202304699
Z. Lei, S. Zhu, X. Sun, S. Yu, X. Liu et al., A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32(40), 2205790 (2022). https://doi.org/10.1002/adfm.202205790
Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15(6), 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578
Q. Ding, B. Jin, Y. Zheng, H. Zhao, J. Wang et al., Integration of bio-enzyme-treated super-wood and AIE-based nonwoven fabric for efficient evaporating the wastewater with high concentration of ammonia nitrogen. Nano-Micro Lett. 17(1), 176 (2025). https://doi.org/10.1007/s40820-025-01685-5
Y. Yang, D. Wang, W. Liao, H. Zeng, Y. Wu et al., Arch-bridge photothermal fabric with efficient warp-direction water paths for continuous solar desalination. Adv. Fiber Mater. 6(4), 1026–1036 (2024). https://doi.org/10.1007/s42765-024-00392-x
L. Zhang, X. Li, Y. Zhong, A. Leroy, Z. Xu et al., Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat. Commun. 13(1), 849 (2022). https://doi.org/10.1038/s41467-022-28457-8
X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li et al., All-cold evaporation under one Sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 8(7), 2002501 (2021). https://doi.org/10.1002/advs.202002501
Y. Wang, X. Wu, B. Shao, X. Yang, G. Owens et al., Boosting solar steam generation by structure enhanced energy management. Sci. Bull. 65(16), 1380–1388 (2020). https://doi.org/10.1016/j.scib.2020.04.036
L. Ren, Q. Zhang, G. Zhao, T. Chen, Y. Wang et al., Interconnected porous fabric-based scalable evaporator with asymmetric wetting properties for high-yield and salt-rejecting solar brine treatment. Adv. Fiber Mater. 6(4), 1162–1173 (2024). https://doi.org/10.1007/s42765-024-00409-5
Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12(6), 1840–1847 (2019). https://doi.org/10.1039/C9EE00692C
M.A. Abdelsalam, M. Sajjad, A. Raza, F. AlMarzooqi, T. Zhang, Sustainable biomimetic solar distillation with edge crystallization for passive salt collection and zero brine discharge. Nat. Commun. 15(1), 874 (2024). https://doi.org/10.1038/s41467-024-45108-2
Z. Yang, D. Li, K. Yang, L. Chen, J. Wang et al., Optimized water supply in a solar evaporator for simultaneous freshwater production and salt recycle. Environ. Sci. Technol. 57(35), 13047–13055 (2023). https://doi.org/10.1021/acs.est.3c03457
Y. Zhang, T. Xiong, L. Suresh, H. Qu, X. Zhang et al., Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and In situ energy generation. ACS Energy Lett. 5(11), 3397–3404 (2020). https://doi.org/10.1021/acsenergylett.0c01797
M. Ding, D. Zhao, P. Feng, B. Wang, Z. Duan et al., Highly efficient three-dimensional solar evaporator for zero liquid discharge desalination of high-salinity brine. Carbon Energy 6(9), e548 (2024). https://doi.org/10.1002/cey2.548
C. Zhang, Y. Shi, L. Shi, H. Li, R. Li et al., Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12(1), 998 (2021). https://doi.org/10.1038/s41467-021-21124-4
Y. Shi, C. Zhang, R. Li, S. Zhuo, Y. Jin et al., Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 52(20), 11822–11830 (2018). https://doi.org/10.1021/acs.est.8b03300
L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
Q. Xiong, D. Wang, B. Shao, H. Yu, X. Wu et al., Unlocking zero liquid discharge: a parallel water supply strategy to realize selective salt crystallization for long-term interfacial solar evaporation. Adv. Funct. Mater. 35(7), 2409257 (2025). https://doi.org/10.1002/adfm.202409257
X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31(34), 2102618 (2021). https://doi.org/10.1002/adfm.202102618
M. Wang, J. Hu, M. Li, L. Zhang, M. Salimi et al., Bioinspired design of photothermal anti-fouling fabrics for solar-driven sustainable seawater desalination. Nano Energy 136, 110726 (2025). https://doi.org/10.1016/j.nanoen.2025.110726
X. Li, Y. Chen, B. Zhu, M. Salimi, L. Zhang et al., Biomimetic design of photothermal/electrothermal fabric composed of carbon-core/nanorod-array-shell fibers for efficient all-weather seawater evaporation. Adv. Funct. Mater. 35(25), 2423472 (2025). https://doi.org/10.1002/adfm.202423472
J. Hu, M.-M. Pazuki, R. Li, M. Salimi, H. Cai et al., Biomimetic design of breathable 2D photothermal fabric with three-layered structure for efficient four-plane evaporation of seawater. Adv. Mater. 37(14), 2420482 (2025). https://doi.org/10.1002/adma.202420482
X. Song, X. Li, B. Zhu, S. Sun, Z. Chen et al., MnO2/poly-L-lysine co-decorated carbon fiber cloth with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance for solar-enabled anti-fouling seawater desalination. Adv. Fiber Mater. 6(5), 1569–1582 (2024). https://doi.org/10.1007/s42765-024-00437-1
B. Zhu, Z. Liu, Y. Peng, D.K. Macharia, N. Yu et al., Solar-driven watersteam/brine production and brine-driven electricity generation by photothermal fabric coupled with osmotic membrane. Nano Energy 117, 108844 (2023). https://doi.org/10.1016/j.nanoen.2023.108844
R. Meng, J. Lyu, L. Zou, Q. Zhong, Z. Liu et al., CNT-based gel-coated cotton fabrics for constructing symmetrical evaporator with up/down inversion property for efficient continuous solar desalination. Desalination 554, 116494 (2023). https://doi.org/10.1016/j.desal.2023.116494
W. Chong, R. Meng, Z. Liu, Q. Liu, J. Hu et al., Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv. Fiber Mater. 5(3), 1063–1075 (2023). https://doi.org/10.1007/s42765-023-00276-6
Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu et al., Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15(8), 13007–13018 (2021). https://doi.org/10.1021/acsnano.1c01900
C. Madhavan, S.P. Meera, A. Kumar, Anatomical adaptations of mangroves to the intertidal environment and their dynamic responses to various stresses. Biol. Rev. 100(3), 1019–1046 (2025). https://doi.org/10.1111/brv.13172
M.S. Sadi, E. Kumpikaitė, Highly conductive composites using polypyrrole and carbon nanotubes on polydopamine functionalized cotton fabric for wearable sensing and heating applications. Cellulose 30(12), 7981–7999 (2023). https://doi.org/10.1007/s10570-023-05356-9
D. Xu, Y. Heng, X. Qin, D. Hu, Membrane-based symmetric supercapacitors composed of cellulose solution-derived polydopamine-modified separators and polypyrrole/graphene-doped polydopamine-modified electrodes. J. Energy Storage 50, 104640 (2022). https://doi.org/10.1016/j.est.2022.104640
Y. Heng, D. Xu, H. Fang, C. Zhong, D. Hu, Design of a cellulose-based supercapacitor based on polymerization-doping phase inversion of a polydopamine-modified separator and a polypyrrole/graphene-doped membrane electrode. Langmuir 38(21), 6539–6549 (2022). https://doi.org/10.1021/acs.langmuir.2c00131
X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
J. Xu, D. Wang, Y. Yuan, W. Wei, S. Gu et al., Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanops as template. Cellulose 22(2), 1355–1363 (2015). https://doi.org/10.1007/s10570-015-0546-x
K. Li, Y. Luo, Y. Wen, W. Shan, S. Shi, Reconfigurable liquids enabled by dynamic covalent chemistry. Aggregate 5(6), e621 (2024). https://doi.org/10.1002/agt2.621
J. Liu, Z. Wang, Q. Liu, S. Li, D. Wang et al., Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chem. Eng. J. 447, 137562 (2022). https://doi.org/10.1016/j.cej.2022.137562
X. Zhang, Y. Zhang, P. Wang, F. Shi, S. Du et al., Infinite coordination polymer polydopamine nanocomposites dual-pathway multistep induction of long-term hyperimmunity combined with photothermal-chemo synergistic therapy colorectal cancer. Aggregate 6(4), e730 (2025). https://doi.org/10.1002/agt2.730
Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087–2095 (2020). https://doi.org/10.1039/d0ee00399a
C.O. Popiel, J. Wojtkowiak, Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0°C to 150°C). Heat Transf. Eng. 19(3), 87–101 (1998). https://doi.org/10.1080/01457639808939929
X. Geng, P. Yang, Y. Wan, How to reduce enthalpy in the interfacial solar water generation system for enhancing efficiency? Nano Energy 123, 109434 (2024). https://doi.org/10.1016/j.nanoen.2024.109434
B. Sun, M. Wu, X. Zhao, L. Wang, Y. Jia et al., Insights into Janus interfaces with ordered micro/nanostructures for low-temperature differential evaporation. Adv. Funct. Mater. 34(41), 2406272 (2024). https://doi.org/10.1002/adfm.202406272
X.-P. Li, X. Li, H. Li, Y. Zhao, J. Wu et al., Reshapable MXene/graphene oxide/polyaniline plastic hybrids with patternable surfaces for highly efficient solar-driven water purification. Adv. Funct. Mater. 32(15), 2110636 (2022). https://doi.org/10.1002/adfm.202110636
Z. Wang, X. Wu, F. He, S. Peng, Y. Li, Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv. Funct. Mater. 31(22), 2011114 (2021). https://doi.org/10.1002/adfm.202011114
Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15(1), 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
Y. Wang, W. Zhao, Y. Lee, Y. Li, Z. Wang et al., Thermo-adaptive interfacial solar evaporation enhanced by dynamic water gating. Nat. Commun. 15(1), 6157 (2024). https://doi.org/10.1038/s41467-024-50279-z