Scalable and Healable Gradient Textiles for Multi-Scenario Radiative Cooling via Bicomponent Blow Spinning
Corresponding Author: Chao Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 86
Abstract
Radiative cooling textiles with spectrally selective surfaces offer a promising energy-efficient approach for sub-ambient cooling of outdoor objects and individuals. However, the spectrally selective mid-infrared emission of these textiles significantly hinders their efficient radiative heat exchange with self-heated objects, thereby posing a significant challenge to their versatile cooling applicability. Herein, we present a bicomponent blow spinning strategy for the production of scalable, ultra-flexible, and healable textiles featuring a tailored dual gradient in both chemical composition and fiber diameter. The gradient in the fiber diameter of this textile introduces a hierarchically porous structure across the sunlight incident area, thereby achieving a competitive solar reflectivity of 98.7% on its outer surface. Additionally, the gradient in the chemical composition of this textile contributes to the formation of Janus infrared-absorbing surfaces: The outer surface demonstrates a high mid-infrared emission, whereas the inner surface shows a broad infrared absorptivity, facilitating radiative heat exchange with underlying self-heated objects. Consequently, this textile demonstrates multi-scenario radiative cooling capabilities, enabling versatile outdoor cooling for unheated objects by 7.8 °C and self-heated objects by 13.6 °C, compared to commercial sunshade fabrics.
Highlights:
1 An ultra-flexible and gradient-structured textile is fabricated through bicomponent blow spinning, enabling the scalable production and in situ healing of the textile.
2 The gradient in fiber diameter of this textile creates a hierarchically porous structure in the region exposed to sunlight, resulting in a solar reflectivity of 98.7% on its outer surface.
3 The gradient in the chemical composition of this textile exhibits asymmetric spectral selectivity, wherein the outer surface offers high mid-infrared emissivity while the inner surface enables efficient radiative heat exchange.
4 The gradient textile demonstrates multi-scenario radiative cooling capabilities, enabling simultaneous cooling for unheated and self-heated outdoor objects.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Gallo, M. Quijal-Zamorano, R.F. Méndez Turrubiates, C. Tonne, X. Basagaña et al., Heat-related mortality in Europe during 2023 and the role of adaptation in protecting health. Nat. Med. 30(11), 3101–3105 (2024). https://doi.org/10.1038/s41591-024-03186-1
- L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
- M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- J. Liu, Y. Du, S. Zhang, J. Yan, Spectrally engineered textiles for personal cooling. Joule 8(10), 2727–2731 (2024). https://doi.org/10.1016/j.joule.2024.08.012
- R. Liu, S. Zhao, X. Wu, Z. Zhao, K. Wang et al., Radiative cooling meta-fabric integrated with knitting perspiration-wicking and coating heat conduction. ACS Nano 19(1), 826–836 (2025). https://doi.org/10.1021/acsnano.4c12196
- C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- G. Kim, K. Park, K.-J. Hwang, S. Jin, Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano 15(10), 15962–15971 (2021). https://doi.org/10.1021/acsnano.1c04104
- R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
- M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
- X. Liu, P. Wang, C. Xiao, L. Fu, H. Zhou et al., A bioinspired bilevel metamaterial for multispectral manipulation toward visible, multi-wavelength detection lasers and mid-infrared selective radiation. Adv. Mater. 35(41), 2302844 (2023). https://doi.org/10.1002/adma.202302844
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
- J. Wu, X. Yu, G. Li, S. Chen, Engineering ps towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chin. Chem. Lett. 35(4), 109234 (2024). https://doi.org/10.1016/j.cclet.2023.109234
- P.-H. Lan, C.-W. Hwang, T.-C. Chen, T.-W. Wang, H.-L. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
- Q. Zhang, J. Sun, X. Cao, H. Wei, R. Du et al., Poly(vinyl alcohol) composite nanofiber membranes with hydrophobicity for daytime radiative cooling. Compos. Commun. 48, 101947 (2024). https://doi.org/10.1016/j.coco.2024.101947
- Y. Zhang, J. Sun, Y. Wang, Y. Wu, C. Huang et al., A radiative-cooling hierarchical aligned porous poly(vinylidene fluoride) film by freeze-thaw-promoted nonsolvent-induced phase separation. Chin. J. Polym. Sci. 42(7), 976–983 (2024). https://doi.org/10.1007/s10118-024-3128-2
- Y. Wang, X. Zhang, S. Liu, Y. Liu, Q. Zhou et al., Thermal-rectified gradient porous polymeric film for solar-thermal regulatory cooling. Adv. Mater. 36(26), e2400102 (2024). https://doi.org/10.1002/adma.202400102
- H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-Micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
- C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 37(23), 2409738 (2025). https://doi.org/10.1002/adma.202409738
- S.-Y. Heo, G.J. Lee, D.H. Kim, Y.J. Kim, S. Ishii et al., A janus emitter for passive heat release from enclosures. Sci. Adv. 6(36), eabb1906 (2020). https://doi.org/10.1126/sciadv.abb1906
- Z. Yan, G. Zhu, D. Fan, Q. Li, Bioinspired metafabric with dual-gradient Janus design for personal radiative and evaporative cooling. Adv. Funct. Mater. 35(2), 2412261 (2025). https://doi.org/10.1002/adfm.202412261
- Y. Yin, C. Guo, W. Li, H. Liu, Q. Mu, A super-elastic wearable strain sensor based on PU/CNTs yarns for human-motion detection. Compos. Commun. 50, 102017 (2024). https://doi.org/10.1016/j.coco.2024.102017
- T. Yang, D. Jia, B. Xu, Y. Hao, Y. Hou et al., Textured CsPbI3 nanorods composite fibers for stable high output piezoelectric energy harvester. eScience 4(5), 100273 (2024). https://doi.org/10.1016/j.esci.2024.100273
- P. Wang, G. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all-nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat 7(1), e12629 (2025). https://doi.org/10.1002/inf2.12629
- J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based Janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17(1), 14 (2024). https://doi.org/10.1007/s40820-024-01510-5
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
- G. Wang, Z. Xu, Y. Qi, Y. Fang, G. Ning et al., Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chin. Chem. Lett. 35(10), 109503 (2024). https://doi.org/10.1016/j.cclet.2024.109503
- W. Chen, J. Wu, Y. Cao, Y. Liu, F. Xu, Highly thermal conductivity polymer composites reinforced by BNNS/UHMWPE fabric for reliable electronic thermal protection and management. Compos. Commun. 49, 101991 (2024). https://doi.org/10.1016/j.coco.2024.101991
- H. Guo, B. Ma, J. Yu, X. Wang, Y. Si, Photonic metafabric with biomimetic triangular light track for passive radiative cooling. Adv. Fiber Mater. 7(1), 106–116 (2025). https://doi.org/10.1007/s42765-024-00467-9
- S. Pan, M. Zhu, Nanoprocessed silk makes skin feel cool. Adv. Fiber Mater. 4(3), 319–320 (2022). https://doi.org/10.1007/s42765-022-00168-1
- L. Liu, Y. Liu, J. Min, Q. Ding, Y. Fan et al., Nanofiber derived MXene composite paper for electromagnetic shielding and thermal management. Compos. Commun. 48, 101935 (2024). https://doi.org/10.1016/j.coco.2024.101935
- H. Yu, S. Zhang, Y. Lian, M. Liu, M. Wang et al., Electronic textile with passive thermal management for outdoor health monitoring. Adv. Fiber Mater. 6(4), 1241–1252 (2024). https://doi.org/10.1007/s42765-024-00412-w
- H. Wen, J. Ma, Y. Jiang, Z. Xiong, Z. Zhang et al., Lightweight flexible composite material with superior electromagnetic interference shielding and impact resistance properties. Compos. Commun. 47, 101868 (2024). https://doi.org/10.1016/j.coco.2024.101868
- S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
- H. Guo, C. Li, J. Yu, X. Wang, Y. Si, Tailored fabrics with biomimetic Janus spectral responsiveness for all-weather switchable thermoregulation. Adv. Funct. Mater. 34(45), 2406638 (2024). https://doi.org/10.1002/adfm.202406638
- Q. Cheng, S. Gomez, G. Hu, A. Abaalkhail, J.E. Beasley et al., Realizing optimal radiative cooling walls in building-energy nexus via asymmetric emissivity. Nexus 1(3), 100028 (2024). https://doi.org/10.1016/j.ynexs.2024.100028
- R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
- Z. Yang, T. Chen, X. Tang, F. Xu, J. Zhang, Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv. Fiber Mater. 5(4), 1367–1377 (2023). https://doi.org/10.1007/s42765-023-00271-x
- J. Huang, L. Yuan, J. Liao, Y. Liu, D. Li et al., A janus spectrally selective glazing toward all-season energy-efficient windows. Small 21(10), e2407204 (2025). https://doi.org/10.1002/smll.202407204
- X. Yue, T. Zhang, D. Yang, F. Qiu, G. Wei et al., Multifunctional janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63, 103808 (2019). https://doi.org/10.1016/j.nanoen.2019.06.004
- Q. Wu, Y. Cui, G. Xia, J. Yang, S. Du et al., Passive daytime radiative cooling coatings with renewable self-cleaning functions. Chin. Chem. Lett. 35(2), 108687 (2024). https://doi.org/10.1016/j.cclet.2023.108687
- Y. Li, Y. Song, H. Zu, F. Zhang, H. Yang et al., Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation. Exploration 4(3), 20230085 (2024). https://doi.org/10.1002/EXP.20230085
- P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
- H. Liu, H.-G. Ye, M. Gao, Q. Li, Z. Liu et al., Conformal microfluidic-blow-spun 3D photothermal catalytic spherical evaporator for omnidirectional enhanced solar steam generation and CO2 reduction. Adv. Sci. 8(19), 2101232 (2021). https://doi.org/10.1002/advs.202101232
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
- C. Jia, L. Li, J. Song, Z. Li, H. Wu, Mass production of ultrafine fibers by a versatile solution blow spinning method. Acc. Mater. Res. 2(6), 432–446 (2021). https://doi.org/10.1021/accountsmr.1c00040
- T. Cui, J. Yu, Q. Li, C.-F. Wang, S. Chen et al., Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv. Mater. 32(32), 2000982 (2020). https://doi.org/10.1002/adma.202000982
- B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11(1), 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
- S. Srinivasan, S.S. Chhatre, J.M. Mabry, R.E. Cohen, G.H. McKinley, Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 52(14), 3209–3218 (2011). https://doi.org/10.1016/j.polymer.2011.05.008
- H. Bai, K. Zhu, Z. Wang, B. Shen, J. Zhai, 2D fillers highly boost the discharge energy density of polymer-based nanocomposites with trilayered architecture. Adv. Funct. Mater. 31(41), 2102646 (2021). https://doi.org/10.1002/adfm.202102646
- L.-P. Sung, X. Gu, D.L. Ho, F.A. Landis, D. Nguyen, Effect of composition and processing condition on microstructural properties and durability of fluoropolymer/acrylic blends. Chin. J. Polym. Sci. 27(1), 59 (2009). https://doi.org/10.1142/s0256767909003650
References
E. Gallo, M. Quijal-Zamorano, R.F. Méndez Turrubiates, C. Tonne, X. Basagaña et al., Heat-related mortality in Europe during 2023 and the role of adaptation in protecting health. Nat. Med. 30(11), 3101–3105 (2024). https://doi.org/10.1038/s41591-024-03186-1
L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
J. Liu, Y. Du, S. Zhang, J. Yan, Spectrally engineered textiles for personal cooling. Joule 8(10), 2727–2731 (2024). https://doi.org/10.1016/j.joule.2024.08.012
R. Liu, S. Zhao, X. Wu, Z. Zhao, K. Wang et al., Radiative cooling meta-fabric integrated with knitting perspiration-wicking and coating heat conduction. ACS Nano 19(1), 826–836 (2025). https://doi.org/10.1021/acsnano.4c12196
C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
G. Kim, K. Park, K.-J. Hwang, S. Jin, Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano 15(10), 15962–15971 (2021). https://doi.org/10.1021/acsnano.1c04104
R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
X. Liu, P. Wang, C. Xiao, L. Fu, H. Zhou et al., A bioinspired bilevel metamaterial for multispectral manipulation toward visible, multi-wavelength detection lasers and mid-infrared selective radiation. Adv. Mater. 35(41), 2302844 (2023). https://doi.org/10.1002/adma.202302844
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
J. Wu, X. Yu, G. Li, S. Chen, Engineering ps towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chin. Chem. Lett. 35(4), 109234 (2024). https://doi.org/10.1016/j.cclet.2023.109234
P.-H. Lan, C.-W. Hwang, T.-C. Chen, T.-W. Wang, H.-L. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
Q. Zhang, J. Sun, X. Cao, H. Wei, R. Du et al., Poly(vinyl alcohol) composite nanofiber membranes with hydrophobicity for daytime radiative cooling. Compos. Commun. 48, 101947 (2024). https://doi.org/10.1016/j.coco.2024.101947
Y. Zhang, J. Sun, Y. Wang, Y. Wu, C. Huang et al., A radiative-cooling hierarchical aligned porous poly(vinylidene fluoride) film by freeze-thaw-promoted nonsolvent-induced phase separation. Chin. J. Polym. Sci. 42(7), 976–983 (2024). https://doi.org/10.1007/s10118-024-3128-2
Y. Wang, X. Zhang, S. Liu, Y. Liu, Q. Zhou et al., Thermal-rectified gradient porous polymeric film for solar-thermal regulatory cooling. Adv. Mater. 36(26), e2400102 (2024). https://doi.org/10.1002/adma.202400102
H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-Micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 37(23), 2409738 (2025). https://doi.org/10.1002/adma.202409738
S.-Y. Heo, G.J. Lee, D.H. Kim, Y.J. Kim, S. Ishii et al., A janus emitter for passive heat release from enclosures. Sci. Adv. 6(36), eabb1906 (2020). https://doi.org/10.1126/sciadv.abb1906
Z. Yan, G. Zhu, D. Fan, Q. Li, Bioinspired metafabric with dual-gradient Janus design for personal radiative and evaporative cooling. Adv. Funct. Mater. 35(2), 2412261 (2025). https://doi.org/10.1002/adfm.202412261
Y. Yin, C. Guo, W. Li, H. Liu, Q. Mu, A super-elastic wearable strain sensor based on PU/CNTs yarns for human-motion detection. Compos. Commun. 50, 102017 (2024). https://doi.org/10.1016/j.coco.2024.102017
T. Yang, D. Jia, B. Xu, Y. Hao, Y. Hou et al., Textured CsPbI3 nanorods composite fibers for stable high output piezoelectric energy harvester. eScience 4(5), 100273 (2024). https://doi.org/10.1016/j.esci.2024.100273
P. Wang, G. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all-nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat 7(1), e12629 (2025). https://doi.org/10.1002/inf2.12629
J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based Janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17(1), 14 (2024). https://doi.org/10.1007/s40820-024-01510-5
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
G. Wang, Z. Xu, Y. Qi, Y. Fang, G. Ning et al., Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chin. Chem. Lett. 35(10), 109503 (2024). https://doi.org/10.1016/j.cclet.2024.109503
W. Chen, J. Wu, Y. Cao, Y. Liu, F. Xu, Highly thermal conductivity polymer composites reinforced by BNNS/UHMWPE fabric for reliable electronic thermal protection and management. Compos. Commun. 49, 101991 (2024). https://doi.org/10.1016/j.coco.2024.101991
H. Guo, B. Ma, J. Yu, X. Wang, Y. Si, Photonic metafabric with biomimetic triangular light track for passive radiative cooling. Adv. Fiber Mater. 7(1), 106–116 (2025). https://doi.org/10.1007/s42765-024-00467-9
S. Pan, M. Zhu, Nanoprocessed silk makes skin feel cool. Adv. Fiber Mater. 4(3), 319–320 (2022). https://doi.org/10.1007/s42765-022-00168-1
L. Liu, Y. Liu, J. Min, Q. Ding, Y. Fan et al., Nanofiber derived MXene composite paper for electromagnetic shielding and thermal management. Compos. Commun. 48, 101935 (2024). https://doi.org/10.1016/j.coco.2024.101935
H. Yu, S. Zhang, Y. Lian, M. Liu, M. Wang et al., Electronic textile with passive thermal management for outdoor health monitoring. Adv. Fiber Mater. 6(4), 1241–1252 (2024). https://doi.org/10.1007/s42765-024-00412-w
H. Wen, J. Ma, Y. Jiang, Z. Xiong, Z. Zhang et al., Lightweight flexible composite material with superior electromagnetic interference shielding and impact resistance properties. Compos. Commun. 47, 101868 (2024). https://doi.org/10.1016/j.coco.2024.101868
S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
H. Guo, C. Li, J. Yu, X. Wang, Y. Si, Tailored fabrics with biomimetic Janus spectral responsiveness for all-weather switchable thermoregulation. Adv. Funct. Mater. 34(45), 2406638 (2024). https://doi.org/10.1002/adfm.202406638
Q. Cheng, S. Gomez, G. Hu, A. Abaalkhail, J.E. Beasley et al., Realizing optimal radiative cooling walls in building-energy nexus via asymmetric emissivity. Nexus 1(3), 100028 (2024). https://doi.org/10.1016/j.ynexs.2024.100028
R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
Z. Yang, T. Chen, X. Tang, F. Xu, J. Zhang, Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv. Fiber Mater. 5(4), 1367–1377 (2023). https://doi.org/10.1007/s42765-023-00271-x
J. Huang, L. Yuan, J. Liao, Y. Liu, D. Li et al., A janus spectrally selective glazing toward all-season energy-efficient windows. Small 21(10), e2407204 (2025). https://doi.org/10.1002/smll.202407204
X. Yue, T. Zhang, D. Yang, F. Qiu, G. Wei et al., Multifunctional janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63, 103808 (2019). https://doi.org/10.1016/j.nanoen.2019.06.004
Q. Wu, Y. Cui, G. Xia, J. Yang, S. Du et al., Passive daytime radiative cooling coatings with renewable self-cleaning functions. Chin. Chem. Lett. 35(2), 108687 (2024). https://doi.org/10.1016/j.cclet.2023.108687
Y. Li, Y. Song, H. Zu, F. Zhang, H. Yang et al., Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation. Exploration 4(3), 20230085 (2024). https://doi.org/10.1002/EXP.20230085
P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
H. Liu, H.-G. Ye, M. Gao, Q. Li, Z. Liu et al., Conformal microfluidic-blow-spun 3D photothermal catalytic spherical evaporator for omnidirectional enhanced solar steam generation and CO2 reduction. Adv. Sci. 8(19), 2101232 (2021). https://doi.org/10.1002/advs.202101232
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
C. Jia, L. Li, J. Song, Z. Li, H. Wu, Mass production of ultrafine fibers by a versatile solution blow spinning method. Acc. Mater. Res. 2(6), 432–446 (2021). https://doi.org/10.1021/accountsmr.1c00040
T. Cui, J. Yu, Q. Li, C.-F. Wang, S. Chen et al., Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv. Mater. 32(32), 2000982 (2020). https://doi.org/10.1002/adma.202000982
B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11(1), 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
S. Srinivasan, S.S. Chhatre, J.M. Mabry, R.E. Cohen, G.H. McKinley, Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 52(14), 3209–3218 (2011). https://doi.org/10.1016/j.polymer.2011.05.008
H. Bai, K. Zhu, Z. Wang, B. Shen, J. Zhai, 2D fillers highly boost the discharge energy density of polymer-based nanocomposites with trilayered architecture. Adv. Funct. Mater. 31(41), 2102646 (2021). https://doi.org/10.1002/adfm.202102646
L.-P. Sung, X. Gu, D.L. Ho, F.A. Landis, D. Nguyen, Effect of composition and processing condition on microstructural properties and durability of fluoropolymer/acrylic blends. Chin. J. Polym. Sci. 27(1), 59 (2009). https://doi.org/10.1142/s0256767909003650