COF Scaffold Membrane with Gate-Lane Nanostructure for Efficient Li+/Mg2+ Separation
Corresponding Author: Runnan Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 126
Abstract
Due to complex ion–ion and ion–membrane interactions, creating innovative membrane structures to acquire favorable ion mixing effect and high separation performance remains a big challenge. Herein, we design covalent organic framework (COF) scaffold membrane with gate-lane nanostructure for efficient Li+/Mg2+ separation. COF nanosheets, serving as the scaffold, are intercalated by polyethyleneimine (PEI) to form the permeating layer. Subsequently, PEI on the surface reacts with 1,4-phenylene diisocyanate to form the polyurea gating layer. The gating layer, bearing tailored smaller pore size, affords high rejection to co-ions (Mg2+) and thus high Li+/Mg2+ selectivity. The permeating layer, with asymmetric charge and spatial nanostructure for creating individual lanes of Li+ and Cl−, facilitates Li+ transport and thus high Li+ permeability. The optimum COF scaffold membrane exhibits the permeance of 11.5 L m−2 h−1/bar−1 and true selectivity of 231.9 with Li+ enrichment of 120.2% at the Mg2+/Li+ mass ratio of 50, exceeding the ideal selectivity of 80.5 and outperforming all ever-reported positively charged nanofiltration membranes. Our work may stimulate the further thinking about how to design the hierarchical membrane structure to achieve favorable ion mixing effect and break the membrane permeability–selectivity trade-off in chemical separations.
Highlights:
1 Covalent organic framework (COF) scaffold membranes with gate-lane nanostructure were prepared.
2 The gating layer affords high rejection to Mg2+ and thus high Li+/Mg2+ selectivity. The permeating layer bearing Li+ lanes and Cl− lanes facilitates Li+ transport and thus high Li+ permeability.
3 The COF scaffold membrane exhibits the true selectivity of 231.9 with Li+ enrichment of 120.2% at the Mg2+/Li+ mass ratio of 50, exceeding the ideal selectivity of 80.5.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang et al., Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design. Science 385(6716), 1438–1444 (2024). https://doi.org/10.1126/science.adg8487
- P. Zuo, C. Ye, Z. Jiao, J. Luo, J. Fang et al., Near-frictionless ion transport within triazine framework membranes. Nature 617(7960), 299–305 (2023). https://doi.org/10.1038/s41586-023-05888-x
- L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380–383 (2017). https://doi.org/10.1038/nature24044
- R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao et al., Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19(2), 195–202 (2020). https://doi.org/10.1038/s41563-019-0536-8
- J. Lu, H. Zhang, J. Hou, X. Li, X. Hu et al., Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 19(7), 767–774 (2020). https://doi.org/10.1038/s41563-020-0634-7
- H. Peng, Y. Su, X. Liu, J. Li, Q. Zhao, Designing gemini-electrolytes for scalable Mg2+/Li+ separation membranes and modules. Adv. Funct. Mater. 33(51), 2305815 (2023). https://doi.org/10.1002/adfm.202305815
- B. Lyu, M. Wang, J. Jiang, Z. Jiang, Molecular design of covalent–organic framework membranes for Li+/Mg2+ separation: significant charge effect. J. Membr. Sci. 662, 120976 (2022). https://doi.org/10.1016/j.memsci.2022.120976
- G. Zhao, Y. Zhang, Y. Li, G. Pan, Y. Liu, Positively charged nanofiltration membranes for efficient Mg2+/Li+ separation from high Mg2+/Li+ ratio brine. Adv. Membr. 3, 100065 (2023). https://doi.org/10.1016/j.advmem.2023.100065
- H. Wen, Z. Liu, J. Xu, J.P. Chen, Nanofiltration membrane for enhancement in lithium recovery from salt-lake brine: a review. Desalination 591, 117967 (2024). https://doi.org/10.1016/j.desal.2024.117967
- O. Setiawan, Y.-H. Huang, Z.G. Abdi, W.-S. Hung, T.-S. Chung, pH-tunable and pH-responsive polybenzimidazole (PBI) nanofiltration membranes for Li+/Mg2+ separation. J. Membr. Sci. 668, 121269 (2023). https://doi.org/10.1016/j.memsci.2022.121269
- H.-Y. Guo, X.-Q. Gao, K.-C. Yu, X.-M. Wang, S.-M. Liu, Ion adsorption on nanofiltration membrane surface and its effect on rejection of charged solutes: a zeta potential approach. Sep. Purif. Technol. 326, 124830 (2023). https://doi.org/10.1016/j.seppur.2023.124830
- Q. Bi, C. Zhang, J. Liu, X. Liu, S. Xu, Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties. Sep. Purif. Technol. 257, 117959 (2021). https://doi.org/10.1016/j.seppur.2020.117959
- Y.-F. Mi, Y.-H. Huang, S.-H. He, R. Ma, Y.-D. Meng et al., Simultaneous regulation of pore size and surface charge of nanofiltration membrane using carbon quantum dots for improved selective separation. Sep. Purif. Technol. 317, 123870 (2023). https://doi.org/10.1016/j.seppur.2023.123870
- T. Qi, X. Chen, T. Lu, D. Jin, R. Xu et al., Enhancing ion separation efficiency: Janus charged nanofiltration membrane fabricated via polyethyleneimine-manipulated interfacial polymerization. J. Membr. Sci. 706, 122930 (2024). https://doi.org/10.1016/j.memsci.2024.122930
- Z. He, K. Wang, The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes. IOP Conf. Ser. Mater. Sci. Eng. 323(1), 012002 (2018). https://doi.org/10.1088/1757-899X/323/1/012002
- C. Zhang, J. Tian, S. Qi, B. Yang, Z. Dong, Highly efficient exclusion of alkali metal ions via electrostatic repulsion inside positively charged channels. Nano Lett. 20(5), 3627–3632 (2020). https://doi.org/10.1021/acs.nanolett.0c00567
- S. Kubota, O. Shirai, T. Hibi, Y. Tozawa, K. Kano, Effect of counter ions on the transport current across membranes containing KAT1 potassium channel. Anal. Sci. 29(1), 161–164 (2013). https://doi.org/10.2116/analsci.29.161
- D. Lu, Z. Yao, L. Jiao, M. Waheed, Z. Sun et al., Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/ multivalent ion-selective nanofiltration membrane. Adv. Membr. 2, 100032 (2022). https://doi.org/10.1016/j.advmem.2022.100032
- K. Wang, X. Wang, B. Januszewski, Y. Liu, D. Li et al., Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chem. Soc. Rev. 51(2), 672–719 (2022). https://doi.org/10.1039/d0cs01599g
- Q. Peng, R. Wang, Z. Zhao, S. Lin, Y. Liu et al., Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane. Nat. Commun. 15(1), 2505 (2024). https://doi.org/10.1038/s41467-024-46887-4
- H. Wu, Y. Lin, W. Feng, T. Liu, L. Wang et al., A novel nanofiltration membrane with [MimAP] [Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio. J. Membr. Sci. 603, 117997 (2020). https://doi.org/10.1016/j.memsci.2020.117997
- R. He, C. Dong, S. Xu, C. Liu, S. Zhao et al., Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination 525, 115492 (2022). https://doi.org/10.1016/j.desal.2021.115492
- H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang et al., Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50(9), 5468–5516 (2021). https://doi.org/10.1039/d0cs01347a
- S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde et al., Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48(10), 2665–2681 (2019). https://doi.org/10.1039/c8cs00919h
- Y. Zheng, Z. Li, Z. Yang, J. Shen, C. Yang et al., Tailor-made heterocharged covalent organic framework membrane for efficient ion separation. Small 20(44), e2403300 (2024). https://doi.org/10.1002/smll.202403300
- Y. Kong, B. Lyu, C. Fan, Y. Yang, X. Wang et al., Manipulation of cationic group density in covalent organic framework membranes for efficient anion transport. J. Am. Chem. Soc. 145(51), 27984–27992 (2023). https://doi.org/10.1021/jacs.3c07958
- C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 355(6328), eaal1585 (2017). https://doi.org/10.1126/science.aal1585
- Y. Yu, J. Fan, A. Esfandiar, Y. Zhu, H. Wu et al., Charge asymmetry effect in ion transport through angstrom-scale channels. J. Phys. Chem. C 123(2), 1462–1469 (2019). https://doi.org/10.1021/acs.jpcc.8b09742
- K.J. Tielrooij, N. Garcia-Araez, M. Bonn, H.J. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010). https://doi.org/10.1126/science.1183512
- A. Mukhopadhyay, A.T. Fenley, I.S. Tolokh, A.V. Onufriev, Charge hydration asymmetry: the basic principle and how to use it to test and improve water models. J. Phys. Chem. B 116(32), 9776–9783 (2012). https://doi.org/10.1021/jp305226j
- X. Wei, G. Zhang, Y. Shen, Y. Zhong, R. Liu et al., Persistent organic nanopores amenable to structural and functional tuning. J. Am. Chem. Soc. 138(8), 2749–2754 (2016). https://doi.org/10.1021/jacs.5b12698
- A. Esfandiar, B. Radha, F.C. Wang, Q. Yang, S. Hu et al., Size effect in ion transport through angstrom-scale slits. Science 358(6362), 511–513 (2017). https://doi.org/10.1126/science.aan5275
- R. Zangi, J.B.F.N. Engberts, Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J. Am. Chem. Soc. 127(7), 2272–2276 (2005). https://doi.org/10.1021/ja044426f
- Y. Yang, Z. Li, Z. Yang, Q. Zhang, Q. Chen et al., Ultrafast lithium-ion transport engineered by nanoconfinement effect. Adv. Mater. 37(8), e2416266 (2025). https://doi.org/10.1002/adma.202416266
- F. Liu, Z. Zhang, L. Csanády, D.C. Gadsby, J. Chen, Molecular structure of the human CFTR ion channel. Cell 169(1), 85–95 (2017). https://doi.org/10.1016/j.cell.2017.02.024
- K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre et al., Structural determinants of water permeation through aquaporin-1. Nature 407(6804), 599–605 (2000). https://doi.org/10.1038/35036519
- S.Y. Noskov, S. Bernèche, B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431(7010), 830–834 (2004). https://doi.org/10.1038/nature02943
- P. Hess, R.W. Tsien, Mechanism of ion permeation through calcium channels. Nature 309(5967), 453–456 (1984). https://doi.org/10.1038/309453a0
- X. He, L. Cao, G. He, A. Zhao, X. Mao et al., A highly conductive and robust anion conductor obtained via synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets. J. Mater. Chem. A 6(22), 10277–10285 (2018). https://doi.org/10.1039/C8TA02193G
- J. Guo, Y. Zhang, F. Yang, B.B. Mamba, J. Ma et al., Ultra-permeable dual-mechanism-driven graphene oxide framework membranes for precision ion separations. Angew. Chem. Int. Ed. 62(23), e202302931 (2023). https://doi.org/10.1002/anie.202302931
- B. Hu, H. Deng, Y. Zheng, Z. Zhang, T. Wu et al., Hydrogen bond-mediated assembly of homo-charged COF nanosheets and polyelectrolytes towards robust Li+/Mg2+ separation membrane. J. Membr. Sci. 715, 123489 (2025). https://doi.org/10.1016/j.memsci.2024.123489
- H.M. Park, M. Ismael, H. Takaba, Y.T. Lee, Acid-resistant thin-film composite nanofiltration membrane prepared from polyamide-polyurea and the behavior of density functional theory study. J. Membr. Sci. 645, 120175 (2022). https://doi.org/10.1016/j.memsci.2021.120175
- E.R. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
- H. Zhang, J. Xing, G. Wei, X. Wang, S. Chen et al., Electrostatic-induced ion-confined partitioning in graphene nanolaminate membrane for breaking anion-cation co-transport to enhance desalination. Nat. Commun. 15(1), 4324 (2024). https://doi.org/10.1038/s41467-024-48681-8
- X. Zhou, Z. Wang, R. Epsztein, C. Zhan, W. Li et al., Intrapore energy barriers govern ion transport and selectivity of desalination membranes. Sci. Adv. 6(48), eabd9045 (2020). https://doi.org/10.1126/sciadv.abd9045
- F. Sheng, B. Wu, X. Li, T. Xu, M.A. Shehzad et al., Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 33(44), 2104404 (2021). https://doi.org/10.1002/adma.202104404
- H. Wang, Y. Zhai, Y. Li, Y. Cao, B. Shi et al., Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun. 13(1), 7123 (2022). https://doi.org/10.1038/s41467-022-34849-7
- L. Cao, I.-C. Chen, Z. Li, X. Liu, M. Mubashir et al., Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nat. Commun. 13(1), 7894 (2022). https://doi.org/10.1038/s41467-022-35594-7
- Q.-W. Meng, S. Wu, M. Liu, Q. Guo, W. Xian et al., Guanidinium-based covalent organic framework membrane for single-acid recovery. Sci. Adv. 9(25), eadh0207 (2023). https://doi.org/10.1126/sciadv.adh0207
- Q.-W. Meng, J. Li, Z. Lai, W. Xian, S. Wang et al., Optimizing selectivity via membrane molecular packing manipulation for simultaneous cation and anion screening. Sci. Adv. 10(39), eado8658 (2024). https://doi.org/10.1126/sciadv.ado8658
References
Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang et al., Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design. Science 385(6716), 1438–1444 (2024). https://doi.org/10.1126/science.adg8487
P. Zuo, C. Ye, Z. Jiao, J. Luo, J. Fang et al., Near-frictionless ion transport within triazine framework membranes. Nature 617(7960), 299–305 (2023). https://doi.org/10.1038/s41586-023-05888-x
L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380–383 (2017). https://doi.org/10.1038/nature24044
R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao et al., Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19(2), 195–202 (2020). https://doi.org/10.1038/s41563-019-0536-8
J. Lu, H. Zhang, J. Hou, X. Li, X. Hu et al., Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 19(7), 767–774 (2020). https://doi.org/10.1038/s41563-020-0634-7
H. Peng, Y. Su, X. Liu, J. Li, Q. Zhao, Designing gemini-electrolytes for scalable Mg2+/Li+ separation membranes and modules. Adv. Funct. Mater. 33(51), 2305815 (2023). https://doi.org/10.1002/adfm.202305815
B. Lyu, M. Wang, J. Jiang, Z. Jiang, Molecular design of covalent–organic framework membranes for Li+/Mg2+ separation: significant charge effect. J. Membr. Sci. 662, 120976 (2022). https://doi.org/10.1016/j.memsci.2022.120976
G. Zhao, Y. Zhang, Y. Li, G. Pan, Y. Liu, Positively charged nanofiltration membranes for efficient Mg2+/Li+ separation from high Mg2+/Li+ ratio brine. Adv. Membr. 3, 100065 (2023). https://doi.org/10.1016/j.advmem.2023.100065
H. Wen, Z. Liu, J. Xu, J.P. Chen, Nanofiltration membrane for enhancement in lithium recovery from salt-lake brine: a review. Desalination 591, 117967 (2024). https://doi.org/10.1016/j.desal.2024.117967
O. Setiawan, Y.-H. Huang, Z.G. Abdi, W.-S. Hung, T.-S. Chung, pH-tunable and pH-responsive polybenzimidazole (PBI) nanofiltration membranes for Li+/Mg2+ separation. J. Membr. Sci. 668, 121269 (2023). https://doi.org/10.1016/j.memsci.2022.121269
H.-Y. Guo, X.-Q. Gao, K.-C. Yu, X.-M. Wang, S.-M. Liu, Ion adsorption on nanofiltration membrane surface and its effect on rejection of charged solutes: a zeta potential approach. Sep. Purif. Technol. 326, 124830 (2023). https://doi.org/10.1016/j.seppur.2023.124830
Q. Bi, C. Zhang, J. Liu, X. Liu, S. Xu, Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties. Sep. Purif. Technol. 257, 117959 (2021). https://doi.org/10.1016/j.seppur.2020.117959
Y.-F. Mi, Y.-H. Huang, S.-H. He, R. Ma, Y.-D. Meng et al., Simultaneous regulation of pore size and surface charge of nanofiltration membrane using carbon quantum dots for improved selective separation. Sep. Purif. Technol. 317, 123870 (2023). https://doi.org/10.1016/j.seppur.2023.123870
T. Qi, X. Chen, T. Lu, D. Jin, R. Xu et al., Enhancing ion separation efficiency: Janus charged nanofiltration membrane fabricated via polyethyleneimine-manipulated interfacial polymerization. J. Membr. Sci. 706, 122930 (2024). https://doi.org/10.1016/j.memsci.2024.122930
Z. He, K. Wang, The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes. IOP Conf. Ser. Mater. Sci. Eng. 323(1), 012002 (2018). https://doi.org/10.1088/1757-899X/323/1/012002
C. Zhang, J. Tian, S. Qi, B. Yang, Z. Dong, Highly efficient exclusion of alkali metal ions via electrostatic repulsion inside positively charged channels. Nano Lett. 20(5), 3627–3632 (2020). https://doi.org/10.1021/acs.nanolett.0c00567
S. Kubota, O. Shirai, T. Hibi, Y. Tozawa, K. Kano, Effect of counter ions on the transport current across membranes containing KAT1 potassium channel. Anal. Sci. 29(1), 161–164 (2013). https://doi.org/10.2116/analsci.29.161
D. Lu, Z. Yao, L. Jiao, M. Waheed, Z. Sun et al., Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/ multivalent ion-selective nanofiltration membrane. Adv. Membr. 2, 100032 (2022). https://doi.org/10.1016/j.advmem.2022.100032
K. Wang, X. Wang, B. Januszewski, Y. Liu, D. Li et al., Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chem. Soc. Rev. 51(2), 672–719 (2022). https://doi.org/10.1039/d0cs01599g
Q. Peng, R. Wang, Z. Zhao, S. Lin, Y. Liu et al., Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane. Nat. Commun. 15(1), 2505 (2024). https://doi.org/10.1038/s41467-024-46887-4
H. Wu, Y. Lin, W. Feng, T. Liu, L. Wang et al., A novel nanofiltration membrane with [MimAP] [Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio. J. Membr. Sci. 603, 117997 (2020). https://doi.org/10.1016/j.memsci.2020.117997
R. He, C. Dong, S. Xu, C. Liu, S. Zhao et al., Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination 525, 115492 (2022). https://doi.org/10.1016/j.desal.2021.115492
H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang et al., Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50(9), 5468–5516 (2021). https://doi.org/10.1039/d0cs01347a
S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde et al., Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48(10), 2665–2681 (2019). https://doi.org/10.1039/c8cs00919h
Y. Zheng, Z. Li, Z. Yang, J. Shen, C. Yang et al., Tailor-made heterocharged covalent organic framework membrane for efficient ion separation. Small 20(44), e2403300 (2024). https://doi.org/10.1002/smll.202403300
Y. Kong, B. Lyu, C. Fan, Y. Yang, X. Wang et al., Manipulation of cationic group density in covalent organic framework membranes for efficient anion transport. J. Am. Chem. Soc. 145(51), 27984–27992 (2023). https://doi.org/10.1021/jacs.3c07958
C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 355(6328), eaal1585 (2017). https://doi.org/10.1126/science.aal1585
Y. Yu, J. Fan, A. Esfandiar, Y. Zhu, H. Wu et al., Charge asymmetry effect in ion transport through angstrom-scale channels. J. Phys. Chem. C 123(2), 1462–1469 (2019). https://doi.org/10.1021/acs.jpcc.8b09742
K.J. Tielrooij, N. Garcia-Araez, M. Bonn, H.J. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010). https://doi.org/10.1126/science.1183512
A. Mukhopadhyay, A.T. Fenley, I.S. Tolokh, A.V. Onufriev, Charge hydration asymmetry: the basic principle and how to use it to test and improve water models. J. Phys. Chem. B 116(32), 9776–9783 (2012). https://doi.org/10.1021/jp305226j
X. Wei, G. Zhang, Y. Shen, Y. Zhong, R. Liu et al., Persistent organic nanopores amenable to structural and functional tuning. J. Am. Chem. Soc. 138(8), 2749–2754 (2016). https://doi.org/10.1021/jacs.5b12698
A. Esfandiar, B. Radha, F.C. Wang, Q. Yang, S. Hu et al., Size effect in ion transport through angstrom-scale slits. Science 358(6362), 511–513 (2017). https://doi.org/10.1126/science.aan5275
R. Zangi, J.B.F.N. Engberts, Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J. Am. Chem. Soc. 127(7), 2272–2276 (2005). https://doi.org/10.1021/ja044426f
Y. Yang, Z. Li, Z. Yang, Q. Zhang, Q. Chen et al., Ultrafast lithium-ion transport engineered by nanoconfinement effect. Adv. Mater. 37(8), e2416266 (2025). https://doi.org/10.1002/adma.202416266
F. Liu, Z. Zhang, L. Csanády, D.C. Gadsby, J. Chen, Molecular structure of the human CFTR ion channel. Cell 169(1), 85–95 (2017). https://doi.org/10.1016/j.cell.2017.02.024
K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre et al., Structural determinants of water permeation through aquaporin-1. Nature 407(6804), 599–605 (2000). https://doi.org/10.1038/35036519
S.Y. Noskov, S. Bernèche, B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431(7010), 830–834 (2004). https://doi.org/10.1038/nature02943
P. Hess, R.W. Tsien, Mechanism of ion permeation through calcium channels. Nature 309(5967), 453–456 (1984). https://doi.org/10.1038/309453a0
X. He, L. Cao, G. He, A. Zhao, X. Mao et al., A highly conductive and robust anion conductor obtained via synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets. J. Mater. Chem. A 6(22), 10277–10285 (2018). https://doi.org/10.1039/C8TA02193G
J. Guo, Y. Zhang, F. Yang, B.B. Mamba, J. Ma et al., Ultra-permeable dual-mechanism-driven graphene oxide framework membranes for precision ion separations. Angew. Chem. Int. Ed. 62(23), e202302931 (2023). https://doi.org/10.1002/anie.202302931
B. Hu, H. Deng, Y. Zheng, Z. Zhang, T. Wu et al., Hydrogen bond-mediated assembly of homo-charged COF nanosheets and polyelectrolytes towards robust Li+/Mg2+ separation membrane. J. Membr. Sci. 715, 123489 (2025). https://doi.org/10.1016/j.memsci.2024.123489
H.M. Park, M. Ismael, H. Takaba, Y.T. Lee, Acid-resistant thin-film composite nanofiltration membrane prepared from polyamide-polyurea and the behavior of density functional theory study. J. Membr. Sci. 645, 120175 (2022). https://doi.org/10.1016/j.memsci.2021.120175
E.R. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
H. Zhang, J. Xing, G. Wei, X. Wang, S. Chen et al., Electrostatic-induced ion-confined partitioning in graphene nanolaminate membrane for breaking anion-cation co-transport to enhance desalination. Nat. Commun. 15(1), 4324 (2024). https://doi.org/10.1038/s41467-024-48681-8
X. Zhou, Z. Wang, R. Epsztein, C. Zhan, W. Li et al., Intrapore energy barriers govern ion transport and selectivity of desalination membranes. Sci. Adv. 6(48), eabd9045 (2020). https://doi.org/10.1126/sciadv.abd9045
F. Sheng, B. Wu, X. Li, T. Xu, M.A. Shehzad et al., Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 33(44), 2104404 (2021). https://doi.org/10.1002/adma.202104404
H. Wang, Y. Zhai, Y. Li, Y. Cao, B. Shi et al., Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun. 13(1), 7123 (2022). https://doi.org/10.1038/s41467-022-34849-7
L. Cao, I.-C. Chen, Z. Li, X. Liu, M. Mubashir et al., Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nat. Commun. 13(1), 7894 (2022). https://doi.org/10.1038/s41467-022-35594-7
Q.-W. Meng, S. Wu, M. Liu, Q. Guo, W. Xian et al., Guanidinium-based covalent organic framework membrane for single-acid recovery. Sci. Adv. 9(25), eadh0207 (2023). https://doi.org/10.1126/sciadv.adh0207
Q.-W. Meng, J. Li, Z. Lai, W. Xian, S. Wang et al., Optimizing selectivity via membrane molecular packing manipulation for simultaneous cation and anion screening. Sci. Adv. 10(39), eado8658 (2024). https://doi.org/10.1126/sciadv.ado8658