Strong and Tough MXene-Induced Bacterial Cellulose Macrofibers for AIoT Textile Electronics
Corresponding Author: Chengkuo Lee
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 198
Abstract
Textile electronics with extraordinary sensing capabilities holds significant potential in the Artificial Intelligence of Things (AIoT). However, little effort is paid to their mutual advantages of robust interfacial interactions, ultra-strong mechanical performance, and stability. Herein, we fabricate homogeneous and multifunctional core–shell macrofibers by integrating bridge-functionalized MXene/PEDOT:PSS conductive ink with aligned bacterial cellulose (BC). These resulting macrofibers feature mechanical properties (tensile strength of 433.2 MPa and the Young’s modulus of 25.9 GPa), exceptional electrical conductivity (10.05 S cm−1) and durable hydrophobicity. Such superior robustness allows for the fabrication of the macrofibers woven into textile-based triboelectric nanogenerator (PKT-TENG) and shows an impressive high-performance of a maximum open-circuit voltage of 272.54 V, short-circuit current of 14.56 μA and power density of 86.29 mW m−2, which successfully powers commercial electronics. As the proof-of-concept illustration, the macrofibers with durable hydrophobicity and high piezoresistive sensitivity are further employed for precepting diverse liquids that can simultaneously monitor their distinctive motion features via real-time resistance variation on the textile-based array. This work is expected to offer new insights into the design of advanced fibers with ultra-strong mechanical capabilities and high conductivity and provide an avenue for the development of textile electronics for high-performance sensing and intelligent manufacturing.
Highlights:
1 PKT-TENG woven with K-MXene/PEDOT:PSS integrated bacterial cellulose (BC) via polydimethylsiloxane (PDMS) coating (PKMPBC) macrofibers were fabricated by bridging K-MXene/PEDOT:PSS ink with aligned BC macrofibers, then dip-coated with PDMS, showing high conductivity (10.05 S cm−1), high mechanical strength (433.8 MPa) and superior Young’s modules (25.9 GPa).
2 PKT-TENG integrated with PKMPBC macrofiebrs shows excellent triboelectric response and stability, delivering 86.29 mW m−2 power density to power an electronic watch and capacitors.
3 Resistance-sensitive PKMPBC macrofibers proved the capability of recognition for diverse liquid with precisely detection and fed back multifactor behaviors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
- W. Gong, Y. Guo, W. Yang, Z. Wu, R. Xing et al., Scalable and reconfigurable green electronic textiles with personalized comfort management. ACS Nano 16(8), 12635–12644 (2022). https://doi.org/10.1021/acsnano.2c04252
- J. Hong, Y. Xiao, Y. Chen, S. Duan, S. Xiang et al., Body-coupled-driven object-oriented natural interactive interface. Adv. Mater. 37(45), e07067 (2025). https://doi.org/10.1002/adma.202507067
- H. Zhang, J. Hong, J. Zhu, S. Duan, M. Xia et al., Humanoid electronic-skin technology for the era of Artificial Intelligence of Things. Matter 8(5), 102136 (2025). https://doi.org/10.1016/j.matt.2025.102136
- M. Xiao, A. Xu, Z. Sui, W. Zhang, H. Liu et al., Multifunctional MEMS, NEMS, micro/nano-structures enabled by piezoelectric and ferroelectric effects. Nanoscale Horiz. 10(11), 2744–2771 (2025). https://doi.org/10.1039/d5nh00386e
- Y. Guan, L. Tu, K. Ren, X. Kang, Y. Tian et al., Soft, super-elastic, all-polymer piezoelectric elastomer for artificial electronic skin. ACS Appl. Mater. Interfaces 15(1), 1736–1747 (2023). https://doi.org/10.1021/acsami.2c19654
- Y. Hao, Y. Zhang, J. Li, A.J.X. Guo, P. Lv et al., An all-nanofiber-based customizable biomimetic electronic skin for thermal-moisture management and energy conversion. Adv. Fiber Mater. 7(4), 1111–1127 (2025). https://doi.org/10.1007/s42765-025-00541-w
- S. Chen, L. Sun, X. Zhou, Y. Guo, J. Song et al., Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020). https://doi.org/10.1038/s41467-020-14446-2
- C. Zhao, Y. Fang, H. Chen, S. Zhang, Y. Wan et al., Ultrathin Mo2S3 nanowire network for high-sensitivity breathable piezoresistive electronic skins. ACS Nano 17(5), 4862–4870 (2023). https://doi.org/10.1021/acsnano.2c11564
- L. Xu, L. Li, T. Wang, S. Yi, C. Zhang, Y. Tian, C. Lee, Self-powered triboelectric-electromagnetic composite sensor based on Kresling structure for AIoT-assisted rehabilitation applications. InfoMat e70086 (2025). https://doi.org/10.1002/inf2.70086
- C. Lee, Y. Qin, Y.-C. Wang, Triboelectric nanogenerators for self-powered sensors and other applications. MRS Bull. 50(4), 428–438 (2025). https://doi.org/10.1557/s43577-025-00877-z
- L. Wang, X. Guo, Z. Zhang, C. Lee, Metaverse-enabled Yoga coach avatar using AI-enhanced multimodal insole sensing system. Adv. Funct. Mater. e19562 (2025). https://doi.org/10.1002/adfm.202519562
- Y. Zhou, X. Dai, X. Shi, L. Zhao, T. Wang et al., Artificial tactile perception for object recognition and grab via multifunctional ionic fiber-based sensor system. Adv. Funct. Mater. 35(32), 2504314 (2025). https://doi.org/10.1002/adfm.202504314
- J. Lee, S. Shin, S. Lee, J. Song, S. Kang et al., Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12(5), 4259–4268 (2018). https://doi.org/10.1021/acsnano.7b07795
- Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), 2310613 (2024). https://doi.org/10.1002/adma.202310613
- Y. Su, Y. Liu, W. Li, X. Xiao, C. Chen et al., Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 10(3), 842–851 (2023). https://doi.org/10.1039/d2mh01466a
- X. Dang, Y. Fei, X. Liu, X. Wang, H. Wang, A biomass-derived multifunctional conductive coating with outstanding electromagnetic shielding and photothermal conversion properties for integrated wearable intelligent textiles and skin bioelectronics. Mater. Horiz. 12(6), 1808–1825 (2025). https://doi.org/10.1039/d4mh01774a
- L. Ma, R. Wu, A. Patil, J. Yi, D. Liu et al., Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv. Funct. Mater. 31(35), 2102963 (2021). https://doi.org/10.1002/adfm.202102963
- W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15, 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
- G. Wu, H. Du, K. Pakravan, W. Kim, Y.L. Cha et al., Polyaniline/Ti3C2Tx functionalized mask sensors for monitoring of CO2 and human respiration rate. Chem. Eng. J. 475, 146228 (2023). https://doi.org/10.1016/j.cej.2023.146228
- Q. Liang, D. Zhang, Y. Wu, S. Chen, Z. Han et al., Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers. ACS Appl. Mater. Interfaces 14(18), 21319–21329 (2022). https://doi.org/10.1021/acsami.2c00960
- X. Zhong, P. Sun, R. Wei, H. Dong, S. Jiang, Object recognition by a heat-resistant core-sheath triboelectric nanogenerator sensor. J. Mater. Chem. A 10(28), 15080–15088 (2022). https://doi.org/10.1039/d2ta03422k
- W. Yang, S. Liu, Z. Wang, H. Liu, C. Pan et al., Bioinspired composite fiber aerogel pressure sensor for machine-learning-assisted human activity and gesture recognition. Nano Energy 127, 109799 (2024). https://doi.org/10.1016/j.nanoen.2024.109799
- X. Guo, Z. Zhang, Z. Ren, D. Li, C. Xu et al., Advances in intelligent nano-micro-scale sensors and actuators: moving toward self-sustained edge AI microsystems. Adv. Mater. 37(50), e10417 (2025). https://doi.org/10.1002/adma.202510417
- Y. Lee, J. Myoung, S. Cho, J. Park, J. Kim et al., Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 15(1), 1795–1804 (2021). https://doi.org/10.1021/acsnano.0c09581
- M. Wang, Z. Dai, L. Tang, L. Zhang, K.C. Aw et al., Tongue-inspired dual-mode sensing system for effective liquid identification. Adv. Funct. Mater. 35(46), 2507044 (2025). https://doi.org/10.1002/adfm.202507044
- Y. Liu, X. Zhou, H. Yan, Z. Zhu, X. Shi et al., Robust memristive fiber for woven textile memristor. Adv. Funct. Mater. 32(28), 2201510 (2022). https://doi.org/10.1002/adfm.202201510
- W. Weng, P. Chen, S. He, X. Sun, H. Peng, Smart electronic textiles. Angew. Chem. Int. Ed. 55(21), 6140–6169 (2016). https://doi.org/10.1002/anie.201507333
- B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), e1902664 (2020). https://doi.org/10.1002/adma.201902664
- L. Veeramuthu, C. J. Cho, M. Venkatesan, R. Kumar. G, H. Y. Hsu et al., Muscle fibers inspired electrospun nanostructures reinforced conductive fibers for smart wearable optoelectronics and energy generators. Nano Energy 101, 107592 (2022). https://doi.org/10.1016/j.nanoen.2022.107592
- J. Song, S. Chen, L. Sun, Y. Guo, L. Zhang et al., Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 32(8), 1906994 (2020). https://doi.org/10.1002/adma.201906994
- M. Yao, B. Wu, X. Feng, S. Sun, P. Wu, A highly robust ionotronic fiber with unprecedented mechanomodulation of ionic conduction. Adv. Mater. 33(42), 2103755 (2021). https://doi.org/10.1002/adma.202103755
- J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong, Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 29(33), 1902898 (2019). https://doi.org/10.1002/adfm.201902898
- P. Xu, L. Zhu, B. Chang, S. Wang, Y. Wang et al., Evaporation meets gravity: natural-force-driven fabrication of multifunctional flexible sensors for pressure, proximity, and material recognition. Nano Energy 146, 111501 (2025). https://doi.org/10.1016/j.nanoen.2025.111501
- G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu et al., Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 35(18), 2314425 (2025). https://doi.org/10.1002/adfm.202314425
- G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
- J.H. Kim, K.S. Song, Y. Kim, J.Y. Cho, K. Lee et al., Hydrogen bond-driven hierarchical assembly of single-walled carbon nanotubes for ultrahigh textile capacity. ACS Nano 19(4), 4601–4610 (2025). https://doi.org/10.1021/acsnano.4c14761
- N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013). https://doi.org/10.1126/science.1228061
- H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan et al., Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 76, 105035 (2020). https://doi.org/10.1016/j.nanoen.2020.105035
- M. Liu, Y. Yang, R. Liu, K. Wang, S. Cheng et al., Carbon nanotubes/graphene-skinned glass fiber fabric with 3D hierarchical electrically and thermally conductive network. Adv. Funct. Mater. 34(49), 2409379 (2024). https://doi.org/10.1002/adfm.202409379
- W. Xu, D. Ravichandran, S. Jambhulkar, Y. Zhu, K. Song, Hierarchically structured composite fibers for real nanoscale manipulation of carbon nanotubes. Adv. Funct. Mater. 31(14), 2009311 (2021). https://doi.org/10.1002/adfm.202009311
- X. Huang, J. Huang, G. Zhou, Y. Wei, P. Wu et al., Gelation-assisted assembly of large-area, highly aligned, and environmentally stable MXene films with an excellent trade-off between mechanical and electrical properties. Small 18(21), 2270107 (2022). https://doi.org/10.1002/smll.202270107
- L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
- D. Jiang, J. Zhang, S. Qin, Z. Wang, K.A.S. Usman et al., Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 15(3), 5000–5010 (2021). https://doi.org/10.1021/acsnano.0c09959
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34(21), 2108560 (2022). https://doi.org/10.1002/adma.202108560
- J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11(4), 2003025 (2021). https://doi.org/10.1002/aenm.202003025
- A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2TxMXene monolayers and bilayers. Sci. Adv. 4(6), eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
- S. Funda, T. Ohki, Q. Liu, J. Hossain, Y. Ishimaru et al., Correlation between the fine structure of spin-coated PEDOT: PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells. J. Appl. Phys. 120(3), 033103 (2016). https://doi.org/10.1063/1.4958845
- S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4(33), eaaw7797 (2019). https://doi.org/10.1126/scirobotics.aaw7797
- J. Zhou, G. Lubineau, Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs. ACS Appl. Mater. Interfaces 5(13), 6189–6200 (2013). https://doi.org/10.1021/am4011622
- M.H. Tran, R. Brilmayer, L. Liu, H. Zhuang, C. Hess et al., Synthesis of a smart hybrid MXene with switchable conductivity for temperature sensing. ACS Appl. Nano Mater. 3(5), 4069–4076 (2020). https://doi.org/10.1021/acsanm.0c00118
- C. Ma, W. T. Cao, W. Zhang, M. G. Ma, W. M. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
- J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), e2001093 (2020). https://doi.org/10.1002/adma.202001093
- J. Lu, S. Hu, W. Li, X. Wang, X. Mo et al., A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano 16(3), 3744–3755 (2022). https://doi.org/10.1021/acsnano.1c07614
- L. Wang, Z. Tian, G. Jiang, X. Luo, C. Chen et al., Spontaneous dewetting transitions of droplets during icing and melting cycle. Nat. Commun. 13(1), 378 (2022). https://doi.org/10.1038/s41467-022-28036-x
References
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
W. Gong, Y. Guo, W. Yang, Z. Wu, R. Xing et al., Scalable and reconfigurable green electronic textiles with personalized comfort management. ACS Nano 16(8), 12635–12644 (2022). https://doi.org/10.1021/acsnano.2c04252
J. Hong, Y. Xiao, Y. Chen, S. Duan, S. Xiang et al., Body-coupled-driven object-oriented natural interactive interface. Adv. Mater. 37(45), e07067 (2025). https://doi.org/10.1002/adma.202507067
H. Zhang, J. Hong, J. Zhu, S. Duan, M. Xia et al., Humanoid electronic-skin technology for the era of Artificial Intelligence of Things. Matter 8(5), 102136 (2025). https://doi.org/10.1016/j.matt.2025.102136
M. Xiao, A. Xu, Z. Sui, W. Zhang, H. Liu et al., Multifunctional MEMS, NEMS, micro/nano-structures enabled by piezoelectric and ferroelectric effects. Nanoscale Horiz. 10(11), 2744–2771 (2025). https://doi.org/10.1039/d5nh00386e
Y. Guan, L. Tu, K. Ren, X. Kang, Y. Tian et al., Soft, super-elastic, all-polymer piezoelectric elastomer for artificial electronic skin. ACS Appl. Mater. Interfaces 15(1), 1736–1747 (2023). https://doi.org/10.1021/acsami.2c19654
Y. Hao, Y. Zhang, J. Li, A.J.X. Guo, P. Lv et al., An all-nanofiber-based customizable biomimetic electronic skin for thermal-moisture management and energy conversion. Adv. Fiber Mater. 7(4), 1111–1127 (2025). https://doi.org/10.1007/s42765-025-00541-w
S. Chen, L. Sun, X. Zhou, Y. Guo, J. Song et al., Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020). https://doi.org/10.1038/s41467-020-14446-2
C. Zhao, Y. Fang, H. Chen, S. Zhang, Y. Wan et al., Ultrathin Mo2S3 nanowire network for high-sensitivity breathable piezoresistive electronic skins. ACS Nano 17(5), 4862–4870 (2023). https://doi.org/10.1021/acsnano.2c11564
L. Xu, L. Li, T. Wang, S. Yi, C. Zhang, Y. Tian, C. Lee, Self-powered triboelectric-electromagnetic composite sensor based on Kresling structure for AIoT-assisted rehabilitation applications. InfoMat e70086 (2025). https://doi.org/10.1002/inf2.70086
C. Lee, Y. Qin, Y.-C. Wang, Triboelectric nanogenerators for self-powered sensors and other applications. MRS Bull. 50(4), 428–438 (2025). https://doi.org/10.1557/s43577-025-00877-z
L. Wang, X. Guo, Z. Zhang, C. Lee, Metaverse-enabled Yoga coach avatar using AI-enhanced multimodal insole sensing system. Adv. Funct. Mater. e19562 (2025). https://doi.org/10.1002/adfm.202519562
Y. Zhou, X. Dai, X. Shi, L. Zhao, T. Wang et al., Artificial tactile perception for object recognition and grab via multifunctional ionic fiber-based sensor system. Adv. Funct. Mater. 35(32), 2504314 (2025). https://doi.org/10.1002/adfm.202504314
J. Lee, S. Shin, S. Lee, J. Song, S. Kang et al., Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12(5), 4259–4268 (2018). https://doi.org/10.1021/acsnano.7b07795
Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), 2310613 (2024). https://doi.org/10.1002/adma.202310613
Y. Su, Y. Liu, W. Li, X. Xiao, C. Chen et al., Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 10(3), 842–851 (2023). https://doi.org/10.1039/d2mh01466a
X. Dang, Y. Fei, X. Liu, X. Wang, H. Wang, A biomass-derived multifunctional conductive coating with outstanding electromagnetic shielding and photothermal conversion properties for integrated wearable intelligent textiles and skin bioelectronics. Mater. Horiz. 12(6), 1808–1825 (2025). https://doi.org/10.1039/d4mh01774a
L. Ma, R. Wu, A. Patil, J. Yi, D. Liu et al., Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv. Funct. Mater. 31(35), 2102963 (2021). https://doi.org/10.1002/adfm.202102963
W. Fan, R. Lei, H. Dou, Z. Wu, L. Lu et al., Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 15, 3509 (2024). https://doi.org/10.1038/s41467-024-47810-7
G. Wu, H. Du, K. Pakravan, W. Kim, Y.L. Cha et al., Polyaniline/Ti3C2Tx functionalized mask sensors for monitoring of CO2 and human respiration rate. Chem. Eng. J. 475, 146228 (2023). https://doi.org/10.1016/j.cej.2023.146228
Q. Liang, D. Zhang, Y. Wu, S. Chen, Z. Han et al., Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers. ACS Appl. Mater. Interfaces 14(18), 21319–21329 (2022). https://doi.org/10.1021/acsami.2c00960
X. Zhong, P. Sun, R. Wei, H. Dong, S. Jiang, Object recognition by a heat-resistant core-sheath triboelectric nanogenerator sensor. J. Mater. Chem. A 10(28), 15080–15088 (2022). https://doi.org/10.1039/d2ta03422k
W. Yang, S. Liu, Z. Wang, H. Liu, C. Pan et al., Bioinspired composite fiber aerogel pressure sensor for machine-learning-assisted human activity and gesture recognition. Nano Energy 127, 109799 (2024). https://doi.org/10.1016/j.nanoen.2024.109799
X. Guo, Z. Zhang, Z. Ren, D. Li, C. Xu et al., Advances in intelligent nano-micro-scale sensors and actuators: moving toward self-sustained edge AI microsystems. Adv. Mater. 37(50), e10417 (2025). https://doi.org/10.1002/adma.202510417
Y. Lee, J. Myoung, S. Cho, J. Park, J. Kim et al., Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 15(1), 1795–1804 (2021). https://doi.org/10.1021/acsnano.0c09581
M. Wang, Z. Dai, L. Tang, L. Zhang, K.C. Aw et al., Tongue-inspired dual-mode sensing system for effective liquid identification. Adv. Funct. Mater. 35(46), 2507044 (2025). https://doi.org/10.1002/adfm.202507044
Y. Liu, X. Zhou, H. Yan, Z. Zhu, X. Shi et al., Robust memristive fiber for woven textile memristor. Adv. Funct. Mater. 32(28), 2201510 (2022). https://doi.org/10.1002/adfm.202201510
W. Weng, P. Chen, S. He, X. Sun, H. Peng, Smart electronic textiles. Angew. Chem. Int. Ed. 55(21), 6140–6169 (2016). https://doi.org/10.1002/anie.201507333
B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), e1902664 (2020). https://doi.org/10.1002/adma.201902664
L. Veeramuthu, C. J. Cho, M. Venkatesan, R. Kumar. G, H. Y. Hsu et al., Muscle fibers inspired electrospun nanostructures reinforced conductive fibers for smart wearable optoelectronics and energy generators. Nano Energy 101, 107592 (2022). https://doi.org/10.1016/j.nanoen.2022.107592
J. Song, S. Chen, L. Sun, Y. Guo, L. Zhang et al., Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 32(8), 1906994 (2020). https://doi.org/10.1002/adma.201906994
M. Yao, B. Wu, X. Feng, S. Sun, P. Wu, A highly robust ionotronic fiber with unprecedented mechanomodulation of ionic conduction. Adv. Mater. 33(42), 2103755 (2021). https://doi.org/10.1002/adma.202103755
J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong, Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 29(33), 1902898 (2019). https://doi.org/10.1002/adfm.201902898
P. Xu, L. Zhu, B. Chang, S. Wang, Y. Wang et al., Evaporation meets gravity: natural-force-driven fabrication of multifunctional flexible sensors for pressure, proximity, and material recognition. Nano Energy 146, 111501 (2025). https://doi.org/10.1016/j.nanoen.2025.111501
G. Yin, J. Wu, L. Ye, L. Liu, Y. Yu et al., Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater. 35(18), 2314425 (2025). https://doi.org/10.1002/adfm.202314425
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
J.H. Kim, K.S. Song, Y. Kim, J.Y. Cho, K. Lee et al., Hydrogen bond-driven hierarchical assembly of single-walled carbon nanotubes for ultrahigh textile capacity. ACS Nano 19(4), 4601–4610 (2025). https://doi.org/10.1021/acsnano.4c14761
N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013). https://doi.org/10.1126/science.1228061
H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan et al., Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 76, 105035 (2020). https://doi.org/10.1016/j.nanoen.2020.105035
M. Liu, Y. Yang, R. Liu, K. Wang, S. Cheng et al., Carbon nanotubes/graphene-skinned glass fiber fabric with 3D hierarchical electrically and thermally conductive network. Adv. Funct. Mater. 34(49), 2409379 (2024). https://doi.org/10.1002/adfm.202409379
W. Xu, D. Ravichandran, S. Jambhulkar, Y. Zhu, K. Song, Hierarchically structured composite fibers for real nanoscale manipulation of carbon nanotubes. Adv. Funct. Mater. 31(14), 2009311 (2021). https://doi.org/10.1002/adfm.202009311
X. Huang, J. Huang, G. Zhou, Y. Wei, P. Wu et al., Gelation-assisted assembly of large-area, highly aligned, and environmentally stable MXene films with an excellent trade-off between mechanical and electrical properties. Small 18(21), 2270107 (2022). https://doi.org/10.1002/smll.202270107
L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
D. Jiang, J. Zhang, S. Qin, Z. Wang, K.A.S. Usman et al., Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 15(3), 5000–5010 (2021). https://doi.org/10.1021/acsnano.0c09959
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34(21), 2108560 (2022). https://doi.org/10.1002/adma.202108560
J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11(4), 2003025 (2021). https://doi.org/10.1002/aenm.202003025
A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2TxMXene monolayers and bilayers. Sci. Adv. 4(6), eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
S. Funda, T. Ohki, Q. Liu, J. Hossain, Y. Ishimaru et al., Correlation between the fine structure of spin-coated PEDOT: PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells. J. Appl. Phys. 120(3), 033103 (2016). https://doi.org/10.1063/1.4958845
S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4(33), eaaw7797 (2019). https://doi.org/10.1126/scirobotics.aaw7797
J. Zhou, G. Lubineau, Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs. ACS Appl. Mater. Interfaces 5(13), 6189–6200 (2013). https://doi.org/10.1021/am4011622
M.H. Tran, R. Brilmayer, L. Liu, H. Zhuang, C. Hess et al., Synthesis of a smart hybrid MXene with switchable conductivity for temperature sensing. ACS Appl. Nano Mater. 3(5), 4069–4076 (2020). https://doi.org/10.1021/acsanm.0c00118
C. Ma, W. T. Cao, W. Zhang, M. G. Ma, W. M. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), e2001093 (2020). https://doi.org/10.1002/adma.202001093
J. Lu, S. Hu, W. Li, X. Wang, X. Mo et al., A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano 16(3), 3744–3755 (2022). https://doi.org/10.1021/acsnano.1c07614
L. Wang, Z. Tian, G. Jiang, X. Luo, C. Chen et al., Spontaneous dewetting transitions of droplets during icing and melting cycle. Nat. Commun. 13(1), 378 (2022). https://doi.org/10.1038/s41467-022-28036-x