Self-Assembled Ordered Nanostructure of Zwitterionic Co-Solutes Induces Localized High-Concentration Electrolytes for Ultrastable and Efficient Zinc Metal Anodes
Corresponding Author: Qingyun Dou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 194
Abstract
Localized high-concentration electrolytes (LHCEs) are considered as promising electrolyte candidates to resolve technical issues of metal batteries owing to their unique interfacial properties and solvation structures. Herein, we propose a self-assembly chemical strategy into the LCHEs induced by ordered nanostructure of zwitterionic co-solutes for highly efficient and ultrastable zinc (Zn) metal batteries. Through the systematic screening of six zwitterionic compounds, 3-(decyldimethylammonio)propanesulfonate salt (C10) with the decyl chain and zwitterions was determined as an optimum to construct quasi-spherical aggregates with a periodic length of 3.77 nm, as confirmed by comprehensive synchronous small-angle X-ray scattering, Guinier, pair distance distribution function, Porod, and other spectroscopic characterizations and molecular dynamic simulation. In particularly, this self-assembled structure in electrolyte environments was attributed to increasing the proportion of both contact and aggregated ion pairs for the formation of LHCEs as well as to providing fast and selective Zn2+ conducting channels and uniform solid electrolyte interfaces for facilitated charge transfer kinetics. Moreover, the preferential adsorption of the self-assembled C10 on the Zn(002) surface modulated the electrical double layer to suppress hydrogen evolution and corrosion reactions. Consequently, the Zn||Zn symmetric cells in Zn(OTf)2/C10 electrolytes showed long-term plating/stripping behaviors over 2800 h at 1 mA cm−2 and 1 mAh cm−2 as well as over 1200 h even at 5 mA cm−2 and 5 mAh cm−2 with a very high depth of discharge of 42.7%. Furthermore, the Zn||VO2/CNT full cells in Zn(OTf)2/C10 electrolytes delivered a record-high capacity of 8.10 mAh cm−2 at an ultrahigh cathode mass loading of 50 mg cm−2 after 150 cycles.
Highlights:
1 Self-assembled zwitterion (C10) induces localized high-concentration electrolytes, regulating Zn2+ solvation, guiding selective ion transport, and enabling uniform solid electrolyte interface formation.
2 A comprehensive set of advanced analyses (Guinier, PDDF, Porod) combined with spectroscopy and simulations reveals that C10 self-assembles into ~3.8 nm quasi-spherical aggregates and bilayer-like interfacial structures.
3 C10 enables ultrastable cycling (>2800 h) in symmetric cells and record areal capacity (8.1 mAh cm−2 at 50 mg cm−2) in Zn||VO2/CNT full cells, highlighting its practical potential for high-energy Zn batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- K. Xu, C. Wang, Batteries: widening voltage windows. Nat. Energy 1(10), 16161 (2016). https://doi.org/10.1038/nenergy.2016.161
- S. Huang, P. Zhang, J. Lu, J.S. Kim, D.H. Min et al., Molecularly engineered multifunctional imide derivatives for practical Zn metal full cells. Energy Environ. Sci. 17(20), 7870–7881 (2024). https://doi.org/10.1039/d4ee02867h
- S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
- D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
- H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- M. Han, J. Huang, X. Xie, T.C. Li, J. Huang et al., Hydrated Eutectic Electrolyte with Ligand-Oriented Solvation Shell to Boost the Stability of Zinc Battery. Adv. Funct. Mater. 32(25), 2110957 (2022). https://doi.org/10.1002/adfm.202110957
- Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12(1), 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
- Y. Chen, L. Miao, Z. Song, H. Duan, Y. Lv et al., Dynamic amorphous Zn0.17MnO2−n·0.52H2O electrochemical crystal transition for highly reversible zinc-ion batteries with ultrahigh capacity and long lifespan. Adv. Funct. Mater. 34(49), 2409428 (2024). https://doi.org/10.1002/adfm.202409428
- D. Zhang, L. Miao, Z. Song, X. Zheng, Y. Lv et al., Electrolyte additive strategies for safe and high-performance aqueous zinc-ion batteries: a mini-review. Energy Fuels 38(14), 12510–12527 (2024). https://doi.org/10.1021/acs.energyfuels.4c02287
- H. Liu, Z. Xin, B. Cao, Z. Xu, B. Xu et al., Polyhydroxylated organic molecular additives for durable aqueous zinc battery. Adv. Funct. Mater. 34(4), 2309840 (2024). https://doi.org/10.1002/adfm.202309840
- P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8(3), 1613–1625 (2023). https://doi.org/10.1021/acsenergylett.3c00154
- T. Xiao, J.-L. Yang, B. Zhang, J. Wu, J. Li et al., All-round ionic liquids for shuttle-free zinc-iodine battery. Angew. Chem. Int. Ed. 63(8), e202318470 (2024). https://doi.org/10.1002/anie.202318470
- Y.-C. Gao, Y.-H. Yuan, S. Huang, N. Yao, L. Yu et al., Angew. Chem. Int. Ed. 64(4), e202416506 (2025). https://doi.org/10.1002/anie.202416506
- Y.-C. Gao, N. Yao, X. Chen, L. Yu, R. Zhang et al., Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145(43), 23764–23770 (2023). https://doi.org/10.1021/jacs.3c08346
- S. Huang, H. Fu, H.M. Kwon, M.S. Kim, J.-D. Zhang et al., Stereoisomerism of multi-functional electrolyte additives for initially anodeless aqueous zinc metal batteries. Nat. Commun. 16(1), 6117 (2025). https://doi.org/10.1038/s41467-025-61382-0
- Z. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang et al., A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 34(5), 2214538 (2024). https://doi.org/10.1002/adfm.202214538
- Z. Hu, X. Wang, W. Du, Z. Zhang, Y. Tang et al., Crowding effect-induced zinc-enriched/water-lean polymer interfacial layer toward practical Zn-iodine batteries. ACS Nano 17(22), 23207–23219 (2023). https://doi.org/10.1021/acsnano.3c10081
- G. Yoo, Y.-G. Lee, B. Im, D.G. Kim, Y.-R. Jo et al., Integrated solution for a stable and high-performance zinc-ion battery using an electrolyte additive. Energy Storage Mater. 61, 102845 (2023). https://doi.org/10.1016/j.ensm.2023.102845
- J. Lu, T. Wang, J. Yang, X. Shen, H. Pang et al., Multifunctional self-assembled bio-interfacial layers for high-performance zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202409838 (2024). https://doi.org/10.1002/anie.202409838
- Z. Yang, Y. Sun, J. Li, G. He, G. Chai, Noncovalent interactions-driven self-assembly of polyanionic additive for long anti-calendar aging and high-rate zinc metal batteries. Adv. Sci. 11(33), 2404513 (2024). https://doi.org/10.1002/advs.202404513
- G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28(6), 717–728 (1995). https://doi.org/10.1107/S0021889895005292
- L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
- Z. Wu, R. Li, S. Zhang, L. lv, T. Deng et al., Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9(3), 650–664 (2023). https://doi.org/10.1016/j.chempr.2022.10.027
- S. Zhang, Q. Gou, W. Chen, H. Luo, R. Yuan et al., Co-regulating solvation structure and hydrogen bond network via bio-inspired additive for highly reversible zinc anode. Adv. Sci. 11(35), 2404968 (2024). https://doi.org/10.1002/advs.202404968
- Y. Guo, R.M. Bustin, Micro-FTIR spectroscopy of liptinite macerals in coal. Int. J. Coal Geol. 36(3–4), 259–275 (1998). https://doi.org/10.1016/S0166-5162(97)00044-X
- H.-J. Peng, J. Liang, L. Zhu, J.-Q. Huang, X.-B. Cheng et al., Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium–sulfur batteries. ACS Nano 8(11), 11280–11289 (2014). https://doi.org/10.1021/nn503985s
- M. Wu, Y. Zhang, L. Xu, C. Yang, M. Hong et al., A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 5(10), 3402–3416 (2022). https://doi.org/10.1016/j.matt.2022.07.015
- H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc–iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. 146(24), 16601–16608 (2024). https://doi.org/10.1021/jacs.4c03518
- Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. 133(8), 4136–4143 (2021). https://doi.org/10.1002/ange.202011482
- T. Wang, Y. Wang, P. Cui, H. Geng, Y. Wu et al., Constructing a gradient soft-coupled SEI film using a dilute ternary electrolyte system towards high-performance zinc-ion batteries with wide temperature stability. Energy Environ. Sci. 18(5), 2546–2558 (2025). https://doi.org/10.1039/d4ee05894a
- G.R. Pastel, M.S. Ding, T.P. Pollard, O. Borodin, M. Schroeder et al., Cation-dependent solvation behavior of aqueous triflate electrolytes. ACS Electrochem. 1(4), 486–493 (2025). https://doi.org/10.1021/acselectrochem.4c00100
- L.-L. Jiang, C. Yan, Y.-X. Yao, W. Cai, J.-Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
- I.C. Tran, R.H. Tunuguntla, K. Kim, J.R.I. Lee, T.M. Willey et al., Structure of carbon nanotube porins in lipid bilayers: an in situ small-angle X-ray scattering (SAXS) study. Nano Lett. 16(7), 4019–4024 (2016). https://doi.org/10.1021/acs.nanolett.6b00466
- Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, C.-X. Bi et al., Cationic lithium polysulfides in lithium–sulfur batteries. Chem 8(11), 3031–3050 (2022). https://doi.org/10.1016/j.chempr.2022.07.004
- D.P. Stevenson, G.M. Coppinger, Solvent effects on n → σ* transitions; complex formation between amines and halomethanes. J. Am. Chem. Soc. 84(2), 149–152 (1962). https://doi.org/10.1021/ja00861a004
- O. Ikkala, G. ten Brinke, Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem. Commun. 19, 2131–2137 (2004). https://doi.org/10.1039/b403983a
- J. Li, F. Xie, W. Pang, Q. Liang, X. Yang et al., Regulate transportation of ions and polysulfides in all-solid-state Li-S batteries using ordered-MOF composite solid electrolyte. Sci. Adv. 10(11), eadl3925 (2024). https://doi.org/10.1126/sciadv.adl3925
- L. Ma, T.P. Pollard, Y. Zhang, M.A. Schroeder, M.S. Ding et al., Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem. Int. Ed. 60(22), 12438–12445 (2021). https://doi.org/10.1002/anie.202017020
- M.C. Leake, J.H. Chandler, G.H. Wadhams, F. Bai, R.M. Berry et al., Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443(7109), 355–358 (2006). https://doi.org/10.1038/nature05135
- T.M. Davis, T.O. Drews, H. Ramanan, C. He, J. Dong et al., Mechanistic principles of nanop evolution to zeolite crystals. Nat. Mater. 5(5), 400–408 (2006). https://doi.org/10.1038/nmat1636
- P. Bender, L.K. Bogart, O. Posth, W. Szczerba, S.E. Rogers et al., Structural and magnetic properties of multi-core nanops analysed using a generalised numerical inversion method. Sci. Rep. 7, 45990 (2017). https://doi.org/10.1038/srep45990
- J. Fan, S. Willdorf-Cohen, E.M. Schibli, Z. Paula, W. Li et al., Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nat. Commun. 10(1), 2306 (2019). https://doi.org/10.1038/s41467-019-10292-z
- C.A. Brosey, J.A. Tainer, Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr. Opin. Struct. Biol. 58, 197–213 (2019). https://doi.org/10.1016/j.sbi.2019.04.004
- J. Nitsche, I. Josts, J. Heidemann, H.D. Mertens, S. Maric et al., Structural basis for activation of plasma-membrane Ca2+-ATPase by calmodulin. Commun. Biol. 1, 206 (2018). https://doi.org/10.1038/s42003-018-0203-7
- R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
- J.F. Nagle, S. Tristram-Nagle, Lipid bilayer structure. Curr. Opin. Struct. Biol. 10(4), 474–480 (2000). https://doi.org/10.1016/S0959-440X(00)00117-2
- Z. Liu, G. Li, M. Xi, Y. Huang, H. Li et al., Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery. Angew. Chem. Int. Ed. 63(14), e202319091 (2024). https://doi.org/10.1002/anie.202319091
- S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
- Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
- S. Liu, R. Zhang, J. Mao, Y. Zhao, Q. Cai et al., From room temperature to harsh temperature applications: fundamentals and perspectives on electrolytes in zinc metal batteries. Sci. Adv. 8(12), eabn5097 (2022). https://doi.org/10.1126/sciadv.abn5097
- R. Zhang, W.K. Pang, J. Vongsvivut, J.A. Yuwono, G. Li et al., Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy Environ. Sci. 17(13), 4569–4581 (2024). https://doi.org/10.1039/d4ee00942h
- K. Xu, A. von Cresce, Interfacing electrolytes with electrodes in Li ion batteries. J. Mater. Chem. 21(27), 9849 (2011). https://doi.org/10.1039/c0jm04309e
- G. Liu, Z. Sun, X. Shi, X. Wang, L. Shao et al., 2D-layer-structure Bi to quasi-1D-structure NiBi3: structural dimensionality reduction to superior sodium and potassium ion storage. Adv. Mater. 35(41), 2305551 (2023). https://doi.org/10.1002/adma.202305551
- Y.-K. Liu, C.-Z. Zhao, J. Du, X.-Q. Zhang, A.-B. Chen et al., Research progresses of liquid electrolytes in lithium-ion batteries. Small 19(8), 2205315 (2023). https://doi.org/10.1002/smll.202205315
- D.R. Ely, R.E. García, Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 160(4), A662–A668 (2013). https://doi.org/10.1149/1.057304jes
- W.G. Kidanu, J. Hur, H.W. Choi, M.I. Kim, I.T. Kim, High capacity and inexpensive multivalent cathode materials for aqueous rechargeable Zn-ion battery fabricated via in situ electrochemical oxidation of VO2 nanorods. J. Power. Sources 523, 231060 (2022). https://doi.org/10.1016/j.jpowsour.2022.231060
- Z. Wang, P. Cui, X. Wang, M. Chang, Y. Yu et al., Co-substitution engineering boosting the kinetics and stablity of VO2 for Zn ion batteries. Adv. Funct. Mater. 34(46), 2407925 (2024). https://doi.org/10.1002/adfm.202407925
- S. Huang, X. Qin, C. Lei, X. Miao, T. Wei, A one-pot method to fabricate reduced graphene oxide (rGO)-coated Si@SiOx@β-Bi2O3/Bi composites for lithium-ion batteries. Electrochim. Acta 390, 138857 (2021). https://doi.org/10.1016/j.electacta.2021.138857
- Y. Chen, T. Zhou, L. Li, W.K. Pang, X. He et al., Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 13(8), 9376–9385 (2019). https://doi.org/10.1021/acsnano.9b04005
- Z. Song, W. Liu, Q. Huang, Y. Lv, L. Gan et al., Unlocking the potential of a multi-electron p-type polyheterocycle cathode: when it meets a small-size and high-charge anion. Chem. Sci. 16(36), 16542–16551 (2025). https://doi.org/10.1039/d5sc05022g
- Y. Fu, Y. Zhang, Q. Huang, P. Liu, Y. Lv et al., Conjugated nanofibrous organic cathodes with high-density carbonyl/imine redox sites for superior NH4+/H+ co-storage. Mater. Horiz. 12(17), 6733–6740 (2025). https://doi.org/10.1039/d5mh00859j
- K. Guo, Z. Song, Y. Lv, L. Gan, M. Liu, Inorganic–organic co-intercalated [Al0.16(C5H14ON)0.12] V2O5·0.39H2O cathode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 35(41), 2506036 (2025). https://doi.org/10.1002/adfm.202506036
References
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
K. Xu, C. Wang, Batteries: widening voltage windows. Nat. Energy 1(10), 16161 (2016). https://doi.org/10.1038/nenergy.2016.161
S. Huang, P. Zhang, J. Lu, J.S. Kim, D.H. Min et al., Molecularly engineered multifunctional imide derivatives for practical Zn metal full cells. Energy Environ. Sci. 17(20), 7870–7881 (2024). https://doi.org/10.1039/d4ee02867h
S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
M. Han, J. Huang, X. Xie, T.C. Li, J. Huang et al., Hydrated Eutectic Electrolyte with Ligand-Oriented Solvation Shell to Boost the Stability of Zinc Battery. Adv. Funct. Mater. 32(25), 2110957 (2022). https://doi.org/10.1002/adfm.202110957
Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12(1), 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
Y. Chen, L. Miao, Z. Song, H. Duan, Y. Lv et al., Dynamic amorphous Zn0.17MnO2−n·0.52H2O electrochemical crystal transition for highly reversible zinc-ion batteries with ultrahigh capacity and long lifespan. Adv. Funct. Mater. 34(49), 2409428 (2024). https://doi.org/10.1002/adfm.202409428
D. Zhang, L. Miao, Z. Song, X. Zheng, Y. Lv et al., Electrolyte additive strategies for safe and high-performance aqueous zinc-ion batteries: a mini-review. Energy Fuels 38(14), 12510–12527 (2024). https://doi.org/10.1021/acs.energyfuels.4c02287
H. Liu, Z. Xin, B. Cao, Z. Xu, B. Xu et al., Polyhydroxylated organic molecular additives for durable aqueous zinc battery. Adv. Funct. Mater. 34(4), 2309840 (2024). https://doi.org/10.1002/adfm.202309840
P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8(3), 1613–1625 (2023). https://doi.org/10.1021/acsenergylett.3c00154
T. Xiao, J.-L. Yang, B. Zhang, J. Wu, J. Li et al., All-round ionic liquids for shuttle-free zinc-iodine battery. Angew. Chem. Int. Ed. 63(8), e202318470 (2024). https://doi.org/10.1002/anie.202318470
Y.-C. Gao, Y.-H. Yuan, S. Huang, N. Yao, L. Yu et al., Angew. Chem. Int. Ed. 64(4), e202416506 (2025). https://doi.org/10.1002/anie.202416506
Y.-C. Gao, N. Yao, X. Chen, L. Yu, R. Zhang et al., Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145(43), 23764–23770 (2023). https://doi.org/10.1021/jacs.3c08346
S. Huang, H. Fu, H.M. Kwon, M.S. Kim, J.-D. Zhang et al., Stereoisomerism of multi-functional electrolyte additives for initially anodeless aqueous zinc metal batteries. Nat. Commun. 16(1), 6117 (2025). https://doi.org/10.1038/s41467-025-61382-0
Z. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang et al., A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 34(5), 2214538 (2024). https://doi.org/10.1002/adfm.202214538
Z. Hu, X. Wang, W. Du, Z. Zhang, Y. Tang et al., Crowding effect-induced zinc-enriched/water-lean polymer interfacial layer toward practical Zn-iodine batteries. ACS Nano 17(22), 23207–23219 (2023). https://doi.org/10.1021/acsnano.3c10081
G. Yoo, Y.-G. Lee, B. Im, D.G. Kim, Y.-R. Jo et al., Integrated solution for a stable and high-performance zinc-ion battery using an electrolyte additive. Energy Storage Mater. 61, 102845 (2023). https://doi.org/10.1016/j.ensm.2023.102845
J. Lu, T. Wang, J. Yang, X. Shen, H. Pang et al., Multifunctional self-assembled bio-interfacial layers for high-performance zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202409838 (2024). https://doi.org/10.1002/anie.202409838
Z. Yang, Y. Sun, J. Li, G. He, G. Chai, Noncovalent interactions-driven self-assembly of polyanionic additive for long anti-calendar aging and high-rate zinc metal batteries. Adv. Sci. 11(33), 2404513 (2024). https://doi.org/10.1002/advs.202404513
G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28(6), 717–728 (1995). https://doi.org/10.1107/S0021889895005292
L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
Z. Wu, R. Li, S. Zhang, L. lv, T. Deng et al., Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9(3), 650–664 (2023). https://doi.org/10.1016/j.chempr.2022.10.027
S. Zhang, Q. Gou, W. Chen, H. Luo, R. Yuan et al., Co-regulating solvation structure and hydrogen bond network via bio-inspired additive for highly reversible zinc anode. Adv. Sci. 11(35), 2404968 (2024). https://doi.org/10.1002/advs.202404968
Y. Guo, R.M. Bustin, Micro-FTIR spectroscopy of liptinite macerals in coal. Int. J. Coal Geol. 36(3–4), 259–275 (1998). https://doi.org/10.1016/S0166-5162(97)00044-X
H.-J. Peng, J. Liang, L. Zhu, J.-Q. Huang, X.-B. Cheng et al., Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium–sulfur batteries. ACS Nano 8(11), 11280–11289 (2014). https://doi.org/10.1021/nn503985s
M. Wu, Y. Zhang, L. Xu, C. Yang, M. Hong et al., A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 5(10), 3402–3416 (2022). https://doi.org/10.1016/j.matt.2022.07.015
H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc–iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. 146(24), 16601–16608 (2024). https://doi.org/10.1021/jacs.4c03518
Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. 133(8), 4136–4143 (2021). https://doi.org/10.1002/ange.202011482
T. Wang, Y. Wang, P. Cui, H. Geng, Y. Wu et al., Constructing a gradient soft-coupled SEI film using a dilute ternary electrolyte system towards high-performance zinc-ion batteries with wide temperature stability. Energy Environ. Sci. 18(5), 2546–2558 (2025). https://doi.org/10.1039/d4ee05894a
G.R. Pastel, M.S. Ding, T.P. Pollard, O. Borodin, M. Schroeder et al., Cation-dependent solvation behavior of aqueous triflate electrolytes. ACS Electrochem. 1(4), 486–493 (2025). https://doi.org/10.1021/acselectrochem.4c00100
L.-L. Jiang, C. Yan, Y.-X. Yao, W. Cai, J.-Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
I.C. Tran, R.H. Tunuguntla, K. Kim, J.R.I. Lee, T.M. Willey et al., Structure of carbon nanotube porins in lipid bilayers: an in situ small-angle X-ray scattering (SAXS) study. Nano Lett. 16(7), 4019–4024 (2016). https://doi.org/10.1021/acs.nanolett.6b00466
Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, C.-X. Bi et al., Cationic lithium polysulfides in lithium–sulfur batteries. Chem 8(11), 3031–3050 (2022). https://doi.org/10.1016/j.chempr.2022.07.004
D.P. Stevenson, G.M. Coppinger, Solvent effects on n → σ* transitions; complex formation between amines and halomethanes. J. Am. Chem. Soc. 84(2), 149–152 (1962). https://doi.org/10.1021/ja00861a004
O. Ikkala, G. ten Brinke, Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem. Commun. 19, 2131–2137 (2004). https://doi.org/10.1039/b403983a
J. Li, F. Xie, W. Pang, Q. Liang, X. Yang et al., Regulate transportation of ions and polysulfides in all-solid-state Li-S batteries using ordered-MOF composite solid electrolyte. Sci. Adv. 10(11), eadl3925 (2024). https://doi.org/10.1126/sciadv.adl3925
L. Ma, T.P. Pollard, Y. Zhang, M.A. Schroeder, M.S. Ding et al., Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem. Int. Ed. 60(22), 12438–12445 (2021). https://doi.org/10.1002/anie.202017020
M.C. Leake, J.H. Chandler, G.H. Wadhams, F. Bai, R.M. Berry et al., Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443(7109), 355–358 (2006). https://doi.org/10.1038/nature05135
T.M. Davis, T.O. Drews, H. Ramanan, C. He, J. Dong et al., Mechanistic principles of nanop evolution to zeolite crystals. Nat. Mater. 5(5), 400–408 (2006). https://doi.org/10.1038/nmat1636
P. Bender, L.K. Bogart, O. Posth, W. Szczerba, S.E. Rogers et al., Structural and magnetic properties of multi-core nanops analysed using a generalised numerical inversion method. Sci. Rep. 7, 45990 (2017). https://doi.org/10.1038/srep45990
J. Fan, S. Willdorf-Cohen, E.M. Schibli, Z. Paula, W. Li et al., Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nat. Commun. 10(1), 2306 (2019). https://doi.org/10.1038/s41467-019-10292-z
C.A. Brosey, J.A. Tainer, Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr. Opin. Struct. Biol. 58, 197–213 (2019). https://doi.org/10.1016/j.sbi.2019.04.004
J. Nitsche, I. Josts, J. Heidemann, H.D. Mertens, S. Maric et al., Structural basis for activation of plasma-membrane Ca2+-ATPase by calmodulin. Commun. Biol. 1, 206 (2018). https://doi.org/10.1038/s42003-018-0203-7
R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
J.F. Nagle, S. Tristram-Nagle, Lipid bilayer structure. Curr. Opin. Struct. Biol. 10(4), 474–480 (2000). https://doi.org/10.1016/S0959-440X(00)00117-2
Z. Liu, G. Li, M. Xi, Y. Huang, H. Li et al., Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery. Angew. Chem. Int. Ed. 63(14), e202319091 (2024). https://doi.org/10.1002/anie.202319091
S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
S. Liu, R. Zhang, J. Mao, Y. Zhao, Q. Cai et al., From room temperature to harsh temperature applications: fundamentals and perspectives on electrolytes in zinc metal batteries. Sci. Adv. 8(12), eabn5097 (2022). https://doi.org/10.1126/sciadv.abn5097
R. Zhang, W.K. Pang, J. Vongsvivut, J.A. Yuwono, G. Li et al., Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy Environ. Sci. 17(13), 4569–4581 (2024). https://doi.org/10.1039/d4ee00942h
K. Xu, A. von Cresce, Interfacing electrolytes with electrodes in Li ion batteries. J. Mater. Chem. 21(27), 9849 (2011). https://doi.org/10.1039/c0jm04309e
G. Liu, Z. Sun, X. Shi, X. Wang, L. Shao et al., 2D-layer-structure Bi to quasi-1D-structure NiBi3: structural dimensionality reduction to superior sodium and potassium ion storage. Adv. Mater. 35(41), 2305551 (2023). https://doi.org/10.1002/adma.202305551
Y.-K. Liu, C.-Z. Zhao, J. Du, X.-Q. Zhang, A.-B. Chen et al., Research progresses of liquid electrolytes in lithium-ion batteries. Small 19(8), 2205315 (2023). https://doi.org/10.1002/smll.202205315
D.R. Ely, R.E. García, Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 160(4), A662–A668 (2013). https://doi.org/10.1149/1.057304jes
W.G. Kidanu, J. Hur, H.W. Choi, M.I. Kim, I.T. Kim, High capacity and inexpensive multivalent cathode materials for aqueous rechargeable Zn-ion battery fabricated via in situ electrochemical oxidation of VO2 nanorods. J. Power. Sources 523, 231060 (2022). https://doi.org/10.1016/j.jpowsour.2022.231060
Z. Wang, P. Cui, X. Wang, M. Chang, Y. Yu et al., Co-substitution engineering boosting the kinetics and stablity of VO2 for Zn ion batteries. Adv. Funct. Mater. 34(46), 2407925 (2024). https://doi.org/10.1002/adfm.202407925
S. Huang, X. Qin, C. Lei, X. Miao, T. Wei, A one-pot method to fabricate reduced graphene oxide (rGO)-coated Si@SiOx@β-Bi2O3/Bi composites for lithium-ion batteries. Electrochim. Acta 390, 138857 (2021). https://doi.org/10.1016/j.electacta.2021.138857
Y. Chen, T. Zhou, L. Li, W.K. Pang, X. He et al., Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 13(8), 9376–9385 (2019). https://doi.org/10.1021/acsnano.9b04005
Z. Song, W. Liu, Q. Huang, Y. Lv, L. Gan et al., Unlocking the potential of a multi-electron p-type polyheterocycle cathode: when it meets a small-size and high-charge anion. Chem. Sci. 16(36), 16542–16551 (2025). https://doi.org/10.1039/d5sc05022g
Y. Fu, Y. Zhang, Q. Huang, P. Liu, Y. Lv et al., Conjugated nanofibrous organic cathodes with high-density carbonyl/imine redox sites for superior NH4+/H+ co-storage. Mater. Horiz. 12(17), 6733–6740 (2025). https://doi.org/10.1039/d5mh00859j
K. Guo, Z. Song, Y. Lv, L. Gan, M. Liu, Inorganic–organic co-intercalated [Al0.16(C5H14ON)0.12] V2O5·0.39H2O cathode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 35(41), 2506036 (2025). https://doi.org/10.1002/adfm.202506036