Activating Progressive Sn2+ Nucleation by Micellar Structure Electrolyte for Dead-Sn-Free Aqueous Batteries
Corresponding Author: Cheng Chao Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 234
Abstract
The instantaneous nucleation of Sn originating from the uncontrolled diffusion of Sn2+ ions typically forms large, electrochemically inactive “dead Sn” that severely constraints the plating/stripping reversibility of Sn anode for acidic aqueous batteries. Herein, nanoscale spatial confinement of Sn2+ ions is realized in SnSO4 electrolyte by strategically dictating spontaneous assembly of nanomicelles with amphipathic sulfolane. The as-constructed locally heterogeneous environment ensures the sustainable release of Sn2+ ions, which reprograms the nucleation manner from instantaneous to progressive modes. The consequent progressive formation of Sn nuclei triggers size refinement of electrodeposited Sn, thereby alleviating the “dead Sn” issue. Meanwhile, the reaction competitivity of Sn2+ reduction over hydrogen evolution side reaction is effectively strengthened as the consecutive hydrogen bonding network among bulk water is disrupted by the micellar structure. Consequently, Sn anode exerts an unprecedently high average Coulombic efficiency of 99.97% and witnesses a prominent life span extension from 710 to 8400 h (~ 11-fold enhancement). In a dual-plating configuration, the Sn||Mn full battery delivers a 1.6 V discharge plateau and sustains 790 cycles, demonstrating practical feasibility. Our findings underscore the decisive role of the very initial nucleation behavior in regulating metal electrochemistry, applicable to other multivalent anodes.
Highlights:
1 Nanoscale spatial confinement of Sn2+ ions is realized in SnSO4 electrolyte by strategically dictating spontaneous assembly of nanomicelles with amphipathic sulfolane.
2 The sustained release of Sn2+ ions reprograms nucleation from an instantaneous mode to a progressive mode, resulting in a Dead-Sn-free deposition layer that significantly extends the Sn anode life span from 710 to 8400 h.
3 In a dual-electrode-free configuration, the Sn||Mn full battery delivers a high-discharge-voltage plateau at ~1.6 V and exerts stable cycling over 790 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Gong, C. Li, M.R. Wasielewski, Advances in solar energy conversion. Chem. Soc. Rev. 48(7), 1862–1864 (2019). https://doi.org/10.1039/C9CS90020A
- J. Wang, D. Yu, X. Sun, H. Wang, J. Li, Anodes for low-temperature rechargeable batteries. eScience 4(5), 100252 (2024). https://doi.org/10.1016/j.esci.2024.100252
- C.M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu et al., Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22(12), 1531–1539 (2023). https://doi.org/10.1038/s41563-023-01700-3
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
- F. Zhang, T. Liao, H. Peng, S. Xi, D.-C. Qi et al., Outer sphere electron transfer enabling high-voltage aqueous electrolytes. J. Am. Chem. Soc. 146(15), 10812–10821 (2024). https://doi.org/10.1021/jacs.4c01188
- Y. Wang, R. Zhao, M. Liu, J. Yang, A. Zhang et al., Suppressed water reactivity by zincophilic-hydrophobic electrolyte additive for superior aqueous Zn metal batteries. Adv. Energy Mater. 13(43), 2302707 (2023). https://doi.org/10.1002/aenm.202302707
- F. Bu, Z. Sun, W. Zhou, Y. Zhang, Y. Chen et al., Reviving Zn0 dendrites to electroactive Zn2+ by mesoporous MXene with active edge sites. J. Am. Chem. Soc. 145(44), 24284–24293 (2023). https://doi.org/10.1021/jacs.3c08986
- Y. Xu, P. Cai, K. Chen, Y. Ding, L. Chen et al., High-voltage rechargeable alkali–acid Zn–PbO2 hybrid battery. Angew. Chem. Int. Ed. 59(52), 23593–23597 (2020). https://doi.org/10.1002/anie.202012017
- J. Ouyang, Y. Wang, N. Wu, G. Wang, L. Xiao et al., Dendrite-free Sn anode with high reversibility for aqueous batteries enabled by “water-in-salt” electrolyte. ACS Appl. Energy Mater. 3(5), 5031–5038 (2020). https://doi.org/10.1021/acsaem.0c00557
- Y. Yao, Z. Wang, Z. Li, Y.-C. Lu, A dendrite-free tin anode for high-energy aqueous redox flow batteries. Adv. Mater. 33(15), 2008095 (2021). https://doi.org/10.1002/adma.202008095
- H. Zhang, D. Xu, F. Yang, J. Xie, Q. Liu et al., A high-capacity Sn metal anode for aqueous acidic batteries. Joule 7(5), 971–985 (2023). https://doi.org/10.1016/j.joule.2023.04.011
- Z. Yu, Q. Wang, Y. Li, F. Zhang, X. Ma et al., Highly reversible tin redox chemistry for stable anode-free acidic proton battery. Joule 8(4), 1063–1079 (2024). https://doi.org/10.1016/j.joule.2024.03.007
- S. Chang, W. Hou, A. Del Valle-Perez, I. Ullah, S. Qiu et al., A low-acidity chloride electrolyte enables exceptional reversibility and stability in aqueous tin metal batteries. Angew. Chem. Int. Ed. 64(2), e202414346 (2025). https://doi.org/10.1002/anie.202414346
- D. Xu, H. Zhang, J. Xie, L. Zhou, F. Yang et al., Highly reversible tin film anode guided via interfacial coordination effect for high energy aqueous acidic batteries. Adv. Mater. 36(35), 2408067 (2024). https://doi.org/10.1002/adma.202408067
- E. Pensini, A.G. Marangoni, B. Bartokova, A.L. Fameau, M.G. Corradini et al., Sulfolane clustering in aqueous saline solutions. Phys. Fluids 36(3), 037117 (2024). https://doi.org/10.1063/5.0196389
- M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96 % utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62(3), e202214966 (2023). https://doi.org/10.1002/anie.202214966
- L. Zhou, R. Yang, S. Xu, X. Lei, Y. Zheng et al., Maximizing electrostatic polarity of non-sacrificial electrolyte additives enables stable zinc-metal anodes for aqueous batteries. Angew. Chem. Int. Ed. 62(40), e202307880 (2023). https://doi.org/10.1002/anie.202307880
- X. Feng, P. Li, J. Yin, Z. Gan, Y. Gao et al., Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett. 8(2), 1192–1200 (2023). https://doi.org/10.1021/acsenergylett.2c02455
- J. Yao, B. Zhang, X. Wang, L. Tao, J. Ji et al., Atomic level-macroscopic structure-activity of inhomogeneous localized aggregates enabled ultra-low temperature hybrid aqueous batteries. Angew. Chem. Int. Ed. 63(39), e202409986 (2024). https://doi.org/10.1002/anie.202409986
- Y. Yu, P. Li, X. Xie, J. Xie, H. Liu et al., High areal capacity and long-life Sn anode enabled by tuning electrolyte solvation chemistry and interfacial adsorbed molecular layer. Energy Storage Mater. 74, 103904 (2025). https://doi.org/10.1016/j.ensm.2024.103904
- M. Cheng, D. Li, J. Cao, T. Sun, Q. Sun et al., “Anions-in-colloid” hydrated deep eutectic electrolyte for high reversible zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202410210 (2024). https://doi.org/10.1002/anie.202410210
- W. Zhou, M. Song, P. Liang, X. Li, X. Liu et al., High-energy Sn–Ni and Sn–air aqueous batteries via stannite-ion electrochemistry. J. Am. Chem. Soc. 145(19), 10880–10889 (2023). https://doi.org/10.1021/jacs.3c03039
- Y. Wang, T. Wang, S. Bu, J. Zhu, Y. Wang et al., Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat. Commun. 14(1), 1828 (2023). https://doi.org/10.1038/s41467-023-37524-7
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- Y. Li, P. Wu, W. Zhong, C. Xie, Y. Xie et al., A progressive nucleation mechanism enables stable zinc stripping–plating behavior. Energy Environ. Sci. 14(10), 5563–5571 (2021). https://doi.org/10.1039/D1EE01861B
- B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28(7), 879–889 (1983). https://doi.org/10.1016/0013-4686(83)85163-9
- Q. Wang, F. Zhang, Y. Shu, H. Xiao, X. Zhang et al., Towards highly stable Sn2+ electrolyte for aqueous tin batteries using hydroquinone antioxidant. Angew. Chem. Int. Ed. 64(7), e202418928 (2025). https://doi.org/10.1002/anie.202418928
- T. Xiao, L. Liu, H. Liu, T. Li, D. Cai et al., Highly rechargeable aqueous Sn-metal-based hybrid-ion batteries. Joule 9(3), 101820 (2025). https://doi.org/10.1016/j.joule.2025.101820
- F. Zhang, X. Zhang, Y. Shu, H. Xiao, Q. Wang et al., Constructing dense morphology of Sn with high reversibility under high areal-capacity for anode-free tin batteries. Angew. Chem. Int. Ed. 64(20), e202425419 (2025). https://doi.org/10.1002/anie.202425419
- B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
- Y. Ren, H. Li, Y. Rao, H. Zhou, S. Guo, Aqueous MnO2/Mn2+ electrochemistry in batteries: progress, challenges, and perspectives. Energy Environ. Sci. 17(2), 425–441 (2024). https://doi.org/10.1039/d3ee03661h
- X. Li, Y. Tang, C. Han, Z. Wei, H. Fan et al., A static tin–manganese battery with 30000-cycle lifespan based on stabilized Mn3+/Mn2+ redox chemistry. ACS Nano 17(5), 5083–5094 (2023). https://doi.org/10.1021/acsnano.3c00242
References
J. Gong, C. Li, M.R. Wasielewski, Advances in solar energy conversion. Chem. Soc. Rev. 48(7), 1862–1864 (2019). https://doi.org/10.1039/C9CS90020A
J. Wang, D. Yu, X. Sun, H. Wang, J. Li, Anodes for low-temperature rechargeable batteries. eScience 4(5), 100252 (2024). https://doi.org/10.1016/j.esci.2024.100252
C.M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu et al., Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22(12), 1531–1539 (2023). https://doi.org/10.1038/s41563-023-01700-3
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
F. Zhang, T. Liao, H. Peng, S. Xi, D.-C. Qi et al., Outer sphere electron transfer enabling high-voltage aqueous electrolytes. J. Am. Chem. Soc. 146(15), 10812–10821 (2024). https://doi.org/10.1021/jacs.4c01188
Y. Wang, R. Zhao, M. Liu, J. Yang, A. Zhang et al., Suppressed water reactivity by zincophilic-hydrophobic electrolyte additive for superior aqueous Zn metal batteries. Adv. Energy Mater. 13(43), 2302707 (2023). https://doi.org/10.1002/aenm.202302707
F. Bu, Z. Sun, W. Zhou, Y. Zhang, Y. Chen et al., Reviving Zn0 dendrites to electroactive Zn2+ by mesoporous MXene with active edge sites. J. Am. Chem. Soc. 145(44), 24284–24293 (2023). https://doi.org/10.1021/jacs.3c08986
Y. Xu, P. Cai, K. Chen, Y. Ding, L. Chen et al., High-voltage rechargeable alkali–acid Zn–PbO2 hybrid battery. Angew. Chem. Int. Ed. 59(52), 23593–23597 (2020). https://doi.org/10.1002/anie.202012017
J. Ouyang, Y. Wang, N. Wu, G. Wang, L. Xiao et al., Dendrite-free Sn anode with high reversibility for aqueous batteries enabled by “water-in-salt” electrolyte. ACS Appl. Energy Mater. 3(5), 5031–5038 (2020). https://doi.org/10.1021/acsaem.0c00557
Y. Yao, Z. Wang, Z. Li, Y.-C. Lu, A dendrite-free tin anode for high-energy aqueous redox flow batteries. Adv. Mater. 33(15), 2008095 (2021). https://doi.org/10.1002/adma.202008095
H. Zhang, D. Xu, F. Yang, J. Xie, Q. Liu et al., A high-capacity Sn metal anode for aqueous acidic batteries. Joule 7(5), 971–985 (2023). https://doi.org/10.1016/j.joule.2023.04.011
Z. Yu, Q. Wang, Y. Li, F. Zhang, X. Ma et al., Highly reversible tin redox chemistry for stable anode-free acidic proton battery. Joule 8(4), 1063–1079 (2024). https://doi.org/10.1016/j.joule.2024.03.007
S. Chang, W. Hou, A. Del Valle-Perez, I. Ullah, S. Qiu et al., A low-acidity chloride electrolyte enables exceptional reversibility and stability in aqueous tin metal batteries. Angew. Chem. Int. Ed. 64(2), e202414346 (2025). https://doi.org/10.1002/anie.202414346
D. Xu, H. Zhang, J. Xie, L. Zhou, F. Yang et al., Highly reversible tin film anode guided via interfacial coordination effect for high energy aqueous acidic batteries. Adv. Mater. 36(35), 2408067 (2024). https://doi.org/10.1002/adma.202408067
E. Pensini, A.G. Marangoni, B. Bartokova, A.L. Fameau, M.G. Corradini et al., Sulfolane clustering in aqueous saline solutions. Phys. Fluids 36(3), 037117 (2024). https://doi.org/10.1063/5.0196389
M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96 % utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62(3), e202214966 (2023). https://doi.org/10.1002/anie.202214966
L. Zhou, R. Yang, S. Xu, X. Lei, Y. Zheng et al., Maximizing electrostatic polarity of non-sacrificial electrolyte additives enables stable zinc-metal anodes for aqueous batteries. Angew. Chem. Int. Ed. 62(40), e202307880 (2023). https://doi.org/10.1002/anie.202307880
X. Feng, P. Li, J. Yin, Z. Gan, Y. Gao et al., Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett. 8(2), 1192–1200 (2023). https://doi.org/10.1021/acsenergylett.2c02455
J. Yao, B. Zhang, X. Wang, L. Tao, J. Ji et al., Atomic level-macroscopic structure-activity of inhomogeneous localized aggregates enabled ultra-low temperature hybrid aqueous batteries. Angew. Chem. Int. Ed. 63(39), e202409986 (2024). https://doi.org/10.1002/anie.202409986
Y. Yu, P. Li, X. Xie, J. Xie, H. Liu et al., High areal capacity and long-life Sn anode enabled by tuning electrolyte solvation chemistry and interfacial adsorbed molecular layer. Energy Storage Mater. 74, 103904 (2025). https://doi.org/10.1016/j.ensm.2024.103904
M. Cheng, D. Li, J. Cao, T. Sun, Q. Sun et al., “Anions-in-colloid” hydrated deep eutectic electrolyte for high reversible zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202410210 (2024). https://doi.org/10.1002/anie.202410210
W. Zhou, M. Song, P. Liang, X. Li, X. Liu et al., High-energy Sn–Ni and Sn–air aqueous batteries via stannite-ion electrochemistry. J. Am. Chem. Soc. 145(19), 10880–10889 (2023). https://doi.org/10.1021/jacs.3c03039
Y. Wang, T. Wang, S. Bu, J. Zhu, Y. Wang et al., Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat. Commun. 14(1), 1828 (2023). https://doi.org/10.1038/s41467-023-37524-7
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
Y. Li, P. Wu, W. Zhong, C. Xie, Y. Xie et al., A progressive nucleation mechanism enables stable zinc stripping–plating behavior. Energy Environ. Sci. 14(10), 5563–5571 (2021). https://doi.org/10.1039/D1EE01861B
B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28(7), 879–889 (1983). https://doi.org/10.1016/0013-4686(83)85163-9
Q. Wang, F. Zhang, Y. Shu, H. Xiao, X. Zhang et al., Towards highly stable Sn2+ electrolyte for aqueous tin batteries using hydroquinone antioxidant. Angew. Chem. Int. Ed. 64(7), e202418928 (2025). https://doi.org/10.1002/anie.202418928
T. Xiao, L. Liu, H. Liu, T. Li, D. Cai et al., Highly rechargeable aqueous Sn-metal-based hybrid-ion batteries. Joule 9(3), 101820 (2025). https://doi.org/10.1016/j.joule.2025.101820
F. Zhang, X. Zhang, Y. Shu, H. Xiao, Q. Wang et al., Constructing dense morphology of Sn with high reversibility under high areal-capacity for anode-free tin batteries. Angew. Chem. Int. Ed. 64(20), e202425419 (2025). https://doi.org/10.1002/anie.202425419
B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
Y. Ren, H. Li, Y. Rao, H. Zhou, S. Guo, Aqueous MnO2/Mn2+ electrochemistry in batteries: progress, challenges, and perspectives. Energy Environ. Sci. 17(2), 425–441 (2024). https://doi.org/10.1039/d3ee03661h
X. Li, Y. Tang, C. Han, Z. Wei, H. Fan et al., A static tin–manganese battery with 30000-cycle lifespan based on stabilized Mn3+/Mn2+ redox chemistry. ACS Nano 17(5), 5083–5094 (2023). https://doi.org/10.1021/acsnano.3c00242