Interfacial Evolution and Accelerated Aging Mechanism for LiFePO4/Graphite Pouch Batteries Under Multi-Step Indirect Activation
Corresponding Author: Lai Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 136
Abstract
The dissolution of iron from the cathode and electrode/electrolyte interface (EEI) during long cycles significantly accelerates the aging process of LiFePO4 (LFP)/graphite batteries; there is a lack of systematic understanding of the spatial distribution of the EEI interface layer and the dissolve of Fe ions, especially in terms of the mechanism of the cathode–electrolyte interphase (CEI), solid electrolyte interphase (SEI), and iron dissolution. In this study, aged cells were subjected to continuous activation with constant current and multi-step segmented indirect activation (IA) and analyzed for capacity fade, impedance growth, and active Li+ mass loss at the EEI and nanoscale levels. The interaction between dissolved Fe2+ and the EEI in LFP/graphite pouch batteries was proposed and verified. The findings indicate that during IA process, the electric field facilitates the migration of solvated ions toward the electrodes, while simultaneously inhibiting the formation of organic species such as ROCO2Li. The SEI primarily consists of a mixture of organic and inorganic small molecules, forming a continuous and uniform film on the electrode surface. This study demonstrates that IA favors the formation of a uniform EEI and offers constructive insights for advancing accelerated lifetime prediction strategies in lithium-ion batteries.
Highlights:
1 Quantifying the aging mechanisms and their evolution patterns during battery aging is crucial for enabling renewable energy.
2 The uniform electrode/electrolyte interface (EEI) film on the electrode surface has an important impact on the energy density, cycling performance and power density of the battery.
3 Multi-step segmented indirect activation strategy promotes the formation of uniform EEI and suppresses iron dissolved in the electrolyte.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Yang, Z. Fang, Y. Ji, Y. Yang, J. Hou et al., A room-temperature lithium-restocking strategy for the direct reuse of degraded LiFePO4 electrodes. Angew. Chem. Int. Ed. 63(49), e202409929 (2024). https://doi.org/10.1002/anie.202409929
- S. Li, H. Zhang, Y. Liu, L. Wang, X. He, Comprehensive understanding of structure transition in LiMnyFe1–yPO4 during delithiation/lithiation. Adv. Funct. Mater. 34(4), 2310057 (2024). https://doi.org/10.1002/adfm.202310057
- F. Yang, X. Chen, G. Qu, Q. Nie, G. Liu et al., Electrode separation via water electrolysis for sustainable battery recycling. Nat. Sustain. 8(5), 520–529 (2025). https://doi.org/10.1038/s41893-025-01539-3
- X.-G. Yang, T. Liu, C.-Y. Wang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6(2), 176–185 (2021). https://doi.org/10.1038/s41560-020-00757-7
- X.-X. Zhao, X.-T. Wang, J.-Z. Guo, Z.-Y. Gu, J.-M. Cao et al., Dynamic Li+ capture through ligand-chain interaction for the regeneration of depleted LiFePO4 cathode. Adv. Mater. 36(14), e2308927 (2024). https://doi.org/10.1002/adma.202308927
- Y. Li, J. Guo, K. Pedersen, L. Gurevich, D.-I. Stroe, Investigation of multi-step fast charging protocol and aging mechanism for commercial NMC/graphite lithium-ion batteries. J. Energy Chem. 80, 237–246 (2023). https://doi.org/10.1016/j.jechem.2023.01.016
- W. Dachraoui, R. Pauer, C. Battaglia, R. Erni, Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano 17(20), 20434–20444 (2023). https://doi.org/10.1021/acsnano.3c06879
- D. Tang, G. Ji, J. Wang, Z. Liang, W. Chen et al., A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36(5), 2309722 (2024). https://doi.org/10.1002/adma.202309722
- Q. Sun, Z. Gong, T. Zhang, J. Li, X. Zhu et al., Molecule-level multiscale design of nonflammable gel polymer electrolyte to build stable SEI/CEI for lithium metal battery. Nano-Micro Lett. 17(1), 18 (2024). https://doi.org/10.1007/s40820-024-01508-z
- Y. Peng, M. Ding, K. Zhang, H. Zhang, Y. Hu et al., Quantitative analysis of the coupled mechanisms of lithium plating, SEI growth, and electrolyte decomposition in fast charging battery. ACS Energy Lett. 9(12), 6022–6028 (2024). https://doi.org/10.1021/acsenergylett.4c02898
- Y. Guo, Y. Yao, C. Guo, Y. Song, P. Huang et al., Atomistic observation and transient reordering of antisite Li/Fe defects toward sustainable LiFePO4. Energy Environ. Sci. 17(20), 7749–7761 (2024). https://doi.org/10.1039/d4ee01622j
- Z. Zeng, H. Lei, X. Lu, C. Zhu, Y. Wen et al., Li-Fe anti-sites defects in LiFePO4: mechanism, characterization and cathode-regeneration applications. Energy Storage Mater. 74, 103947 (2025). https://doi.org/10.1016/j.ensm.2024.103947
- R. Li, L. Bao, L. Chen, C. Zha, J. Dong et al., Accelerated aging of lithium-ion batteries: bridging battery aging analysis and operational lifetime prediction. Sci. Bull. 68(23), 3055–3079 (2023). https://doi.org/10.1016/j.scib.2023.10.029
- A. Adamson, K. Tuul, T. Bötticher, S. Azam, M.D.L. Garayt et al., Improving lithium-ion cells by replacing polyethylene terephthalate jellyroll tape. Nat. Mater. 22(11), 1380–1386 (2023). https://doi.org/10.1038/s41563-023-01673-3
- Z. Liu, J. Liu, S. Zhao, S. Xun, P. Byaruhanga et al., Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries. Nat. Sustain. 7(11), 1492–1500 (2024). https://doi.org/10.1038/s41893-024-01431-6
- Y. Lin, W. Hu, M. Ding, Y. Hu, Y. Peng et al., Unveiling the three stages of Li plating and dynamic evolution processes in pouch C/LiFePO4 batteries. Adv. Energy Mater. 14(36), 2400894 (2024). https://doi.org/10.1002/aenm.202400894
- S. Tang, Y. Liang, Y. Peng, Y. Hu, Y. Liao et al., Unveiling the crucial role of dissolved Fe2+ on the solid electrolyte interphase in long-life LiFePO4/graphite batteries. Adv. Energy Mater. 15(4), 2402842 (2025). https://doi.org/10.1002/aenm.202402842
- L. Wang, J. Qiu, X. Wang, L. Chen, G. Cao et al., Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2(2), 125–137 (2022). https://doi.org/10.1016/j.esci.2022.03.006
- R. Tang, J. Dong, C. Wang, Y. Guan, A. Yin et al., Rate-dependent failure behavior regulation of LiFePO4 cathode via functional interface engineering. Adv. Funct. Mater. 35(22), 2421284 (2025). https://doi.org/10.1002/adfm.202421284
- C. Feng, Y. Cao, L. Song, B. Zhao, Q. Yang et al., Direct regeneration of industrial LiFePO4 black mass through a glycerol-enabled granule reconstruction strategy. Angew. Chem. Int. Ed. 64(6), e202418198 (2025). https://doi.org/10.1002/anie.202418198
- W. Shi, L. Liu, R. Xu, R. Sun, J. Dong et al., State-of-charge mediated short-term low-temperature calendar aging impacts the cycling stability of Ni-rich cathodes in pouch full cells. Energy Storage Mater. 76, 104143 (2025). https://doi.org/10.1016/j.ensm.2025.104143
- H. Zhang, Y. Peng, Y. Hu, S. Pan, S. Tang et al., Quantitative analysis of aging and rollover failure mechanisms of lithium-ion batteries at accelerated aging conditions. Adv. Energy Mater. 15(19), 2404997 (2025). https://doi.org/10.1002/aenm.202404997
- J. Li, R. Shi, J. Wang, Y. Cao, H. Ji et al., Interfacial metal-solvent chelation for direct regeneration of LiFePO4 cathode black mass. Adv. Mater. 37(5), 2414235 (2025). https://doi.org/10.1002/adma.202414235
- L. Chen, X. He, Y. Chen, Y. Hou, Y. Zhang et al., Manipulating interfacial stability via preferential absorption for highly stable and safe 4.6 V LiCoO2 cathode. Nano-Micro Lett. 17(1), 181 (2025). https://doi.org/10.1007/s40820-025-01694-4
- Z. Li, Y.-X. Yao, M. Zheng, S. Sun, Y. Yang et al., Electrolyte design enables rechargeable LiFePO4/graphite batteries from − 80 to 80 °C. Angew. Chem. Int. Ed. 64(2), e202409409 (2025). https://doi.org/10.1002/anie.202409409
- M. Kim, W. Lee, E. Lee, J. Kim, J.-U. Kim et al., Decoupling the capacity fading in Ni-rich layered materials during high-temperature cycling in the full-cell system. Adv. Energy Mater. 13(41), 2302209 (2023). https://doi.org/10.1002/aenm.202302209
- K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35(5), 2208034 (2023). https://doi.org/10.1002/adma.202208034
- N. Šimić, A. Jodlbauer, M. Oberaigner, M. Nachtnebel, S. Mitsche et al., Phase transitions and ion transport in lithium iron phosphate by atomic-scale analysis to elucidate insertion and extraction processes in Li-ion batteries. Adv. Energy Mater. 14(34), 2304381 (2024). https://doi.org/10.1002/aenm.202304381
- P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4(12), 2609–2626 (2020). https://doi.org/10.1016/j.joule.2020.10.008
- S. Hao, Y. Lv, Y. Zhang, S. Liu, Z. Tan et al., Restoration of Li+ pathways in the [010] direction during direct regeneration for spent LiFePO4. Energy Environ. Sci. 18(8), 3750–3760 (2025). https://doi.org/10.1039/d5ee00641d
- Y. Cao, J. Li, D. Tang, F. Zhou, M. Yuan et al., Targeted defect repair and multi-functional interface construction for the direct regeneration of spent LiFePO4 cathodes. Adv. Mater. 36(48), 2414048 (2024). https://doi.org/10.1002/adma.202414048
- X.-M. Fan, Y.-D. Huang, H.-X. Wei, L.-B. Tang, Z.-J. He et al., Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability. Adv. Funct. Mater. 32(6), 2109421 (2022). https://doi.org/10.1002/adfm.202109421
- Q. Xu, X. Li, H.M. Kheimeh Sari, W. Li, W. Liu et al., Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano Energy 77, 105034 (2020). https://doi.org/10.1016/j.nanoen.2020.105034
- H. Yang, H.-H. Wu, M. Ge, L. Li, Y. Yuan et al., Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 29(13), 1808825 (2019). https://doi.org/10.1002/adfm.201808825
- Y. Peng, C. Zhong, M. Ding, H. Zhang, Y. Jin et al., Quantitative analysis of active lithium loss and degradation mechanism in temperature accelerated aging process of lithium-ion batteries. Adv. Funct. Mater. 34(42), 2404495 (2024). https://doi.org/10.1002/adfm.202404495
- S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15(1), 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
- W. Fan, P. Li, J. Shi, J. Chen, W. Tian et al., Atomic zincophilic sites regulating microspace electric fields for dendrite-free zinc anode. Adv. Mater. 36(1), 2307219 (2024). https://doi.org/10.1002/adma.202307219
- H. Chen, Y. Wang, S. Zhang, Y. He, L. Hou et al., Two-pronged approach to achieving high-capacity and long stable-life aqueous Zn-ion batteries. Chem. Eng. J. 479, 147422 (2024). https://doi.org/10.1016/j.cej.2023.147422
- X. Cheng, Y. Li, T. Cao, R. Wu, M. Wang et al., Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 6(5), 1703–1710 (2021). https://doi.org/10.1021/acsenergylett.1c00279
- Z. Dai, Y. Liu, X. Lu, H. Zhao, Y. Bai, Ultra-high temperature operated Ni-rich cathode stabilized by thermal barrier for high-energy lithium-ion batteries. Adv. Mater. 36(24), 2313500 (2024). https://doi.org/10.1002/adma.202313500
- Y. Liu, Q. Wang, L. Chen, Z. Xiao, X. Fan et al., Diffusion-induced stress optimization by boosted surface Li-concentration for single-crystal Ni-rich layered cathodes. Mater. Today 61, 40–53 (2022). https://doi.org/10.1016/j.mattod.2022.10.021
References
D. Yang, Z. Fang, Y. Ji, Y. Yang, J. Hou et al., A room-temperature lithium-restocking strategy for the direct reuse of degraded LiFePO4 electrodes. Angew. Chem. Int. Ed. 63(49), e202409929 (2024). https://doi.org/10.1002/anie.202409929
S. Li, H. Zhang, Y. Liu, L. Wang, X. He, Comprehensive understanding of structure transition in LiMnyFe1–yPO4 during delithiation/lithiation. Adv. Funct. Mater. 34(4), 2310057 (2024). https://doi.org/10.1002/adfm.202310057
F. Yang, X. Chen, G. Qu, Q. Nie, G. Liu et al., Electrode separation via water electrolysis for sustainable battery recycling. Nat. Sustain. 8(5), 520–529 (2025). https://doi.org/10.1038/s41893-025-01539-3
X.-G. Yang, T. Liu, C.-Y. Wang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6(2), 176–185 (2021). https://doi.org/10.1038/s41560-020-00757-7
X.-X. Zhao, X.-T. Wang, J.-Z. Guo, Z.-Y. Gu, J.-M. Cao et al., Dynamic Li+ capture through ligand-chain interaction for the regeneration of depleted LiFePO4 cathode. Adv. Mater. 36(14), e2308927 (2024). https://doi.org/10.1002/adma.202308927
Y. Li, J. Guo, K. Pedersen, L. Gurevich, D.-I. Stroe, Investigation of multi-step fast charging protocol and aging mechanism for commercial NMC/graphite lithium-ion batteries. J. Energy Chem. 80, 237–246 (2023). https://doi.org/10.1016/j.jechem.2023.01.016
W. Dachraoui, R. Pauer, C. Battaglia, R. Erni, Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano 17(20), 20434–20444 (2023). https://doi.org/10.1021/acsnano.3c06879
D. Tang, G. Ji, J. Wang, Z. Liang, W. Chen et al., A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36(5), 2309722 (2024). https://doi.org/10.1002/adma.202309722
Q. Sun, Z. Gong, T. Zhang, J. Li, X. Zhu et al., Molecule-level multiscale design of nonflammable gel polymer electrolyte to build stable SEI/CEI for lithium metal battery. Nano-Micro Lett. 17(1), 18 (2024). https://doi.org/10.1007/s40820-024-01508-z
Y. Peng, M. Ding, K. Zhang, H. Zhang, Y. Hu et al., Quantitative analysis of the coupled mechanisms of lithium plating, SEI growth, and electrolyte decomposition in fast charging battery. ACS Energy Lett. 9(12), 6022–6028 (2024). https://doi.org/10.1021/acsenergylett.4c02898
Y. Guo, Y. Yao, C. Guo, Y. Song, P. Huang et al., Atomistic observation and transient reordering of antisite Li/Fe defects toward sustainable LiFePO4. Energy Environ. Sci. 17(20), 7749–7761 (2024). https://doi.org/10.1039/d4ee01622j
Z. Zeng, H. Lei, X. Lu, C. Zhu, Y. Wen et al., Li-Fe anti-sites defects in LiFePO4: mechanism, characterization and cathode-regeneration applications. Energy Storage Mater. 74, 103947 (2025). https://doi.org/10.1016/j.ensm.2024.103947
R. Li, L. Bao, L. Chen, C. Zha, J. Dong et al., Accelerated aging of lithium-ion batteries: bridging battery aging analysis and operational lifetime prediction. Sci. Bull. 68(23), 3055–3079 (2023). https://doi.org/10.1016/j.scib.2023.10.029
A. Adamson, K. Tuul, T. Bötticher, S. Azam, M.D.L. Garayt et al., Improving lithium-ion cells by replacing polyethylene terephthalate jellyroll tape. Nat. Mater. 22(11), 1380–1386 (2023). https://doi.org/10.1038/s41563-023-01673-3
Z. Liu, J. Liu, S. Zhao, S. Xun, P. Byaruhanga et al., Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries. Nat. Sustain. 7(11), 1492–1500 (2024). https://doi.org/10.1038/s41893-024-01431-6
Y. Lin, W. Hu, M. Ding, Y. Hu, Y. Peng et al., Unveiling the three stages of Li plating and dynamic evolution processes in pouch C/LiFePO4 batteries. Adv. Energy Mater. 14(36), 2400894 (2024). https://doi.org/10.1002/aenm.202400894
S. Tang, Y. Liang, Y. Peng, Y. Hu, Y. Liao et al., Unveiling the crucial role of dissolved Fe2+ on the solid electrolyte interphase in long-life LiFePO4/graphite batteries. Adv. Energy Mater. 15(4), 2402842 (2025). https://doi.org/10.1002/aenm.202402842
L. Wang, J. Qiu, X. Wang, L. Chen, G. Cao et al., Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2(2), 125–137 (2022). https://doi.org/10.1016/j.esci.2022.03.006
R. Tang, J. Dong, C. Wang, Y. Guan, A. Yin et al., Rate-dependent failure behavior regulation of LiFePO4 cathode via functional interface engineering. Adv. Funct. Mater. 35(22), 2421284 (2025). https://doi.org/10.1002/adfm.202421284
C. Feng, Y. Cao, L. Song, B. Zhao, Q. Yang et al., Direct regeneration of industrial LiFePO4 black mass through a glycerol-enabled granule reconstruction strategy. Angew. Chem. Int. Ed. 64(6), e202418198 (2025). https://doi.org/10.1002/anie.202418198
W. Shi, L. Liu, R. Xu, R. Sun, J. Dong et al., State-of-charge mediated short-term low-temperature calendar aging impacts the cycling stability of Ni-rich cathodes in pouch full cells. Energy Storage Mater. 76, 104143 (2025). https://doi.org/10.1016/j.ensm.2025.104143
H. Zhang, Y. Peng, Y. Hu, S. Pan, S. Tang et al., Quantitative analysis of aging and rollover failure mechanisms of lithium-ion batteries at accelerated aging conditions. Adv. Energy Mater. 15(19), 2404997 (2025). https://doi.org/10.1002/aenm.202404997
J. Li, R. Shi, J. Wang, Y. Cao, H. Ji et al., Interfacial metal-solvent chelation for direct regeneration of LiFePO4 cathode black mass. Adv. Mater. 37(5), 2414235 (2025). https://doi.org/10.1002/adma.202414235
L. Chen, X. He, Y. Chen, Y. Hou, Y. Zhang et al., Manipulating interfacial stability via preferential absorption for highly stable and safe 4.6 V LiCoO2 cathode. Nano-Micro Lett. 17(1), 181 (2025). https://doi.org/10.1007/s40820-025-01694-4
Z. Li, Y.-X. Yao, M. Zheng, S. Sun, Y. Yang et al., Electrolyte design enables rechargeable LiFePO4/graphite batteries from − 80 to 80 °C. Angew. Chem. Int. Ed. 64(2), e202409409 (2025). https://doi.org/10.1002/anie.202409409
M. Kim, W. Lee, E. Lee, J. Kim, J.-U. Kim et al., Decoupling the capacity fading in Ni-rich layered materials during high-temperature cycling in the full-cell system. Adv. Energy Mater. 13(41), 2302209 (2023). https://doi.org/10.1002/aenm.202302209
K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35(5), 2208034 (2023). https://doi.org/10.1002/adma.202208034
N. Šimić, A. Jodlbauer, M. Oberaigner, M. Nachtnebel, S. Mitsche et al., Phase transitions and ion transport in lithium iron phosphate by atomic-scale analysis to elucidate insertion and extraction processes in Li-ion batteries. Adv. Energy Mater. 14(34), 2304381 (2024). https://doi.org/10.1002/aenm.202304381
P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4(12), 2609–2626 (2020). https://doi.org/10.1016/j.joule.2020.10.008
S. Hao, Y. Lv, Y. Zhang, S. Liu, Z. Tan et al., Restoration of Li+ pathways in the [010] direction during direct regeneration for spent LiFePO4. Energy Environ. Sci. 18(8), 3750–3760 (2025). https://doi.org/10.1039/d5ee00641d
Y. Cao, J. Li, D. Tang, F. Zhou, M. Yuan et al., Targeted defect repair and multi-functional interface construction for the direct regeneration of spent LiFePO4 cathodes. Adv. Mater. 36(48), 2414048 (2024). https://doi.org/10.1002/adma.202414048
X.-M. Fan, Y.-D. Huang, H.-X. Wei, L.-B. Tang, Z.-J. He et al., Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability. Adv. Funct. Mater. 32(6), 2109421 (2022). https://doi.org/10.1002/adfm.202109421
Q. Xu, X. Li, H.M. Kheimeh Sari, W. Li, W. Liu et al., Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: bimetallic oxides versus monometallic oxides. Nano Energy 77, 105034 (2020). https://doi.org/10.1016/j.nanoen.2020.105034
H. Yang, H.-H. Wu, M. Ge, L. Li, Y. Yuan et al., Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 29(13), 1808825 (2019). https://doi.org/10.1002/adfm.201808825
Y. Peng, C. Zhong, M. Ding, H. Zhang, Y. Jin et al., Quantitative analysis of active lithium loss and degradation mechanism in temperature accelerated aging process of lithium-ion batteries. Adv. Funct. Mater. 34(42), 2404495 (2024). https://doi.org/10.1002/adfm.202404495
S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15(1), 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
W. Fan, P. Li, J. Shi, J. Chen, W. Tian et al., Atomic zincophilic sites regulating microspace electric fields for dendrite-free zinc anode. Adv. Mater. 36(1), 2307219 (2024). https://doi.org/10.1002/adma.202307219
H. Chen, Y. Wang, S. Zhang, Y. He, L. Hou et al., Two-pronged approach to achieving high-capacity and long stable-life aqueous Zn-ion batteries. Chem. Eng. J. 479, 147422 (2024). https://doi.org/10.1016/j.cej.2023.147422
X. Cheng, Y. Li, T. Cao, R. Wu, M. Wang et al., Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 6(5), 1703–1710 (2021). https://doi.org/10.1021/acsenergylett.1c00279
Z. Dai, Y. Liu, X. Lu, H. Zhao, Y. Bai, Ultra-high temperature operated Ni-rich cathode stabilized by thermal barrier for high-energy lithium-ion batteries. Adv. Mater. 36(24), 2313500 (2024). https://doi.org/10.1002/adma.202313500
Y. Liu, Q. Wang, L. Chen, Z. Xiao, X. Fan et al., Diffusion-induced stress optimization by boosted surface Li-concentration for single-crystal Ni-rich layered cathodes. Mater. Today 61, 40–53 (2022). https://doi.org/10.1016/j.mattod.2022.10.021