Direct Repair of the Crystal Structure and Coating Surface of Spent LiFePO4 Materials Enables Superfast Li-Ion Migration
Corresponding Author: Yongbing Tang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 137
Abstract
The rapid accumulation of spent LiFePO4 (LFP) cathodes from retired lithium-ion batteries necessitates the development of effective and environmental-friendly recycling strategies. In this context, direct regeneration has emerged as a promising approach for reclaiming LFP cathode materials, offering a streamlined pathway to restore their electrochemical functionality. We report an integrated regeneration protocol that simultaneously repairs the degraded crystal structure and reconstructs the damaged carbon coating in spent LFP. The regenerated cathode material had superfast lithium-ion diffusion kinetics and a stable cathode–electrolyte interface, giving a remarkable rate capability with specific capacities of 122 mAh g−1 at 5C and 106 mAh g−1 at 10C (1C = 170 mA g−1). It also maintained capacities of 110.7 mAh g−1 (5C) and 84.1 mAh g−1 (10C) after 400 cycles. It could be used in harsh environments and could be stably cycled at subzero temperatures (− 10 and − 20 °C) and in solid-state electrolyte batteries. Life cycle assessment combined with economic evaluation using the EverBatt model reveals that this direct regeneration approach has high economic and environmental benefits.
Highlights:
1 Simultaneously repairing the degraded crystal structure and reconstructing the damaged carbon coating in spent LiFePO4 cathode enables superfast lithium-ion diffusion kinetics and produces a stable cathode–electrolyte interface.
2 The regenerated LiFePO4 cathode delivers remarkable rate capability, low-temperature performance and compatibility in solid-state batteries.
3 The proposed direct regeneration approach has high economic and environmental benefits compared to hydrometallurgical and conventional direct recycling methods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Yao, A.R. Armstrong, X. Zhou, M.-T. Sougrati, P. Kidkhunthod et al., An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nat. Commun. 10(1), 3483 (2019). https://doi.org/10.1038/s41467-019-11077-0
- Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee et al., In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv. Mater. 33(37), 2100793 (2021). https://doi.org/10.1002/adma.202100793
- X. He, Q. Yan, H. He, J. Shang, X. Zhou et al., A vanadium-based fluoroxide cathode material for lithium-ion storage with high energy density. Adv. Sustain. Syst. 6(7), 2200122 (2022). https://doi.org/10.1002/adsu.202200122
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- Y. Lan, W. Yao, X. He, T. Song, Y. Tang, Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angew. Chem. Int. Ed. 59(24), 9255–9262 (2020). https://doi.org/10.1002/anie.201915666
- J. Huang, Y. Yang, Y. Liu, J. Ma, Lithium hexamethyldisilazide endows Li||NCM811 battery with superior performance. Nano-Micro Lett. 15(1), 33 (2023). https://doi.org/10.1007/s40820-022-00998-z
- M. Huang, M. Wang, L. Yang, Z. Wang, H. Yu et al., Direct regeneration of spent lithium-ion battery cathodes: from theoretical study to production practice. Nano-Micro Lett. 16(1), 207 (2024). https://doi.org/10.1007/s40820-024-01434-0
- Z. Zeng, P. Xu, J. Li, C. Yi, W. Zhao et al., Large-scale and homogenized strategies of spent LiFePO4 recycling: reconstruction of targeted lattice. Adv. Funct. Mater. 34(6), 2308671 (2024). https://doi.org/10.1002/adfm.202308671
- B. Niu, Z. Xu, J. Xiao, Y. Qin, Recycling hazardous and valuable electrolyte in spent lithium-ion batteries: urgency, progress, challenge, and viable approach. Chem. Rev. 123(13), 8718–8735 (2023). https://doi.org/10.1021/acs.chemrev.3c00174
- X.-H. Zhu, Y.-J. Li, M.-Q. Gong, R. Mo, S.-Y. Luo et al., Recycling valuable metals from spent lithium-ion batteries using carbothermal shock method. Angew. Chem. Int. Ed. 62(15), e202300074 (2023). https://doi.org/10.1002/anie.202300074
- L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15(1), 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
- X. Wu, J. Ma, J. Wang, X. Zhang, G. Zhou et al., Progress, key issues, and future prospects for Li-ion battery recycling. Glob. Chall. 6(12), 2200067 (2022). https://doi.org/10.1002/gch2.202200067
- Global critical minerals outlook 2024 (2024), https://www.iea.org/reports/global-critical-minerals-outlook-2024
- S.-H. Zheng, X.-T. Wang, Z.-Y. Gu, H.-Y. Lü, X.-Y. Zhang et al., Direct and rapid regeneration of spent LiFePO4 cathodes via a high-temperature shock strategy. J. Power. Sources 587, 233697 (2023). https://doi.org/10.1016/j.jpowsour.2023.233697
- Z. Zeng, H. Lei, X. Lu, C. Zhu, Y. Wen et al., Li-Fe anti-sites defects in LiFePO4: mechanism, characterization and cathode-regeneration applications. Energy Storage Mater. 74, 103947 (2025). https://doi.org/10.1016/j.ensm.2024.103947
- Y. Guo, Y. Yao, C. Guo, Y. Song, P. Huang et al., Atomistic observation and transient reordering of antisite Li/Fe defects toward sustainable LiFePO4. Energy Environ. Sci. 17(20), 7749–7761 (2024). https://doi.org/10.1039/D4EE01622J
- K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35(5), 2208034 (2023). https://doi.org/10.1002/adma.202208034
- C. Feng, Y. Cao, L. Song, B. Zhao, Q. Yang et al., Direct regeneration of industrial LiFePO4 black mass through a glycerol-enabled granule reconstruction strategy. Angew. Chem. Int. Ed. 64(6), e202418198 (2025). https://doi.org/10.1002/anie.202418198
- D. Yang, Z. Fang, Y. Ji, Y. Yang, J. Hou et al., A room-temperature lithium-restocking strategy for the direct reuse of degraded LiFePO4 electrodes. Angew. Chem. Int. Ed. 63(49), e202409929 (2024). https://doi.org/10.1002/anie.202409929
- X. Chang, M. Fan, B. Yuan, C.-F. Gu, W.-H. He et al., Potential controllable redox couple for mild and efficient lithium recovery from spent batteries. Angew. Chem. Int. Ed. 62(41), e202310435 (2023). https://doi.org/10.1002/anie.202310435
- P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4(12), 2609–2626 (2020). https://doi.org/10.1016/j.joule.2020.10.008
- Y. Shi, M. Zhang, Y.S. Meng, Z. Chen, Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1)via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9(20), 1900454 (2019). https://doi.org/10.1002/aenm.201900454
- G. Jiang, Y. Zhang, Q. Meng, Y. Zhang, P. Dong et al., Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustainable Chem. Eng. 8(49), 18138–18147 (2020). https://doi.org/10.1021/acssuschemeng.0c06514
- Z. Qin, T. Zhang, X. Gao, W. Luo, J. Han et al., Self-reconstruction of highly degraded LiNi0.8Co0.1Mn0.1O2 toward stable single-crystalline cathode. Adv. Mater. 36(5), 2307091 (2024). https://doi.org/10.1002/adma.202307091
- P. Xu, Z. Yang, X. Yu, J. Holoubek, H. Gao et al., Design and optimization of the direct recycling of spent Li-ion battery cathode materials. ACS Sustainable Chem. Eng. 9(12), 4543–4553 (2021). https://doi.org/10.1021/acssuschemeng.0c09017
- X.-X. Zhao, X.-T. Wang, J.-Z. Guo, Z.-Y. Gu, J.-M. Cao et al., Dynamic Li+ capture through ligand-chain interaction for the regeneration of depleted LiFePO4 cathode. Adv. Mater. 36(14), 2308927 (2024). https://doi.org/10.1002/adma.202308927
- L. Song, C. Qi, S. Wang, X. Zhu, T. Zhang et al., Direct regeneration of waste LiFePO4 cathode materials with a solid-phase method promoted by activated CNTs. Waste Manag. 157, 141–148 (2023). https://doi.org/10.1016/j.wasman.2022.12.002
- Y. Han, Y. Fang, M. Yan, H. Qiu, Y. Han et al., Direct regeneration of fluorine-doped carbon-coated LiFePO4 cathode materials from spent lithium-ion batteries. Green Chem. 26(18), 9791–9801 (2024). https://doi.org/10.1039/D4GC02370F
- G. Ji, J. Wang, Z. Liang, K. Jia, J. Ma et al., Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 14, 584 (2023). https://doi.org/10.1038/s41467-023-36197-6
- D. Tang, G. Ji, J. Wang, Z. Liang, W. Chen et al., A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36(5), 2309722 (2024). https://doi.org/10.1002/adma.202309722
- Y. Cao, J. Li, D. Tang, F. Zhou, M. Yuan et al., Targeted defect repair and multi-functional interface construction for the direct regeneration of spent LiFePO4 cathodes. Adv. Mater. 36(48), 2414048 (2024). https://doi.org/10.1002/adma.202414048
- B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46(2), 544–549 (2013). https://doi.org/10.1107/s0021889813003531
- Z. Fu, R. Chen, Study of complexes of tannic acid with Fe(III) and Fe(II). J. Anal. Methods Chem. 2019, 3894571 (2019). https://doi.org/10.1155/2019/3894571
- C. Chen, H. Yang, X. Yang, Q. Ma, Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Adv. 12(13), 7689–7711 (2022). https://doi.org/10.1039/D1RA07657D
- Y. Zhao, L. Peng, B. Liu, G. Yu, Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett. 14(5), 2849–2853 (2014). https://doi.org/10.1021/nl5008568
- Z. Zhang, W. Yang, L. Cheng, W. Cao, M. Sain et al., Carbon fibers with high electrical conductivity: laser irradiation of mesophase pitch filaments obtains high graphitization degree. ACS Sustain. Chem. Eng. 8(48), 17629–17638 (2020). https://doi.org/10.1021/acssuschemeng.0c02454
- A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
- L. Shang, B.-Y. Shi, X. Liu, T.-T. Zhang, H. Liu et al., Directional guiding of mass and charge transfer via vertically aligned graphite nanosheets for high-rate and ultralong lifespan dual-ion batteries. Chem. Eng. J. 482, 149037 (2024). https://doi.org/10.1016/j.cej.2024.149037
- R. Dedryvère, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon et al., XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode. J. Electrochem. Soc. 152(4), A689 (2005). https://doi.org/10.1149/1.1861994
- T. Song, C. Wang, P. Kidkhunthod, X. Zhou, A. Zhu et al., Chemical disorder engineering enables high-voltage stable oxide cathodes over–20–25 °C in sodium-ion batteries. Energy Storage Mater. 76, 104106 (2025). https://doi.org/10.1016/j.ensm.2025.104106
- H. Xu, C. Xie, H. Chen, T. Song, Y. Lan et al., Improving the high-voltage high-rate performance of a P2 layered oxide cathode by a dual-ion doping strategy for sodium-ion batteries. J. Mater. Chem. A 12(32), 21114–21123 (2024). https://doi.org/10.1039/D4TA03250K
- Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
- F. Wu, L. Liu, S. Wang, J. Xu, P. Lu et al., Solid state ionics–selected topics and new directions. Prog. Mater. Sci. 126, 100921 (2022). https://doi.org/10.1016/j.pmatsci.2022.100921
- K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 56(13), 4869–4875 (2011). https://doi.org/10.1016/j.electacta.2011.02.119
- X. Qiu, C. Wang, Y. Liu, Q. Han, L. Xie et al., Ambient-pressure relithiation of spent LiFePO4 using alkaline solutions enables direct regeneration of lithium-ion battery cathodes. J. Energy Storage 105, 114721 (2025). https://doi.org/10.1016/j.est.2024.114721
- R. Dedryvère, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas et al., X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem. Mater. 20(22), 7164–7170 (2008). https://doi.org/10.1021/cm801995p
- H. Duan, Y. You, G. Wang, X. Ou, J. Wen et al., Lithium-ion charged polymer channels flattening lithium metal anode. Nano-Micro Lett. 16(1), 78 (2024). https://doi.org/10.1007/s40820-023-01300-5
- Y. Yang, E.G. Okonkwo, G. Huang, S. Xu, W. Sun et al., On the sustainability of lithium ion battery industry–a review and perspective. Energy Storage Mater. 36, 186–212 (2021). https://doi.org/10.1016/j.ensm.2020.12.019
- Y. Lan, L. Tan, N. Wu, J. Wen, W. Yao et al., Current status and outlook of recycling spent lithium-ion batteries. J. Energy Storage 110, 115374 (2025). https://doi.org/10.1016/j.est.2025.115374
- Y. Yao, M. Zhu, Z. Zhao, B. Tong, Y. Fan et al., Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustainable Chem. Eng. 6(11), 13611–13627 (2018). https://doi.org/10.1021/acssuschemeng.8b03545
- J.C. Jung, P.-C. Sui, J. Zhang, A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J. Energy Storage 35, 102217 (2021). https://doi.org/10.1016/j.est.2020.102217
- H. Li, S. Xing, Y. Liu, F. Li, H. Guo et al., Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustainable Chem. Eng. 5(9), 8017–8024 (2017). https://doi.org/10.1021/acssuschemeng.7b01594
- H. Zou, E. Gratz, D. Apelian, Y. Wang, A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem. 15(5), 1183–1191 (2013). https://doi.org/10.1039/C3GC40182K
- J. Kumar, X. Shen, B. Li, H. Liu, J. Zhao, Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag. 113, 32–40 (2020). https://doi.org/10.1016/j.wasman.2020.05.046
- J. Zhang, J. Hu, Y. Liu, Q. Jing, C. Yang et al., Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries. ACS Sustain. Chem. Eng. 7(6), 5626–5631 (2019). https://doi.org/10.1021/acssuschemeng.9b00404
- H. Shentu, B. Xiang, Y.-J. Cheng, T. Dong, J. Gao et al., A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Environ. Technol. Innov. 23, 101569 (2021). https://doi.org/10.1016/j.eti.2021.101569
- B. Chen, M. Liu, S. Cao, H. Hu, G. Chen et al., Direct regeneration and performance of spent LiFePO4 via a green efficient hydrothermal technique. J. Alloys Compd. 924, 166487 (2022). https://doi.org/10.1016/j.jallcom.2022.166487
References
W. Yao, A.R. Armstrong, X. Zhou, M.-T. Sougrati, P. Kidkhunthod et al., An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nat. Commun. 10(1), 3483 (2019). https://doi.org/10.1038/s41467-019-11077-0
Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee et al., In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv. Mater. 33(37), 2100793 (2021). https://doi.org/10.1002/adma.202100793
X. He, Q. Yan, H. He, J. Shang, X. Zhou et al., A vanadium-based fluoroxide cathode material for lithium-ion storage with high energy density. Adv. Sustain. Syst. 6(7), 2200122 (2022). https://doi.org/10.1002/adsu.202200122
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15(1), 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
Y. Lan, W. Yao, X. He, T. Song, Y. Tang, Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angew. Chem. Int. Ed. 59(24), 9255–9262 (2020). https://doi.org/10.1002/anie.201915666
J. Huang, Y. Yang, Y. Liu, J. Ma, Lithium hexamethyldisilazide endows Li||NCM811 battery with superior performance. Nano-Micro Lett. 15(1), 33 (2023). https://doi.org/10.1007/s40820-022-00998-z
M. Huang, M. Wang, L. Yang, Z. Wang, H. Yu et al., Direct regeneration of spent lithium-ion battery cathodes: from theoretical study to production practice. Nano-Micro Lett. 16(1), 207 (2024). https://doi.org/10.1007/s40820-024-01434-0
Z. Zeng, P. Xu, J. Li, C. Yi, W. Zhao et al., Large-scale and homogenized strategies of spent LiFePO4 recycling: reconstruction of targeted lattice. Adv. Funct. Mater. 34(6), 2308671 (2024). https://doi.org/10.1002/adfm.202308671
B. Niu, Z. Xu, J. Xiao, Y. Qin, Recycling hazardous and valuable electrolyte in spent lithium-ion batteries: urgency, progress, challenge, and viable approach. Chem. Rev. 123(13), 8718–8735 (2023). https://doi.org/10.1021/acs.chemrev.3c00174
X.-H. Zhu, Y.-J. Li, M.-Q. Gong, R. Mo, S.-Y. Luo et al., Recycling valuable metals from spent lithium-ion batteries using carbothermal shock method. Angew. Chem. Int. Ed. 62(15), e202300074 (2023). https://doi.org/10.1002/anie.202300074
L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15(1), 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
X. Wu, J. Ma, J. Wang, X. Zhang, G. Zhou et al., Progress, key issues, and future prospects for Li-ion battery recycling. Glob. Chall. 6(12), 2200067 (2022). https://doi.org/10.1002/gch2.202200067
Global critical minerals outlook 2024 (2024), https://www.iea.org/reports/global-critical-minerals-outlook-2024
S.-H. Zheng, X.-T. Wang, Z.-Y. Gu, H.-Y. Lü, X.-Y. Zhang et al., Direct and rapid regeneration of spent LiFePO4 cathodes via a high-temperature shock strategy. J. Power. Sources 587, 233697 (2023). https://doi.org/10.1016/j.jpowsour.2023.233697
Z. Zeng, H. Lei, X. Lu, C. Zhu, Y. Wen et al., Li-Fe anti-sites defects in LiFePO4: mechanism, characterization and cathode-regeneration applications. Energy Storage Mater. 74, 103947 (2025). https://doi.org/10.1016/j.ensm.2024.103947
Y. Guo, Y. Yao, C. Guo, Y. Song, P. Huang et al., Atomistic observation and transient reordering of antisite Li/Fe defects toward sustainable LiFePO4. Energy Environ. Sci. 17(20), 7749–7761 (2024). https://doi.org/10.1039/D4EE01622J
K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35(5), 2208034 (2023). https://doi.org/10.1002/adma.202208034
C. Feng, Y. Cao, L. Song, B. Zhao, Q. Yang et al., Direct regeneration of industrial LiFePO4 black mass through a glycerol-enabled granule reconstruction strategy. Angew. Chem. Int. Ed. 64(6), e202418198 (2025). https://doi.org/10.1002/anie.202418198
D. Yang, Z. Fang, Y. Ji, Y. Yang, J. Hou et al., A room-temperature lithium-restocking strategy for the direct reuse of degraded LiFePO4 electrodes. Angew. Chem. Int. Ed. 63(49), e202409929 (2024). https://doi.org/10.1002/anie.202409929
X. Chang, M. Fan, B. Yuan, C.-F. Gu, W.-H. He et al., Potential controllable redox couple for mild and efficient lithium recovery from spent batteries. Angew. Chem. Int. Ed. 62(41), e202310435 (2023). https://doi.org/10.1002/anie.202310435
P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4(12), 2609–2626 (2020). https://doi.org/10.1016/j.joule.2020.10.008
Y. Shi, M. Zhang, Y.S. Meng, Z. Chen, Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1)via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9(20), 1900454 (2019). https://doi.org/10.1002/aenm.201900454
G. Jiang, Y. Zhang, Q. Meng, Y. Zhang, P. Dong et al., Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustainable Chem. Eng. 8(49), 18138–18147 (2020). https://doi.org/10.1021/acssuschemeng.0c06514
Z. Qin, T. Zhang, X. Gao, W. Luo, J. Han et al., Self-reconstruction of highly degraded LiNi0.8Co0.1Mn0.1O2 toward stable single-crystalline cathode. Adv. Mater. 36(5), 2307091 (2024). https://doi.org/10.1002/adma.202307091
P. Xu, Z. Yang, X. Yu, J. Holoubek, H. Gao et al., Design and optimization of the direct recycling of spent Li-ion battery cathode materials. ACS Sustainable Chem. Eng. 9(12), 4543–4553 (2021). https://doi.org/10.1021/acssuschemeng.0c09017
X.-X. Zhao, X.-T. Wang, J.-Z. Guo, Z.-Y. Gu, J.-M. Cao et al., Dynamic Li+ capture through ligand-chain interaction for the regeneration of depleted LiFePO4 cathode. Adv. Mater. 36(14), 2308927 (2024). https://doi.org/10.1002/adma.202308927
L. Song, C. Qi, S. Wang, X. Zhu, T. Zhang et al., Direct regeneration of waste LiFePO4 cathode materials with a solid-phase method promoted by activated CNTs. Waste Manag. 157, 141–148 (2023). https://doi.org/10.1016/j.wasman.2022.12.002
Y. Han, Y. Fang, M. Yan, H. Qiu, Y. Han et al., Direct regeneration of fluorine-doped carbon-coated LiFePO4 cathode materials from spent lithium-ion batteries. Green Chem. 26(18), 9791–9801 (2024). https://doi.org/10.1039/D4GC02370F
G. Ji, J. Wang, Z. Liang, K. Jia, J. Ma et al., Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 14, 584 (2023). https://doi.org/10.1038/s41467-023-36197-6
D. Tang, G. Ji, J. Wang, Z. Liang, W. Chen et al., A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36(5), 2309722 (2024). https://doi.org/10.1002/adma.202309722
Y. Cao, J. Li, D. Tang, F. Zhou, M. Yuan et al., Targeted defect repair and multi-functional interface construction for the direct regeneration of spent LiFePO4 cathodes. Adv. Mater. 36(48), 2414048 (2024). https://doi.org/10.1002/adma.202414048
B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46(2), 544–549 (2013). https://doi.org/10.1107/s0021889813003531
Z. Fu, R. Chen, Study of complexes of tannic acid with Fe(III) and Fe(II). J. Anal. Methods Chem. 2019, 3894571 (2019). https://doi.org/10.1155/2019/3894571
C. Chen, H. Yang, X. Yang, Q. Ma, Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Adv. 12(13), 7689–7711 (2022). https://doi.org/10.1039/D1RA07657D
Y. Zhao, L. Peng, B. Liu, G. Yu, Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett. 14(5), 2849–2853 (2014). https://doi.org/10.1021/nl5008568
Z. Zhang, W. Yang, L. Cheng, W. Cao, M. Sain et al., Carbon fibers with high electrical conductivity: laser irradiation of mesophase pitch filaments obtains high graphitization degree. ACS Sustain. Chem. Eng. 8(48), 17629–17638 (2020). https://doi.org/10.1021/acssuschemeng.0c02454
A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
L. Shang, B.-Y. Shi, X. Liu, T.-T. Zhang, H. Liu et al., Directional guiding of mass and charge transfer via vertically aligned graphite nanosheets for high-rate and ultralong lifespan dual-ion batteries. Chem. Eng. J. 482, 149037 (2024). https://doi.org/10.1016/j.cej.2024.149037
R. Dedryvère, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon et al., XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode. J. Electrochem. Soc. 152(4), A689 (2005). https://doi.org/10.1149/1.1861994
T. Song, C. Wang, P. Kidkhunthod, X. Zhou, A. Zhu et al., Chemical disorder engineering enables high-voltage stable oxide cathodes over–20–25 °C in sodium-ion batteries. Energy Storage Mater. 76, 104106 (2025). https://doi.org/10.1016/j.ensm.2025.104106
H. Xu, C. Xie, H. Chen, T. Song, Y. Lan et al., Improving the high-voltage high-rate performance of a P2 layered oxide cathode by a dual-ion doping strategy for sodium-ion batteries. J. Mater. Chem. A 12(32), 21114–21123 (2024). https://doi.org/10.1039/D4TA03250K
Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
F. Wu, L. Liu, S. Wang, J. Xu, P. Lu et al., Solid state ionics–selected topics and new directions. Prog. Mater. Sci. 126, 100921 (2022). https://doi.org/10.1016/j.pmatsci.2022.100921
K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 56(13), 4869–4875 (2011). https://doi.org/10.1016/j.electacta.2011.02.119
X. Qiu, C. Wang, Y. Liu, Q. Han, L. Xie et al., Ambient-pressure relithiation of spent LiFePO4 using alkaline solutions enables direct regeneration of lithium-ion battery cathodes. J. Energy Storage 105, 114721 (2025). https://doi.org/10.1016/j.est.2024.114721
R. Dedryvère, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas et al., X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem. Mater. 20(22), 7164–7170 (2008). https://doi.org/10.1021/cm801995p
H. Duan, Y. You, G. Wang, X. Ou, J. Wen et al., Lithium-ion charged polymer channels flattening lithium metal anode. Nano-Micro Lett. 16(1), 78 (2024). https://doi.org/10.1007/s40820-023-01300-5
Y. Yang, E.G. Okonkwo, G. Huang, S. Xu, W. Sun et al., On the sustainability of lithium ion battery industry–a review and perspective. Energy Storage Mater. 36, 186–212 (2021). https://doi.org/10.1016/j.ensm.2020.12.019
Y. Lan, L. Tan, N. Wu, J. Wen, W. Yao et al., Current status and outlook of recycling spent lithium-ion batteries. J. Energy Storage 110, 115374 (2025). https://doi.org/10.1016/j.est.2025.115374
Y. Yao, M. Zhu, Z. Zhao, B. Tong, Y. Fan et al., Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustainable Chem. Eng. 6(11), 13611–13627 (2018). https://doi.org/10.1021/acssuschemeng.8b03545
J.C. Jung, P.-C. Sui, J. Zhang, A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J. Energy Storage 35, 102217 (2021). https://doi.org/10.1016/j.est.2020.102217
H. Li, S. Xing, Y. Liu, F. Li, H. Guo et al., Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustainable Chem. Eng. 5(9), 8017–8024 (2017). https://doi.org/10.1021/acssuschemeng.7b01594
H. Zou, E. Gratz, D. Apelian, Y. Wang, A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem. 15(5), 1183–1191 (2013). https://doi.org/10.1039/C3GC40182K
J. Kumar, X. Shen, B. Li, H. Liu, J. Zhao, Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag. 113, 32–40 (2020). https://doi.org/10.1016/j.wasman.2020.05.046
J. Zhang, J. Hu, Y. Liu, Q. Jing, C. Yang et al., Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries. ACS Sustain. Chem. Eng. 7(6), 5626–5631 (2019). https://doi.org/10.1021/acssuschemeng.9b00404
H. Shentu, B. Xiang, Y.-J. Cheng, T. Dong, J. Gao et al., A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Environ. Technol. Innov. 23, 101569 (2021). https://doi.org/10.1016/j.eti.2021.101569
B. Chen, M. Liu, S. Cao, H. Hu, G. Chen et al., Direct regeneration and performance of spent LiFePO4 via a green efficient hydrothermal technique. J. Alloys Compd. 924, 166487 (2022). https://doi.org/10.1016/j.jallcom.2022.166487