Atomically Dispersed Pt-Ru Dual-Atom Catalysts for Efficient Low-Temperature CO Oxidation Reaction
Corresponding Author: Hongyang Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 172
Abstract
Single-atom catalysts (SACs) have demonstrated excellent performance in heterogeneous catalytic reactions owing to their maximized atomic efficiency, distinctive geometric, and electronic configurations. However, the efficacy of SACs remains limited for certain reactions requiring simultaneous activation of multiple reactants over metallic active sites. Herein, we report an atomically dispersed Pt1Ru1 dual-atom pair site anchored on nanodiamond@graphene (ND@G) for CO oxidation. The Pt1Ru1 dual-atom catalyst shows an exceptional turnover frequency (TOF) of 17.6 × 10−2 s−1 at significantly lower temperature (30 °C), achieving a tenfold increase in TOF compared to single-atom Pt1/ND@G catalyst (1.5 × 10−2 s−1) and surpassing to previously reported Pt-based catalysts under similar conditions. Moreover, the catalyst demonstrates excellent stability, maintaining its activity for 40 h at 80 °C without significant deactivation. The superior catalytic performance of Pt-Ru dual-atom catalysts is attributed to the synergistic effect between Pt and Ru atoms with enhanced metallicity for improving simultaneous adsorption and activation of CO and O2, and the tuning of conventional competitive reactant adsorption into a non-competitive pathway over dual-atom pair sites. The present work manifests the advantages of dual-atom pair sites in heterogeneous catalysis and paves the way for precise design of catalysts at the atomic scale.
Highlights:
1 We successfully fabricated an atomically dispersed dual-atom catalyst featuring Pt1-Ru1 sites anchored on defective graphene (Pt1Ru1/ND@G).
2 Pt1Ru1/ND@G achieves a high turnover frequency of 17.6 × 10−2 s−1 for CO oxidation at 30 °C, which is 10 times higher than Pt1/ND@G and demonstrates outstanding performance compared with the previous reports.
3 Pt-Ru bond enhances the metallicity of both Pt and Ru atoms, facilitating the simultaneous adsorption and activation of CO and O2 and overcoming the limitations of single-atom catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Royer, D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3(1), 24–65 (2011). https://doi.org/10.1002/cctc.201000378
- J. Zhang, M. Shu, Y. Niu, L. Yi, H. Yi et al., Advances in CO catalytic oxidation on typical noble metal catalysts: mechanism, performance and optimization. Chem. Eng. J. 495, 153523 (2024). https://doi.org/10.1016/j.cej.2024.153523
- H.-J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50(43), 10064–10094 (2011). https://doi.org/10.1002/anie.201101378
- Z. Wu, D.-E. Jiang, A.K.P. Mann, D.R. Mullins, Z.-A. Qiao et al., Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 136(16), 6111–6122 (2014). https://doi.org/10.1021/ja5018706
- H. Guan, J. Lin, B. Qiao, X. Yang, L. Li et al., Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew. Chem. Int. Ed. 55(8), 2820–2824 (2016). https://doi.org/10.1002/anie.201510643
- M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36(1), 153–166 (1997). https://doi.org/10.1016/S0920-5861(96)00208-8
- P.J. Berlowitz, C.H.F. Peden, D.W. Goodman, Kinetics of carbon monoxide oxidation on single-crystal palladium, platinum, and iridium. J. Phys. Chem. 92(18), 5213–5221 (1988). https://doi.org/10.1021/j100329a030
- M.A. van Spronsen, J.W.M. Frenken, I.M.N. Groot, Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 46(14), 4347–4374 (2017). https://doi.org/10.1039/C7CS00045F
- M. Guo, Q. Meng, M.-L. Gao, L. Zheng, Q. Li et al., Single-atom Pt loaded on MOF-derived porous TiO2 with maxim-ized Pt atom utilization for selective hydrogenation of halonitro-benzene. Angew. Chem. Int. Ed. 64(7), e202418964 (2025). https://doi.org/10.1002/anie.202418964
- H. Liu, L. Tian, Z. Zhang, L. Wang, J. Li et al., Atomic-level asymmetric tuning of the Co1–N3P1 catalyst for highly efficient N-alkylation of amines with alcohols. J. Am. Chem. Soc. 146(29), 20518–20529 (2024). https://doi.org/10.1021/jacs.4c07197
- Q. Qu, Y. Mao, S. Ji, J. Liao, J. Dong et al., Engineering the Lewis acidity of Fe single-atom sites via atomic-level tuning of spatial coordination configuration for enhanced oxygen reduction. J. Am. Chem. Soc. 147(8), 6914–6924 (2025). https://doi.org/10.1021/jacs.4c17444
- X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- H. Yang, X. Wang, Q. Liu, A. Huang, X. Zhang et al., Heterogeneous iridium single-atom molecular-like catalysis for epoxidation of ethylene. J. Am. Chem. Soc. 145(12), 6658–6670 (2023). https://doi.org/10.1021/jacs.2c11380
- V. Giulimondi, S. Mitchell, J. Pérez-Ramírez, Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS Catal. 13(5), 2981–2997 (2023). https://doi.org/10.1021/acscatal.2c05992
- Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
- X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13(1), 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
- K. Liu, Z. Sun, X. Peng, X. Liu, X. Zhang et al., Tailoring asymmetric RuCu dual-atom electrocatalyst toward ammonia synthesis from nitrate. Nat. Commun. 16(1), 2167 (2025). https://doi.org/10.1038/s41467-025-57463-9
- X. Xu, J. Guan, Metal-organic-framework-derived dual-atom catalysts: from synthesis to electrocatalytic applications. Mater. Sci. Eng. R. Rep. 162, 100886 (2025). https://doi.org/10.1016/j.mser.2024.100886
- J. Zhang, Y. Wang, Y. Li, Not one, not two, but at least three: activity origin of copper single-atom catalysts toward CO2/CO electroreduction to C2+ products. J. Am. Chem. Soc. 146(22), 14954–14958 (2024). https://doi.org/10.1021/jacs.4c05669
- Y. Guo, M. Wang, Q. Zhu, D. Xiao, D. Ma, Ensemble effect for single-atom, small cluster and nanop catalysts. Nat. Catal. 5(9), 766–776 (2022). https://doi.org/10.1038/s41929-022-00839-7
- M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu et al., Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 7(2), 262–273 (2021). https://doi.org/10.1021/acscentsci.0c01486
- Y. Wang, H. Yu, Y. He, S. Xiang, X. Qin et al., Fully exposed Ru clusters for the efficient multi-step toluene hydrogenation reaction. Angew. Chem. Int. Ed. 64(3), e202415542 (2025). https://doi.org/10.1002/anie.202415542
- Z. Jia, M. Peng, X. Cai, Y. Chen, X. Chen et al., Fully exposed platinum clusters on a nanodiamond/graphene hybrid for efficient low-temperature CO oxidation. ACS Catal. 12(15), 9602–9610 (2022). https://doi.org/10.1021/acscatal.2c02769
- L. Wang, H. Su, Z. Zhang, J. Xin, H. Liu et al., Co−Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem. Int. Ed. 62(49), e202314185 (2023). https://doi.org/10.1002/anie.202314185
- Z. Zhang, Y. Dai, P. Guo, B. Liu, Y. Xia et al., Noncovalent assembly strategy for efficient synthesis of dual-atom catalysts. Adv. Funct. Mater. 34(44), 2407128 (2024). https://doi.org/10.1002/adfm.202407128
- X. Li, J. Wang, Q. Yuan, X. Song, J. Mu et al., Palladium and ruthenium dual-single-atom sites on porous ionic polymers for acetylene dialkoxycarbonylation: synergetic effects stabilize the active site and increase CO adsorption. Angew. Chem. Int. Ed. 62(33), e202307570 (2023). https://doi.org/10.1002/anie.202307570
- L. Li, K. Yuan, Y. Chen, Breaking the scaling relationship limit: from single-atom to dual-atom catalysts. Acc. Mater. Res. 3(6), 584–596 (2022). https://doi.org/10.1021/accountsmr.1c00264
- H. Liu, P. Zhu, D. Yang, C. Zhong, J. Li et al., Pd–Mn/NC dual single-atomic sites with hollow mesopores for the highly efficient semihydrogenation of phenylacetylene. J. Am. Chem. Soc. 146(3), 2132–2140 (2024). https://doi.org/10.1021/jacs.3c11632
- H. Liu, H. Rong, J. Zhang, Synergetic dual-atom catalysts: the next boom of atomic catalysts. Chemsuschem 15(16), e202200498 (2022). https://doi.org/10.1002/cssc.202200498
- Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16(1), 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
- S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9(1), 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
- B. Wang, X. Yang, C. Xie, H. Liu, C. Ma et al., A general metal ion recognition strategy to mediate dual-atomic-site catalysts. J. Am. Chem. Soc. 146(36), 24945–24955 (2024). https://doi.org/10.1021/jacs.4c06173
- N. Zhang, X. Zhang, Y. Kang, C. Ye, R. Jin et al., A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60(24), 13388–13393 (2021). https://doi.org/10.1002/anie.202101559
- G. Fang, F. Wei, J. Lin, Y. Zhou, L. Sun et al., Retrofitting Zr-oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. J. Am. Chem. Soc. 145(24), 13169–13180 (2023). https://doi.org/10.1021/jacs.3c02121
- L. Yang, Z. Ni, Y. Zhao, Y. Long, M. Xi et al., Interfacial electric field stabilized Ru single-atom catalysts for efficient water oxidation. ACS Catal. 14, 4c01829 (2024). https://doi.org/10.1021/acscatal.4c01829
- P. Zhou, X. Hou, Y. Chao, W. Yang, W. Zhang et al., Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 10(23), 5898–5905 (2019). https://doi.org/10.1039/C9SC00658C
- S.-Y. Cao, F. Ye, N.-N. Zhang, Y.-L. Guo, Y. Guo et al., Synergistic effect of bimetallic RuPt/TiO2 catalyst in methane combustion. Rare Met. 42(1), 165–175 (2023). https://doi.org/10.1007/s12598-022-02118-7
- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(Pt 4), 537–541 (2005). https://doi.org/10.1107/S0909049505012719
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000). https://doi.org/10.1063/1.1323224
- G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999). https://doi.org/10.1063/1.480097
- F. Huang, M. Peng, Y. Chen, X. Cai, X. Qin et al., Low-temperature acetylene semi-hydrogenation over the Pd(1)-Cu(1) dual-atom catalyst. J. Am. Chem. Soc. 144(40), 18485–18493 (2022). https://doi.org/10.1021/jacs.2c07208
- Z. Jia, X. Qin, Y. Chen, X. Cai, Z. Gao et al., Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification. Nat. Commun. 13(1), 6798 (2022). https://doi.org/10.1038/s41467-022-34674-y
- C. He, C.-H. Lee, L. Meng, H.T. Chen, Z. Li, Selective orbital coupling: an adsorption mechanism in single-atom catalysis. J. Am. Chem. Soc. 146(18), 12395–12400 (2024). https://doi.org/10.1021/jacs.3c13119
- Y. Fang, Q. Zhang, H. Zhang, X. Li, W. Chen et al., Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angew. Chem. Int. Ed. 61(48), e202212273 (2022). https://doi.org/10.1002/anie.202212273
- M. Yang, K. Wu, S. Sun, J. Duan, X. Liu et al., Unprecedented relay catalysis of curved Fe1–N4 single-atom site for remarkably efficient 1O2 generation. ACS Catal. 13(1), 681–691 (2023). https://doi.org/10.1021/acscatal.2c05409
- Q.-H. Li, Y. Liu, P. Guo, Q.-H. Cai, J.-J. Zhang et al., Platinum nanops anchored on Ru-NX doped carbon: synergistic dual-active site catalysts for oxygen reduction reactions. J. Alloys Compd. 1010, 178150 (2025). https://doi.org/10.1016/j.jallcom.2024.178150
- T. Song, R. Li, J. Wang, C. Dong, X. Feng et al., Selective oxidation of methane to CO on Ni@BOx via reaction-induced vapor migration of boron-containing species onto Ni. Appl. Catal. B Environ. 321, 122021 (2023). https://doi.org/10.1016/j.apcatb.2022.122021
- J. Zhang, Y. Pan, D. Feng, L. Cui, S. Zhao et al., Mechanistic insight into the synergy between platinum single atom and cluster dual active sites boosting photocatalytic hydrogen evolution. Adv. Mater. 35(25), 2300902 (2023). https://doi.org/10.1002/adma.202300902
- Y. Si, Y. Jiao, M. Wang, S. Xiang, J. Diao et al., Fully exposed Pt clusters for efficient catalysis of multi-step hydrogenation reactions. Nat. Commun. 15(1), 4887 (2024). https://doi.org/10.1038/s41467-024-49083-6
References
S. Royer, D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3(1), 24–65 (2011). https://doi.org/10.1002/cctc.201000378
J. Zhang, M. Shu, Y. Niu, L. Yi, H. Yi et al., Advances in CO catalytic oxidation on typical noble metal catalysts: mechanism, performance and optimization. Chem. Eng. J. 495, 153523 (2024). https://doi.org/10.1016/j.cej.2024.153523
H.-J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50(43), 10064–10094 (2011). https://doi.org/10.1002/anie.201101378
Z. Wu, D.-E. Jiang, A.K.P. Mann, D.R. Mullins, Z.-A. Qiao et al., Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 136(16), 6111–6122 (2014). https://doi.org/10.1021/ja5018706
H. Guan, J. Lin, B. Qiao, X. Yang, L. Li et al., Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew. Chem. Int. Ed. 55(8), 2820–2824 (2016). https://doi.org/10.1002/anie.201510643
M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36(1), 153–166 (1997). https://doi.org/10.1016/S0920-5861(96)00208-8
P.J. Berlowitz, C.H.F. Peden, D.W. Goodman, Kinetics of carbon monoxide oxidation on single-crystal palladium, platinum, and iridium. J. Phys. Chem. 92(18), 5213–5221 (1988). https://doi.org/10.1021/j100329a030
M.A. van Spronsen, J.W.M. Frenken, I.M.N. Groot, Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 46(14), 4347–4374 (2017). https://doi.org/10.1039/C7CS00045F
M. Guo, Q. Meng, M.-L. Gao, L. Zheng, Q. Li et al., Single-atom Pt loaded on MOF-derived porous TiO2 with maxim-ized Pt atom utilization for selective hydrogenation of halonitro-benzene. Angew. Chem. Int. Ed. 64(7), e202418964 (2025). https://doi.org/10.1002/anie.202418964
H. Liu, L. Tian, Z. Zhang, L. Wang, J. Li et al., Atomic-level asymmetric tuning of the Co1–N3P1 catalyst for highly efficient N-alkylation of amines with alcohols. J. Am. Chem. Soc. 146(29), 20518–20529 (2024). https://doi.org/10.1021/jacs.4c07197
Q. Qu, Y. Mao, S. Ji, J. Liao, J. Dong et al., Engineering the Lewis acidity of Fe single-atom sites via atomic-level tuning of spatial coordination configuration for enhanced oxygen reduction. J. Am. Chem. Soc. 147(8), 6914–6924 (2025). https://doi.org/10.1021/jacs.4c17444
X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
H. Yang, X. Wang, Q. Liu, A. Huang, X. Zhang et al., Heterogeneous iridium single-atom molecular-like catalysis for epoxidation of ethylene. J. Am. Chem. Soc. 145(12), 6658–6670 (2023). https://doi.org/10.1021/jacs.2c11380
V. Giulimondi, S. Mitchell, J. Pérez-Ramírez, Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS Catal. 13(5), 2981–2997 (2023). https://doi.org/10.1021/acscatal.2c05992
Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13(1), 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
K. Liu, Z. Sun, X. Peng, X. Liu, X. Zhang et al., Tailoring asymmetric RuCu dual-atom electrocatalyst toward ammonia synthesis from nitrate. Nat. Commun. 16(1), 2167 (2025). https://doi.org/10.1038/s41467-025-57463-9
X. Xu, J. Guan, Metal-organic-framework-derived dual-atom catalysts: from synthesis to electrocatalytic applications. Mater. Sci. Eng. R. Rep. 162, 100886 (2025). https://doi.org/10.1016/j.mser.2024.100886
J. Zhang, Y. Wang, Y. Li, Not one, not two, but at least three: activity origin of copper single-atom catalysts toward CO2/CO electroreduction to C2+ products. J. Am. Chem. Soc. 146(22), 14954–14958 (2024). https://doi.org/10.1021/jacs.4c05669
Y. Guo, M. Wang, Q. Zhu, D. Xiao, D. Ma, Ensemble effect for single-atom, small cluster and nanop catalysts. Nat. Catal. 5(9), 766–776 (2022). https://doi.org/10.1038/s41929-022-00839-7
M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu et al., Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 7(2), 262–273 (2021). https://doi.org/10.1021/acscentsci.0c01486
Y. Wang, H. Yu, Y. He, S. Xiang, X. Qin et al., Fully exposed Ru clusters for the efficient multi-step toluene hydrogenation reaction. Angew. Chem. Int. Ed. 64(3), e202415542 (2025). https://doi.org/10.1002/anie.202415542
Z. Jia, M. Peng, X. Cai, Y. Chen, X. Chen et al., Fully exposed platinum clusters on a nanodiamond/graphene hybrid for efficient low-temperature CO oxidation. ACS Catal. 12(15), 9602–9610 (2022). https://doi.org/10.1021/acscatal.2c02769
L. Wang, H. Su, Z. Zhang, J. Xin, H. Liu et al., Co−Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem. Int. Ed. 62(49), e202314185 (2023). https://doi.org/10.1002/anie.202314185
Z. Zhang, Y. Dai, P. Guo, B. Liu, Y. Xia et al., Noncovalent assembly strategy for efficient synthesis of dual-atom catalysts. Adv. Funct. Mater. 34(44), 2407128 (2024). https://doi.org/10.1002/adfm.202407128
X. Li, J. Wang, Q. Yuan, X. Song, J. Mu et al., Palladium and ruthenium dual-single-atom sites on porous ionic polymers for acetylene dialkoxycarbonylation: synergetic effects stabilize the active site and increase CO adsorption. Angew. Chem. Int. Ed. 62(33), e202307570 (2023). https://doi.org/10.1002/anie.202307570
L. Li, K. Yuan, Y. Chen, Breaking the scaling relationship limit: from single-atom to dual-atom catalysts. Acc. Mater. Res. 3(6), 584–596 (2022). https://doi.org/10.1021/accountsmr.1c00264
H. Liu, P. Zhu, D. Yang, C. Zhong, J. Li et al., Pd–Mn/NC dual single-atomic sites with hollow mesopores for the highly efficient semihydrogenation of phenylacetylene. J. Am. Chem. Soc. 146(3), 2132–2140 (2024). https://doi.org/10.1021/jacs.3c11632
H. Liu, H. Rong, J. Zhang, Synergetic dual-atom catalysts: the next boom of atomic catalysts. Chemsuschem 15(16), e202200498 (2022). https://doi.org/10.1002/cssc.202200498
Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16(1), 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9(1), 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
B. Wang, X. Yang, C. Xie, H. Liu, C. Ma et al., A general metal ion recognition strategy to mediate dual-atomic-site catalysts. J. Am. Chem. Soc. 146(36), 24945–24955 (2024). https://doi.org/10.1021/jacs.4c06173
N. Zhang, X. Zhang, Y. Kang, C. Ye, R. Jin et al., A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60(24), 13388–13393 (2021). https://doi.org/10.1002/anie.202101559
G. Fang, F. Wei, J. Lin, Y. Zhou, L. Sun et al., Retrofitting Zr-oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. J. Am. Chem. Soc. 145(24), 13169–13180 (2023). https://doi.org/10.1021/jacs.3c02121
L. Yang, Z. Ni, Y. Zhao, Y. Long, M. Xi et al., Interfacial electric field stabilized Ru single-atom catalysts for efficient water oxidation. ACS Catal. 14, 4c01829 (2024). https://doi.org/10.1021/acscatal.4c01829
P. Zhou, X. Hou, Y. Chao, W. Yang, W. Zhang et al., Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 10(23), 5898–5905 (2019). https://doi.org/10.1039/C9SC00658C
S.-Y. Cao, F. Ye, N.-N. Zhang, Y.-L. Guo, Y. Guo et al., Synergistic effect of bimetallic RuPt/TiO2 catalyst in methane combustion. Rare Met. 42(1), 165–175 (2023). https://doi.org/10.1007/s12598-022-02118-7
B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(Pt 4), 537–541 (2005). https://doi.org/10.1107/S0909049505012719
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000). https://doi.org/10.1063/1.1323224
G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999). https://doi.org/10.1063/1.480097
F. Huang, M. Peng, Y. Chen, X. Cai, X. Qin et al., Low-temperature acetylene semi-hydrogenation over the Pd(1)-Cu(1) dual-atom catalyst. J. Am. Chem. Soc. 144(40), 18485–18493 (2022). https://doi.org/10.1021/jacs.2c07208
Z. Jia, X. Qin, Y. Chen, X. Cai, Z. Gao et al., Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification. Nat. Commun. 13(1), 6798 (2022). https://doi.org/10.1038/s41467-022-34674-y
C. He, C.-H. Lee, L. Meng, H.T. Chen, Z. Li, Selective orbital coupling: an adsorption mechanism in single-atom catalysis. J. Am. Chem. Soc. 146(18), 12395–12400 (2024). https://doi.org/10.1021/jacs.3c13119
Y. Fang, Q. Zhang, H. Zhang, X. Li, W. Chen et al., Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angew. Chem. Int. Ed. 61(48), e202212273 (2022). https://doi.org/10.1002/anie.202212273
M. Yang, K. Wu, S. Sun, J. Duan, X. Liu et al., Unprecedented relay catalysis of curved Fe1–N4 single-atom site for remarkably efficient 1O2 generation. ACS Catal. 13(1), 681–691 (2023). https://doi.org/10.1021/acscatal.2c05409
Q.-H. Li, Y. Liu, P. Guo, Q.-H. Cai, J.-J. Zhang et al., Platinum nanops anchored on Ru-NX doped carbon: synergistic dual-active site catalysts for oxygen reduction reactions. J. Alloys Compd. 1010, 178150 (2025). https://doi.org/10.1016/j.jallcom.2024.178150
T. Song, R. Li, J. Wang, C. Dong, X. Feng et al., Selective oxidation of methane to CO on Ni@BOx via reaction-induced vapor migration of boron-containing species onto Ni. Appl. Catal. B Environ. 321, 122021 (2023). https://doi.org/10.1016/j.apcatb.2022.122021
J. Zhang, Y. Pan, D. Feng, L. Cui, S. Zhao et al., Mechanistic insight into the synergy between platinum single atom and cluster dual active sites boosting photocatalytic hydrogen evolution. Adv. Mater. 35(25), 2300902 (2023). https://doi.org/10.1002/adma.202300902
Y. Si, Y. Jiao, M. Wang, S. Xiang, J. Diao et al., Fully exposed Pt clusters for efficient catalysis of multi-step hydrogenation reactions. Nat. Commun. 15(1), 4887 (2024). https://doi.org/10.1038/s41467-024-49083-6