Next-Generation Joint-on-a-Chip: Toward Precision Mechanical Control in Multi-Tissue Systems
Corresponding Author: Di Huang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 187
Abstract
Osteoarthritis is among the leading causes of disability worldwide, and no pharmacological therapies currently exist to reverse its progression. This lack of therapies is primarily attributed to the inadequacies of conventional in vitro models of joint physiology and pathology, which significantly hinder advancements in disease mechanism research and drug development. As an emerging in vitro joint model, joint-on-a-chip (JoC) technology allows low-cost, efficient simulation of physiological and pathological joint activities, making it a focal point of current research. Cartilage, subchondral bone, and synovium are among the key tissues required for constructing in vitro joint models, with cartilage playing a central load-bearing role in joint movement. This article provides a detailed overview of the structure and function of these tissues, with an emphasis on the load-bearing mechanisms of cartilage, and identifies the microenvironmental characteristics that JoC should aim to replicate. Subsequently, we review the current types of JoC and highlight their core challenge: the seamless integration of multi-tissue co-culture with specific mechanical stimulation. To address this issue, we propose potential solutions and present a conceptual design for a JoC prototype. Finally, we discuss the challenges and issues related to the outlook for JoC. Our ultimate goal is to develop a JoC capable of replicating the key microenvironments of joints, serving as a high-performance in vitro joint model to advance the study of disease mechanisms and facilitate drug development.
Highlights:
1 Outlines key structural and microenvironmental features of joints.
2 Discusses strategies to integrate mechanical stimulation with multi-tissue co-culture.
3 Proposes innovative design concepts toward next-generation joint-on-a-chip platforms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.D. Steinmetz, G.T. Culbreth, L.M. Haile, Q. Rafferty, J. Lo et al., Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 5(9), e508–e522 (2023). https://doi.org/10.1016/s2665-9913(23)00163-7
- Q. Yao, X. Wu, C. Tao, W. Gong, M. Chen et al., Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 8(1), 56 (2023). https://doi.org/10.1038/s41392-023-01330-w
- X. Wang, X. Song, W. Feng, M. Chang, J. Yang et al., Advanced nanomedicines for treating refractory inflammation-related diseases. Nano-Micro Lett. 17(1), 323 (2025). https://doi.org/10.1007/s40820-025-01829-7
- M. Cao, R. Sheng, Y. Sun, Y. Cao, H. Wang et al., Delivering microrobots in the musculoskeletal system. Nano-Micro Lett. 16(1), 251 (2024). https://doi.org/10.1007/s40820-024-01464-8
- T. Hodgkinson, D.C. Kelly, C.M. Curtin, F.J. O’Brien, Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat. Rev. Rheumatol. 18(2), 67–84 (2022). https://doi.org/10.1038/s41584-021-00724-w
- S. Thysen, F.P. Luyten, R.J.U. Lories, Targets, models and challenges in osteoarthritis research. Dis. Model. Mech. 8(1), 17–30 (2015). https://doi.org/10.1242/dmm.016881
- H.J. Samvelyan, D. Hughes, C. Stevens, K.A. Staines, Models of osteoarthritis: relevance and new insights. Calcif. Tissue Int. 109(3), 243–256 (2021). https://doi.org/10.1007/s00223-020-00670-x
- C.T. Mierke, Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells. Cells 13(1), 96 (2024). https://doi.org/10.3390/cells13010096
- T. Hodgkinson, I.N. Amado, F.J. O’Brien, O.D. Kennedy, The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis. APL Bioeng. 6(1), 011501 (2022). https://doi.org/10.1063/5.0068277
- J. Nicolas, S. Magli, L. Rabbachin, S. Sampaolesi, F. Nicotra et al., 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromol 21(6), 1968–1994 (2020). https://doi.org/10.1021/acs.biomac.0c00045
- P. Mukherjee, S. Roy, D. Ghosh, S.K. Nandi, Role of animal models in biomedical research: a review. Lab. Anim. Res. 38(1), 18 (2022). https://doi.org/10.1186/s42826-022-00128-1
- C.M. Leung, P. de Haan, K. Ronaldson-Bouchard, G.-A. Kim, J. Ko et al., A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022). https://doi.org/10.1038/s43586-022-00118-6
- D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin et al., Reconstituting organ-level lung functions on a chip. Science 328(5986), 1662–1668 (2010). https://doi.org/10.1126/science.1188302
- D. Huang, T. Liu, J. Liao, S. Maharjan, X. Xie et al., Reversed-engineered human alveolar lung-on-a-chip model. Proc. Natl. Acad. Sci. U. S. A. 118(19), e2016146118 (2021). https://doi.org/10.1073/pnas.2016146118
- M. Hofer, Y. Kim, N. Broguiere, F. Gorostidi, J.A. Klein et al., Accessible homeostatic gastric organoids reveal secondary cell type-specific host-pathogen interactions in Helicobacter pylori infections. Nat. Commun. 16(1), 2767 (2025). https://doi.org/10.1038/s41467-025-57131-y
- A.S. Perry, N. Hadad, E. Chatterjee, M. Jimenez-Ramos, E. Farber-Eger et al., A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. Cell Rep. Med. 5(12), 101871 (2024). https://doi.org/10.1016/j.xcrm.2024.101871
- K.T. Kroll, K.A. Homan, S.G.M. Uzel, M.M. Mata, K.J. Wolf et al., A perfusable, vascularized kidney organoid-on-chip model. Biofabrication 16(4), 045003 (2024). https://doi.org/10.1088/1758-5090/ad5ac0
- M.D. Mohan, N. Latifi, R. Flick, C.A. Simmons, E.W.K. Young, Interrogating matrix stiffness and metabolomics in pancreatic ductal carcinoma using an openable microfluidic tumor-on-a-chip. ACS Appl. Mater. Interfaces 16(16), 20169–20185 (2024). https://doi.org/10.1021/acsami.4c00556
- M. Kong, J. Lee, I.K. Yazdi, A.K. Miri, Y.-D. Lin et al., Cardiac fibrotic remodeling on a chip with dynamic mechanical stimulation. Adv. Healthc. Mater. 8(3), 1801146 (2019). https://doi.org/10.1002/adhm.201801146
- F. Mirzapour-Shafiyi, E. Huber, L. Karr, J. Tong, A.R. Bausch et al., Flow-induced vascular remodeling on-chip: implications for anti-VEGF therapy. Adv. Funct. Mater. 35(42), 2501416 (2025). https://doi.org/10.1002/adfm.202501416
- C.A. Paggi, L.M. Teixeira, S. Le Gac, M. Karperien, Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat. Rev. Rheumatol. 18(4), 217–231 (2022). https://doi.org/10.1038/s41584-021-00736-6
- B.-G. Zhao, Y.-J. Zhang, M. Wang, N. Wang, Y. Wang et al., Correlation analysis between the mDIXON-quant fat quantification parameters of the infrapatellar fat pad and the severity of knee osteoarthritis. J. Orthop. Surg. Res. 20(1), 288 (2025). https://doi.org/10.1186/s13018-025-05687-2
- H. Zhang, Y. Shao, Z. Yao, L. Liu, H. Zhang et al., Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7. Ann. Rheum. Dis. 81(5), 676–686 (2022). https://doi.org/10.1136/annrheumdis-2021-221513
- Z.A. Li, S. Sant, S.K. Cho, S.B. Goodman, B.A. Bunnell et al., Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol. 41(4), 511–527 (2023). https://doi.org/10.1016/j.tibtech.2022.07.011
- P. Sengprasert, O. Kamenkit, A. Tanavalee, R. Reantragoon, The immunological facets of chondrocytes in osteoarthritis: a narrative review. J. Rheumatol. 51(1), 13–24 (2024). https://doi.org/10.3899/jrheum.2023-0816
- L. Guo, P. Li, X. Rong, X. Wei, Key roles of the superficial zone in articular cartilage physiology, pathology, and regeneration. Chin. Med. J. 138(12), 1399–1410 (2025). https://doi.org/10.1097/CM9.0000000000003319
- N. Petitjean, P. Canadas, P. Royer, D. Noël, S. Le Floc’h, Cartilage biomechanics: from the basic facts to the challenges of tissue engineering. J. Biomed. Mater. Res. A 111(7), 1067–1089 (2023). https://doi.org/10.1002/jbm.a.37478
- S. Jahn, J. Seror, J. Klein, Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 18, 235–258 (2016). https://doi.org/10.1146/annurev-bioeng-081514-123305
- J. Eschweiler, N. Horn, B. Rath, M. Betsch, A. Baroncini et al., The biomechanics of cartilage: an overview. Life 11(4), 302 (2021). https://doi.org/10.3390/life11040302
- C.J. O’Conor, N. Case, F. Guilak, Mechanical regulation of chondrogenesis. Stem Cell Res. Ther. 4(4), 61 (2013). https://doi.org/10.1186/scrt211
- V. Kondiboyina, T.L. Boyer, N. Mooney, A.G. Bajpayee, S.J. Shefelbine, Effect of dynamic loading on calcium signaling in in-situ chondrocytes. J. Biomech. 174, 112265 (2024). https://doi.org/10.1016/j.jbiomech.2024.112265
- F. Guilak, L.G. Alexopoulos, M.L. Upton, I. Youn, J.B. Choi et al., The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci. 1068(1), 498–512 (2006). https://doi.org/10.1196/annals.1346.011
- R.E. Wilusz, J. Sanchez-Adams, F. Guilak, The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 39, 25–32 (2014). https://doi.org/10.1016/j.matbio.2014.08.009
- Y. Jia, H. Le, X. Wang, J. Zhang, Y. Liu et al., Double-edged role of mechanical stimuli and underlying mechanisms in cartilage tissue engineering. Front. Bioeng. Biotechnol. 11, 1271762 (2023). https://doi.org/10.3389/fbioe.2023.1271762
- Y. Jin, Z. Li, Y. Wu, H. Li, Z. Liu et al., Aberrant fluid shear stress contributes to articular cartilage pathogenesis via epigenetic regulation of ZBTB20 by H3K4me3. J. Inflamm. Res. 14, 6067–6083 (2021). https://doi.org/10.2147/JIR.S339382
- E. Hodder, F. Guppy, D. Covill, P. Bush, The effect of hydrostatic pressure on proteoglycan production in articular cartilage in vitro: a meta-analysis. Osteoarthr. Cartil. 28(8), 1007–1019 (2020). https://doi.org/10.1016/j.joca.2020.03.021
- Q. Zhu, F. Yin, J. Qin, W. Shi, Y. Liu et al., Procr+ chondroprogenitors sense mechanical stimuli to govern articular cartilage maintenance and regeneration. Cell 188(19), 5194-5211.e16 (2025). https://doi.org/10.1016/j.cell.2025.06.036
- T.-T. Nguyen, C.-C. Hu, R. Sakthivel, S.C. Nabilla, Y.-W. Huang et al., Preparation of gamma poly-glutamic acid/hydroxyapatite/collagen composite as the 3D-printing scaffold for bone tissue engineering. Biomater. Res. 26(1), 21 (2022). https://doi.org/10.1186/s40824-022-00265-7
- H.L. Stewart, C.E. Kawcak, The importance of subchondral bone in the pathophysiology of osteoarthritis. Front. Vet. Sci. 5, 178 (2018). https://doi.org/10.3389/fvets.2018.00178
- A.M. Torres, J.B. Matheny, T.M. Keaveny, D. Taylor, C.M. Rimnac et al., Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc. Natl. Acad. Sci. U. S. A. 113(11), 2892–2897 (2016). https://doi.org/10.1073/pnas.1520539113
- C. Ma, T. Du, X. Niu, Y. Fan, Biomechanics and mechanobiology of the bone matrix. Bone Res. 10, 59 (2022). https://doi.org/10.1038/s41413-022-00223-y
- B. Sui, T. Ding, X. Wan, Y. Chen, X. Zhang et al., Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages. Exploration 4(6), 20230149 (2024). https://doi.org/10.1002/EXP.20230149
- L. Chen, Z. Zhang, X. Liu, Role and mechanism of mechanical load in the homeostasis of the subchondral bone in knee osteoarthritis: a comprehensive review. J. Inflamm. Res. 17, 9359–9378 (2024). https://doi.org/10.2147/JIR.S492415
- Y. Hu, X. Chen, S. Wang, Y. Jing, J. Su, Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9, 20 (2021). https://doi.org/10.1038/s41413-021-00147-z
- L. Wang, X. You, S. Lotinun, L. Zhang, N. Wu et al., Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11(1), 282 (2020). https://doi.org/10.1038/s41467-019-14146-6
- X.L. Yuan, H.Y. Meng, Y.C. Wang, J. Peng, Q.Y. Guo et al., Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr. Cartil. 22(8), 1077–1089 (2014). https://doi.org/10.1016/j.joca.2014.05.023
- L. Dudaric, I. Dumic-Cule, E. Divjak, T. Cengic, B. Brkljacic et al., Bone remodeling in osteoarthritis-biological and radiological aspects. Medicina 59(9), 1613 (2023). https://doi.org/10.3390/medicina59091613
- W. Su, G. Liu, X. Liu, Y. Zhou, Q. Sun et al., Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 5(8), e135446 (2020). https://doi.org/10.1172/jci.insight.135446
- K. Aso, S.M. Shahtaheri, R. Hill, D. Wilson, D.F. McWilliams et al., Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis Cartilage 28(9), 1245–1254 (2020). https://doi.org/10.1016/j.joca.2020.05.010
- H. Zhang, D. Cai, X. Bai, Macrophages regulate the progression of osteoarthritis. Osteoarthr. Cartil. 28(5), 555–561 (2020). https://doi.org/10.1016/j.joca.2020.01.007
- A. Damerau, E. Rosenow, D. Alkhoury, F. Buttgereit, T. Gaber, Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front. Immunol. 15, 1385006 (2024). https://doi.org/10.3389/fimmu.2024.1385006
- L.-K. Bai, Y.-Z. Su, X.-X. Wang, B. Bai, C.-Q. Zhang et al., Synovial macrophages: past life, current situation, and application in inflammatory arthritis. Front. Immunol. 13, 905356 (2022). https://doi.org/10.3389/fimmu.2022.905356
- H.T. Philpott, T.B. Birmingham, B. Fiset, L.A. Walsh, M.C. Coleman et al., Tensile strain and altered synovial tissue metabolism in human knee osteoarthritis. Sci. Rep. 12(1), 17367 (2022). https://doi.org/10.1038/s41598-022-22459-8
- T.S. Momberger, J.R. Levick, R.M. Mason, Hyaluronan secretion by synoviocytes is mechanosensitive. Matrix Biol. 24(8), 510–519 (2005). https://doi.org/10.1016/j.matbio.2005.08.006
- Q. Wang, J. Ji, D. Huang, C. Gao, Biomaterials for modulating the immune microenvironment in rheumatoid arthritis. BME Front. 6, 0102 (2025). https://doi.org/10.34133/bmef.0102
- J. Jamal, M.M. Roebuck, S.-Y. Lee, S.P. Frostick, A.A. Abbas et al., Modulation of the mechanical responses of synovial fibroblasts by osteoarthritis-associated inflammatory stressors. Int. J. Biochem. Cell Biol. 126, 105800 (2020). https://doi.org/10.1016/j.biocel.2020.105800
- C.Y.J. Wenham, P.G. Conaghan, The role of synovitis in osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2(6), 349–359 (2010). https://doi.org/10.1177/1759720x10378373
- C. Lambert, J. Zappia, C. Sanchez, A. Florin, J.-E. Dubuc et al., The damage-associated molecular patterns (DAMPs) as potential targets to treat osteoarthritis: perspectives from a review of the literature. Front. Med. 7, 607186 (2021). https://doi.org/10.3389/fmed.2020.607186
- C.-H. Chou, V. Jain, J. Gibson, D.E. Attarian, C.A. Haraden et al., Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10(1), 10868 (2020). https://doi.org/10.1038/s41598-020-67730-y
- A. Eitner, J. Pester, S. Nietzsche, G.O. Hofmann, H.G. Schaible, The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthr. Cartil. 21(9), 1383–1391 (2013). https://doi.org/10.1016/j.joca.2013.06.018
- A. Tsukada, Y. Uekusa, E. Ohta, A. Hattori, M. Mukai et al., Association between synovial NTN4 expression and pain scores, and its effects on fibroblasts and sensory neurons in end-stage knee osteoarthritis. Cells 14(6), 395 (2025). https://doi.org/10.3390/cells14060395
- R. Feng, W. Hu, Y. Li, X. Yao, J. Li et al., Mechanotransduction in subchondral bone microenvironment and targeted interventions for osteoarthritis. Mechanobiol. Med. 2(2), 100043 (2024). https://doi.org/10.1016/j.mbm.2024.100043
- K. Montagne, Y. Onuma, Y. Ito, Y. Aiki, K.S. Furukawa et al., High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: a transcriptome analysis. PLoS ONE 12(8), e0183226 (2017). https://doi.org/10.1371/journal.pone.0183226
- U. Nazet, S. Grässel, J. Jantsch, P. Proff, A. Schröder et al., Early OA stage like response occurs after dynamic stretching of human synovial fibroblasts. Int. J. Mol. Sci. 21(11), 3874 (2020). https://doi.org/10.3390/ijms21113874
- D. Li, J. Zhou, F. Chowdhury, J. Cheng, N. Wang et al., Role of mechanical factors in fate decisions of stem cells. Regen. Med. 6(2), 229–240 (2011). https://doi.org/10.2217/rme.11.2
- T. Zhang, S. Lin, X. Shao, Q. Zhang, C. Xue et al., Effect of matrix stiffness on osteoblast functionalization. Cell Prolif. 50(3), e12338 (2017). https://doi.org/10.1111/cpr.12338
- K. Kaur, S. Das, S. Ghosh, Regulation of human osteoblast-to-osteocyte differentiation by direct-write 3D microperiodic hydroxyapatite scaffolds. ACS Omega 4(1), 1504–1515 (2019). https://doi.org/10.1021/acsomega.8b03272
- S.N. Wijesinghe, C. Ditchfield, S. Flynn, J. Agrawal, E.T. Davis et al., Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthr. Cartil. 32(11), 1358–1370 (2024). https://doi.org/10.1016/j.joca.2024.06.011
- S. Zhou, Z. Cui, J.P.G. Urban, Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage–bone interface: a modeling study. Arthritis Rheum. 50(12), 3915–3924 (2004). https://doi.org/10.1002/art.20675
- S. Li, R.O.C. Oreffo, B.G. Sengers, R.S. Tare, The effect of oxygen tension on human articular chondrocyte matrix synthesis: integration of experimental and computational approaches. Biotechnol. Bioeng. 111(9), 1876–1885 (2014). https://doi.org/10.1002/bit.25241
- S. Coaccioli, P. Sarzi-Puttini, P. Zis, G. Rinonapoli, G. Varrassi, Osteoarthritis: new insight on its pathophysiology. J. Clin. Med. 11(20), 6013 (2022). https://doi.org/10.3390/jcm11206013
- C.L. Thompson, S. Fu, H.K. Heywood, M.M. Knight, S.D. Thorpe, Mechanical stimulation: a crucial element of organ-on-chip models. Front. Bioeng. Biotechnol. (2020). https://doi.org/10.3389/fbioe.2020.602646
- K. Brandauer, S. Schweinitzer, A. Lorenz, J. Krauß, S. Schobesberger et al., Advances of dual-organ and multi-organ systems for gut, lung, skin and liver models in absorption and metabolism studies. Lab Chip 25(6), 1384–1403 (2025). https://doi.org/10.1039/D4LC01011F
- L. Banh, K.K. Cheung, M.W.Y. Chan, E.W.K. Young, S. Viswanathan, Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthr. Cartil. 30(8), 1050–1061 (2022). https://doi.org/10.1016/j.joca.2022.03.012
- X. Wang, J. Tao, J. Zhou, Y. Shu, J. Xu, Excessive load promotes temporomandibular joint chondrocyte apoptosis via Piezo1/endoplasmic reticulum stress pathway. J. Cell. Mol. Med. 28(11), e18472 (2024). https://doi.org/10.1111/jcmm.18472
- Y. Li, M. Xie, S. Lv, Y. Sun, Z. Li et al., A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting. Int. J. Extreme Manuf. 5(4), 045502 (2023). https://doi.org/10.1088/2631-7990/acef77
- J. Han, Y. Wang, J. Ding, H. Chen, C. Shi et al., Gut-on-a-chip reveals enhanced peristalsis reduces nanoplastic-induced inflammation. Small 21(3), e2408208 (2025). https://doi.org/10.1002/smll.202408208
- D. Lee, A. Erickson, A.T. Dudley, S. Ryu, A microfluidic platform for stimulating chondrocytes with dynamic compression. J. Vis. Exp. 151, e59676 (2019). https://doi.org/10.3791/59676
- C.A. Paggi, B. Venzac, M. Karperien, J.C.H. Leijten, S. Le Gac, Monolithic microfluidic platform for exerting gradients of compression on cell-laden hydrogels, and application to a model of the articular cartilage. Sens. Actuators B Chem. 315, 127917 (2020). https://doi.org/10.1016/j.snb.2020.127917
- V. Peitso, Z. Sarmadian, J. Henriques, E. Lauwers, C.A. Paggi et al., Development of a microphysiological cartilage-on-chip platform for dynamic biomechanical stimulation of three-dimensional encapsulated chondrocytes in agarose hydrogels. Curr. Protoc. 4(12), e70079 (2024). https://doi.org/10.1002/cpz1.70079
- C.A. Paggi, J. Hendriks, M. Karperien, S. Le Gac, Emulating the chondrocyte microenvironment using multi-directional mechanical stimulation in a cartilage-on-chip. Lab Chip 22(9), 1815–1828 (2022). https://doi.org/10.1039/D1LC01069G
- P. Occhetta, A. Mainardi, E. Votta, Q. Vallmajo-Martin, M. Ehrbar et al., Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat. Biomed. Eng. 3(7), 545–557 (2019). https://doi.org/10.1038/s41551-019-0406-3
- C. Roh, J. Lee, C. Kang, The deformation of polydimethylsiloxane (PDMS) microfluidic channels filled with embedded circular obstacles under certain circumstances. Molecules 21(6), 798 (2016). https://doi.org/10.3390/molecules21060798
- R. Huang, Z. Liu, The effect of swelling/deswelling cycles on the mechanical behaviors of the polyacrylamide hydrogels. Polymer 312, 127634 (2024). https://doi.org/10.1016/j.polymer.2024.127634
- H. Lin, T.P. Lozito, P.G. Alexander, R. Gottardi, R.S. Tuan, Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Mol. Pharmaceutics 11(7), 2203–2212 (2014). https://doi.org/10.1021/mp500136b
- Z. Li, Z. Lin, S. Liu, H. Yagi, X. Zhang et al., Human mesenchymal stem cell-derived miniature joint system for disease modeling and drug testing. Adv. Sci. 9(21), 2105909 (2022). https://doi.org/10.1002/advs.202105909
- M. Tuerlings, I. Boone, H. Eslami Amirabadi, M. Vis, E. Suchiman et al., Capturing essential physiological aspects of interacting cartilage and bone tissue with osteoarthritis pathophysiology: a human osteochondral unit-on-a-chip model. Adv. Mater. Technol. 7(8), 2101310 (2022). https://doi.org/10.1002/admt.202101310
- S. Salehi, S. Brambilla, M. Rasponi, S. Lopa, M. Moretti, Development of a microfluidic vascularized osteochondral model as a drug testing platform for osteoarthritis. Adv. Healthc. Mater. 13(31), 2402350 (2024). https://doi.org/10.1002/adhm.202402350
- X. Bao, Z. Li, H. Liu, K. Feng, F. Yin et al., Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Mol. Med. Rep. 17(2), 2277–2288 (2018). https://doi.org/10.3892/mmr.2017.8153
- C. Mondadori, S. Palombella, S. Salehi, G. Talò, R. Visone et al., Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint. Biofabrication 13(4), 045001 (2021). https://doi.org/10.1088/1758-5090/ac0c5e
- J.P. Whiteley, C.P. Brown, E.A. Gaffney, Sensitivity of cartilage mechanical behaviour to spatial variations in material properties. J. Mech. Behav. Biomed. Mater. 156, 106575 (2024). https://doi.org/10.1016/j.jmbbm.2024.106575
- N.M. Elemam, S. Hannawi, A.A. Maghazachi, Role of chemokines and chemokine receptors in rheumatoid arthritis. Immunotargets Ther. 9, 43–56 (2020). https://doi.org/10.2147/ITT.S243636
- Y. Cao, L. Sun, Z. Liu, Z. Shen, W. Jia et al., 3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone. Regen. Biomater. 10, rbac104 (2022). https://doi.org/10.1093/rb/rbac104
- L. Fang, X. Lin, R. Xu, L. Liu, Y. Zhang et al., Advances in the development of gradient scaffolds made of nano-micromaterials for musculoskeletal tissue regeneration. Nano-Micro Lett. 17(1), 75 (2024). https://doi.org/10.1007/s40820-024-01581-4
- K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
- X. Wang, J. Zeng, D. Gan, K. Ling, M. He et al., Recent strategies and advances in hydrogel-based delivery platforms for bone regeneration. Nano-Micro Lett. 17(1), 73 (2024). https://doi.org/10.1007/s40820-024-01557-4
- S. Jalili-Firoozinezhad, C.C. Miranda, J.M.S. Cabral, Modeling the human body on microfluidic chips. Trends Biotechnol. 39(8), 838–852 (2021). https://doi.org/10.1016/j.tibtech.2021.01.004
- Y. Zhang, Y. Zhang, L. Tang, Z. Liu, Z. Jiang et al., Uniaxial compression constitutive equations for saturated hydrogel combined water-expelled behavior with environmental factors and the size effect. Mech. Adv. Mater. Struct. 29(28), 7491–7502 (2022). https://doi.org/10.1080/15376494.2021.2000682
- R. Visone, G. Talò, P. Occhetta, D. Cruz-Moreira, S. Lopa et al., A microscale biomimetic platform for generation and electro-mechanical stimulation of 3D cardiac microtissues. APL Bioeng. 2(4), 046102 (2018). https://doi.org/10.1063/1.5037968
- M.G. Vasconez Martinez, M. Frauenlob, M. Rothbauer, An update on microfluidic multi-organ-on-a-chip systems for reproducing drug pharmacokinetics: the current state-of-the-art. Expert Opin. Drug Metab. Toxicol. 20(6), 459–471 (2024). https://doi.org/10.1080/17425255.2024.2362183
- A. Tajeddin, N. Mustafaoglu, Design and fabrication of organ-on-chips: promises and challenges. Micromachines 12(12), 1443 (2021). https://doi.org/10.3390/mi12121443
- J. Christoffersson, C.-F. Mandenius, Fabrication of a microfluidic cell culture device using photolithographic and soft lithographic techniques. In: Cell-based assays using iPSCs for drug development and testing, pp. 227–233. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9477-9_21
- A.V. Nielsen, M.J. Beauchamp, G.P. Nordin, A.T. Woolley, 3D printed microfluidics. Annu. Rev. Anal. Chem. 13, 45–65 (2020). https://doi.org/10.1146/annurev-anchem-091619-102649
- P. Pattanayak, S.K. Singh, M. Gulati, S. Vishwas, B. Kapoor et al., Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid. Nanofluid. 25(12), 99 (2021). https://doi.org/10.1007/s10404-021-02502-2
- A. Aziz, C. Geng, M. Fu, X. Yu, K. Qin et al., The role of microfluidics for organ on chip simulations. Bioengineering 4(2), 39 (2017). https://doi.org/10.3390/bioengineering4020039
- H. Su, T. Ma, X. Liu, L. Wang, F. Shu et al., Microfluidic organ chip of fluid–solid dynamic curved interface. Appl. Phys. Rev. 11, 011404 (2024). https://doi.org/10.1063/5.0177386
- S.F. Mohamad, R. El Koussa, J. Ghosh, R. Blosser, A. Gunawan et al., Osteomacs promote maintenance of murine hematopoiesis through megakaryocyte-induced upregulation of Embigin and CD166. Stem Cell Rep. 19(4), 486–500 (2024). https://doi.org/10.1016/j.stemcr.2024.02.004
- M. Piergiovanni, S.B. Leite, R. Corvi, M. Whelan, Standardisation needs for organ on chip devices. Lab a Chip 21(15), 2857–2868 (2021). https://doi.org/10.1039/d1lc00241d
- D.J. Carvalho, A.M. Kip, A. Tegel, M. Stich, C. Krause et al., A modular microfluidic organoid platform using LEGO-like bricks. Adv. Healthc. Mater. 13(13), 2303444 (2024). https://doi.org/10.1002/adhm.202303444
- H. Lin, J. Sohn, H. Shen, M.T. Langhans, R.S. Tuan, Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials 203, 96–110 (2019). https://doi.org/10.1016/j.biomaterials.2018.06.026
- J. Cerneckis, H. Cai, Y. Shi, Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct. Target. Ther. 9(1), 112 (2024). https://doi.org/10.1038/s41392-024-01809-0
- S. Yamanaka, Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6), 678–684 (2012). https://doi.org/10.1016/j.stem.2012.05.005
- M. Gosset, F. Berenbaum, S. Thirion, C. Jacques, Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3(8), 1253–1260 (2008). https://doi.org/10.1038/nprot.2008.95
- K. Paek, S. Kim, S. Tak, M.K. Kim, J. Park et al., A high-throughput biomimetic bone-on-a-chip platform with artificial intelligence-assisted image analysis for osteoporosis drug testing. Bioeng. Transl. Med. 8(1), e10313 (2023). https://doi.org/10.1002/btm2.10313
- K. Hiramoto, K. Ino, Y. Nashimoto, K. Ito, H. Shiku, Electric and electrochemical microfluidic devices for cell analysis. Front. Chem. 7, 396 (2019). https://doi.org/10.3389/fchem.2019.00396
- A.L. Glieberman, B.D. Pope, J.F. Zimmerman, Q. Liu, J.P. Ferrier et al., Synchronized stimulation and continuous insulin sensing in a microfluidic human islet on a chip designed for scalable manufacturing. Lab Chip 19(18), 2993–3010 (2019). https://doi.org/10.1039/c9lc00253g
- J. Zhang, X. Zhang, Y. Zhang, X. Yang, L. Guo et al., Emerging biosensors integrated with microfluidic devices: a promising analytical tool for on-site detection of mycotoxins. NPJ Sci. Food 9(1), 84 (2025). https://doi.org/10.1038/s41538-025-00444-5
- Z. Mumtaz, Z. Rashid, A. Ali, A. Arif, F. Ameen et al., Prospects of microfluidic technology in nucleic acid detection approaches. Biosensors 13(6), 584 (2023). https://doi.org/10.3390/bios13060584
- H. Zhang, L. Zhao, J. Brodský, L. Migliaccio, I. Gablech et al., Proteomics-on-a-chip—microfluidics meets proteomics. Biosens. Bioelectron. 273, 117122 (2025). https://doi.org/10.1016/j.bios.2024.117122
- S.-J. Lo, D.-J. Yao, Get to understand more from single-cells: current studies of microfluidic-based techniques for single-cell analysis. Int. J. Mol. Sci. 16(8), 16763–16777 (2015). https://doi.org/10.3390/ijms160816763
- Y. Huang, T. Liu, Q. Huang, Y. Wang, From organ-on-a-chip to human-on-a-chip: a review of research progress and latest applications. ACS Sens. 9(7), 3466–3488 (2024). https://doi.org/10.1021/acssensors.4c00004
- Y.I. Wang, C. Carmona, J.J. Hickman, M.L. Shuler, Multiorgan microphysiological systems for drug development: strategies, advances, and challenges. Adv. Healthc. Mater. 7(2), 1701000 (2018). https://doi.org/10.1002/adhm.201701000
- N.A. Segal, J.M. Nilges, W.M. Oo, Sex differences in osteoarthritis prevalence, pain perception, physical function and therapeutics. Osteoarthr. Cartil. 32(9), 1045–1053 (2024). https://doi.org/10.1016/j.joca.2024.04.002
- S.-K. Kim, S.G. Kwak, J.-Y. Choe, Decline of lung function in knee and spine osteoarthritis in the Korean population: cross-sectional analysis of data from the Korea national health and nutrition examination survey. Healthcare 10(4), 736 (2022). https://doi.org/10.3390/healthcare10040736
- R.C. Hubrecht, E. Carter, The 3Rs and humane experimental technique: implementing change. Animals 9(10), 754 (2019). https://doi.org/10.3390/ani9100754
- J. Weidema, M. de Vries, C. Mummery, N. de Graeff, The ethical aspects of human organ-on-chip models: a mapping review. Stem Cell Reports 20(11), 102686 (2025). https://doi.org/10.1016/j.stemcr.2025.102686
References
J.D. Steinmetz, G.T. Culbreth, L.M. Haile, Q. Rafferty, J. Lo et al., Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 5(9), e508–e522 (2023). https://doi.org/10.1016/s2665-9913(23)00163-7
Q. Yao, X. Wu, C. Tao, W. Gong, M. Chen et al., Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 8(1), 56 (2023). https://doi.org/10.1038/s41392-023-01330-w
X. Wang, X. Song, W. Feng, M. Chang, J. Yang et al., Advanced nanomedicines for treating refractory inflammation-related diseases. Nano-Micro Lett. 17(1), 323 (2025). https://doi.org/10.1007/s40820-025-01829-7
M. Cao, R. Sheng, Y. Sun, Y. Cao, H. Wang et al., Delivering microrobots in the musculoskeletal system. Nano-Micro Lett. 16(1), 251 (2024). https://doi.org/10.1007/s40820-024-01464-8
T. Hodgkinson, D.C. Kelly, C.M. Curtin, F.J. O’Brien, Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat. Rev. Rheumatol. 18(2), 67–84 (2022). https://doi.org/10.1038/s41584-021-00724-w
S. Thysen, F.P. Luyten, R.J.U. Lories, Targets, models and challenges in osteoarthritis research. Dis. Model. Mech. 8(1), 17–30 (2015). https://doi.org/10.1242/dmm.016881
H.J. Samvelyan, D. Hughes, C. Stevens, K.A. Staines, Models of osteoarthritis: relevance and new insights. Calcif. Tissue Int. 109(3), 243–256 (2021). https://doi.org/10.1007/s00223-020-00670-x
C.T. Mierke, Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells. Cells 13(1), 96 (2024). https://doi.org/10.3390/cells13010096
T. Hodgkinson, I.N. Amado, F.J. O’Brien, O.D. Kennedy, The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis. APL Bioeng. 6(1), 011501 (2022). https://doi.org/10.1063/5.0068277
J. Nicolas, S. Magli, L. Rabbachin, S. Sampaolesi, F. Nicotra et al., 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromol 21(6), 1968–1994 (2020). https://doi.org/10.1021/acs.biomac.0c00045
P. Mukherjee, S. Roy, D. Ghosh, S.K. Nandi, Role of animal models in biomedical research: a review. Lab. Anim. Res. 38(1), 18 (2022). https://doi.org/10.1186/s42826-022-00128-1
C.M. Leung, P. de Haan, K. Ronaldson-Bouchard, G.-A. Kim, J. Ko et al., A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022). https://doi.org/10.1038/s43586-022-00118-6
D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin et al., Reconstituting organ-level lung functions on a chip. Science 328(5986), 1662–1668 (2010). https://doi.org/10.1126/science.1188302
D. Huang, T. Liu, J. Liao, S. Maharjan, X. Xie et al., Reversed-engineered human alveolar lung-on-a-chip model. Proc. Natl. Acad. Sci. U. S. A. 118(19), e2016146118 (2021). https://doi.org/10.1073/pnas.2016146118
M. Hofer, Y. Kim, N. Broguiere, F. Gorostidi, J.A. Klein et al., Accessible homeostatic gastric organoids reveal secondary cell type-specific host-pathogen interactions in Helicobacter pylori infections. Nat. Commun. 16(1), 2767 (2025). https://doi.org/10.1038/s41467-025-57131-y
A.S. Perry, N. Hadad, E. Chatterjee, M. Jimenez-Ramos, E. Farber-Eger et al., A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. Cell Rep. Med. 5(12), 101871 (2024). https://doi.org/10.1016/j.xcrm.2024.101871
K.T. Kroll, K.A. Homan, S.G.M. Uzel, M.M. Mata, K.J. Wolf et al., A perfusable, vascularized kidney organoid-on-chip model. Biofabrication 16(4), 045003 (2024). https://doi.org/10.1088/1758-5090/ad5ac0
M.D. Mohan, N. Latifi, R. Flick, C.A. Simmons, E.W.K. Young, Interrogating matrix stiffness and metabolomics in pancreatic ductal carcinoma using an openable microfluidic tumor-on-a-chip. ACS Appl. Mater. Interfaces 16(16), 20169–20185 (2024). https://doi.org/10.1021/acsami.4c00556
M. Kong, J. Lee, I.K. Yazdi, A.K. Miri, Y.-D. Lin et al., Cardiac fibrotic remodeling on a chip with dynamic mechanical stimulation. Adv. Healthc. Mater. 8(3), 1801146 (2019). https://doi.org/10.1002/adhm.201801146
F. Mirzapour-Shafiyi, E. Huber, L. Karr, J. Tong, A.R. Bausch et al., Flow-induced vascular remodeling on-chip: implications for anti-VEGF therapy. Adv. Funct. Mater. 35(42), 2501416 (2025). https://doi.org/10.1002/adfm.202501416
C.A. Paggi, L.M. Teixeira, S. Le Gac, M. Karperien, Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat. Rev. Rheumatol. 18(4), 217–231 (2022). https://doi.org/10.1038/s41584-021-00736-6
B.-G. Zhao, Y.-J. Zhang, M. Wang, N. Wang, Y. Wang et al., Correlation analysis between the mDIXON-quant fat quantification parameters of the infrapatellar fat pad and the severity of knee osteoarthritis. J. Orthop. Surg. Res. 20(1), 288 (2025). https://doi.org/10.1186/s13018-025-05687-2
H. Zhang, Y. Shao, Z. Yao, L. Liu, H. Zhang et al., Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7. Ann. Rheum. Dis. 81(5), 676–686 (2022). https://doi.org/10.1136/annrheumdis-2021-221513
Z.A. Li, S. Sant, S.K. Cho, S.B. Goodman, B.A. Bunnell et al., Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol. 41(4), 511–527 (2023). https://doi.org/10.1016/j.tibtech.2022.07.011
P. Sengprasert, O. Kamenkit, A. Tanavalee, R. Reantragoon, The immunological facets of chondrocytes in osteoarthritis: a narrative review. J. Rheumatol. 51(1), 13–24 (2024). https://doi.org/10.3899/jrheum.2023-0816
L. Guo, P. Li, X. Rong, X. Wei, Key roles of the superficial zone in articular cartilage physiology, pathology, and regeneration. Chin. Med. J. 138(12), 1399–1410 (2025). https://doi.org/10.1097/CM9.0000000000003319
N. Petitjean, P. Canadas, P. Royer, D. Noël, S. Le Floc’h, Cartilage biomechanics: from the basic facts to the challenges of tissue engineering. J. Biomed. Mater. Res. A 111(7), 1067–1089 (2023). https://doi.org/10.1002/jbm.a.37478
S. Jahn, J. Seror, J. Klein, Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 18, 235–258 (2016). https://doi.org/10.1146/annurev-bioeng-081514-123305
J. Eschweiler, N. Horn, B. Rath, M. Betsch, A. Baroncini et al., The biomechanics of cartilage: an overview. Life 11(4), 302 (2021). https://doi.org/10.3390/life11040302
C.J. O’Conor, N. Case, F. Guilak, Mechanical regulation of chondrogenesis. Stem Cell Res. Ther. 4(4), 61 (2013). https://doi.org/10.1186/scrt211
V. Kondiboyina, T.L. Boyer, N. Mooney, A.G. Bajpayee, S.J. Shefelbine, Effect of dynamic loading on calcium signaling in in-situ chondrocytes. J. Biomech. 174, 112265 (2024). https://doi.org/10.1016/j.jbiomech.2024.112265
F. Guilak, L.G. Alexopoulos, M.L. Upton, I. Youn, J.B. Choi et al., The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci. 1068(1), 498–512 (2006). https://doi.org/10.1196/annals.1346.011
R.E. Wilusz, J. Sanchez-Adams, F. Guilak, The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 39, 25–32 (2014). https://doi.org/10.1016/j.matbio.2014.08.009
Y. Jia, H. Le, X. Wang, J. Zhang, Y. Liu et al., Double-edged role of mechanical stimuli and underlying mechanisms in cartilage tissue engineering. Front. Bioeng. Biotechnol. 11, 1271762 (2023). https://doi.org/10.3389/fbioe.2023.1271762
Y. Jin, Z. Li, Y. Wu, H. Li, Z. Liu et al., Aberrant fluid shear stress contributes to articular cartilage pathogenesis via epigenetic regulation of ZBTB20 by H3K4me3. J. Inflamm. Res. 14, 6067–6083 (2021). https://doi.org/10.2147/JIR.S339382
E. Hodder, F. Guppy, D. Covill, P. Bush, The effect of hydrostatic pressure on proteoglycan production in articular cartilage in vitro: a meta-analysis. Osteoarthr. Cartil. 28(8), 1007–1019 (2020). https://doi.org/10.1016/j.joca.2020.03.021
Q. Zhu, F. Yin, J. Qin, W. Shi, Y. Liu et al., Procr+ chondroprogenitors sense mechanical stimuli to govern articular cartilage maintenance and regeneration. Cell 188(19), 5194-5211.e16 (2025). https://doi.org/10.1016/j.cell.2025.06.036
T.-T. Nguyen, C.-C. Hu, R. Sakthivel, S.C. Nabilla, Y.-W. Huang et al., Preparation of gamma poly-glutamic acid/hydroxyapatite/collagen composite as the 3D-printing scaffold for bone tissue engineering. Biomater. Res. 26(1), 21 (2022). https://doi.org/10.1186/s40824-022-00265-7
H.L. Stewart, C.E. Kawcak, The importance of subchondral bone in the pathophysiology of osteoarthritis. Front. Vet. Sci. 5, 178 (2018). https://doi.org/10.3389/fvets.2018.00178
A.M. Torres, J.B. Matheny, T.M. Keaveny, D. Taylor, C.M. Rimnac et al., Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc. Natl. Acad. Sci. U. S. A. 113(11), 2892–2897 (2016). https://doi.org/10.1073/pnas.1520539113
C. Ma, T. Du, X. Niu, Y. Fan, Biomechanics and mechanobiology of the bone matrix. Bone Res. 10, 59 (2022). https://doi.org/10.1038/s41413-022-00223-y
B. Sui, T. Ding, X. Wan, Y. Chen, X. Zhang et al., Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages. Exploration 4(6), 20230149 (2024). https://doi.org/10.1002/EXP.20230149
L. Chen, Z. Zhang, X. Liu, Role and mechanism of mechanical load in the homeostasis of the subchondral bone in knee osteoarthritis: a comprehensive review. J. Inflamm. Res. 17, 9359–9378 (2024). https://doi.org/10.2147/JIR.S492415
Y. Hu, X. Chen, S. Wang, Y. Jing, J. Su, Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9, 20 (2021). https://doi.org/10.1038/s41413-021-00147-z
L. Wang, X. You, S. Lotinun, L. Zhang, N. Wu et al., Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11(1), 282 (2020). https://doi.org/10.1038/s41467-019-14146-6
X.L. Yuan, H.Y. Meng, Y.C. Wang, J. Peng, Q.Y. Guo et al., Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr. Cartil. 22(8), 1077–1089 (2014). https://doi.org/10.1016/j.joca.2014.05.023
L. Dudaric, I. Dumic-Cule, E. Divjak, T. Cengic, B. Brkljacic et al., Bone remodeling in osteoarthritis-biological and radiological aspects. Medicina 59(9), 1613 (2023). https://doi.org/10.3390/medicina59091613
W. Su, G. Liu, X. Liu, Y. Zhou, Q. Sun et al., Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 5(8), e135446 (2020). https://doi.org/10.1172/jci.insight.135446
K. Aso, S.M. Shahtaheri, R. Hill, D. Wilson, D.F. McWilliams et al., Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis Cartilage 28(9), 1245–1254 (2020). https://doi.org/10.1016/j.joca.2020.05.010
H. Zhang, D. Cai, X. Bai, Macrophages regulate the progression of osteoarthritis. Osteoarthr. Cartil. 28(5), 555–561 (2020). https://doi.org/10.1016/j.joca.2020.01.007
A. Damerau, E. Rosenow, D. Alkhoury, F. Buttgereit, T. Gaber, Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front. Immunol. 15, 1385006 (2024). https://doi.org/10.3389/fimmu.2024.1385006
L.-K. Bai, Y.-Z. Su, X.-X. Wang, B. Bai, C.-Q. Zhang et al., Synovial macrophages: past life, current situation, and application in inflammatory arthritis. Front. Immunol. 13, 905356 (2022). https://doi.org/10.3389/fimmu.2022.905356
H.T. Philpott, T.B. Birmingham, B. Fiset, L.A. Walsh, M.C. Coleman et al., Tensile strain and altered synovial tissue metabolism in human knee osteoarthritis. Sci. Rep. 12(1), 17367 (2022). https://doi.org/10.1038/s41598-022-22459-8
T.S. Momberger, J.R. Levick, R.M. Mason, Hyaluronan secretion by synoviocytes is mechanosensitive. Matrix Biol. 24(8), 510–519 (2005). https://doi.org/10.1016/j.matbio.2005.08.006
Q. Wang, J. Ji, D. Huang, C. Gao, Biomaterials for modulating the immune microenvironment in rheumatoid arthritis. BME Front. 6, 0102 (2025). https://doi.org/10.34133/bmef.0102
J. Jamal, M.M. Roebuck, S.-Y. Lee, S.P. Frostick, A.A. Abbas et al., Modulation of the mechanical responses of synovial fibroblasts by osteoarthritis-associated inflammatory stressors. Int. J. Biochem. Cell Biol. 126, 105800 (2020). https://doi.org/10.1016/j.biocel.2020.105800
C.Y.J. Wenham, P.G. Conaghan, The role of synovitis in osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2(6), 349–359 (2010). https://doi.org/10.1177/1759720x10378373
C. Lambert, J. Zappia, C. Sanchez, A. Florin, J.-E. Dubuc et al., The damage-associated molecular patterns (DAMPs) as potential targets to treat osteoarthritis: perspectives from a review of the literature. Front. Med. 7, 607186 (2021). https://doi.org/10.3389/fmed.2020.607186
C.-H. Chou, V. Jain, J. Gibson, D.E. Attarian, C.A. Haraden et al., Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10(1), 10868 (2020). https://doi.org/10.1038/s41598-020-67730-y
A. Eitner, J. Pester, S. Nietzsche, G.O. Hofmann, H.G. Schaible, The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthr. Cartil. 21(9), 1383–1391 (2013). https://doi.org/10.1016/j.joca.2013.06.018
A. Tsukada, Y. Uekusa, E. Ohta, A. Hattori, M. Mukai et al., Association between synovial NTN4 expression and pain scores, and its effects on fibroblasts and sensory neurons in end-stage knee osteoarthritis. Cells 14(6), 395 (2025). https://doi.org/10.3390/cells14060395
R. Feng, W. Hu, Y. Li, X. Yao, J. Li et al., Mechanotransduction in subchondral bone microenvironment and targeted interventions for osteoarthritis. Mechanobiol. Med. 2(2), 100043 (2024). https://doi.org/10.1016/j.mbm.2024.100043
K. Montagne, Y. Onuma, Y. Ito, Y. Aiki, K.S. Furukawa et al., High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: a transcriptome analysis. PLoS ONE 12(8), e0183226 (2017). https://doi.org/10.1371/journal.pone.0183226
U. Nazet, S. Grässel, J. Jantsch, P. Proff, A. Schröder et al., Early OA stage like response occurs after dynamic stretching of human synovial fibroblasts. Int. J. Mol. Sci. 21(11), 3874 (2020). https://doi.org/10.3390/ijms21113874
D. Li, J. Zhou, F. Chowdhury, J. Cheng, N. Wang et al., Role of mechanical factors in fate decisions of stem cells. Regen. Med. 6(2), 229–240 (2011). https://doi.org/10.2217/rme.11.2
T. Zhang, S. Lin, X. Shao, Q. Zhang, C. Xue et al., Effect of matrix stiffness on osteoblast functionalization. Cell Prolif. 50(3), e12338 (2017). https://doi.org/10.1111/cpr.12338
K. Kaur, S. Das, S. Ghosh, Regulation of human osteoblast-to-osteocyte differentiation by direct-write 3D microperiodic hydroxyapatite scaffolds. ACS Omega 4(1), 1504–1515 (2019). https://doi.org/10.1021/acsomega.8b03272
S.N. Wijesinghe, C. Ditchfield, S. Flynn, J. Agrawal, E.T. Davis et al., Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthr. Cartil. 32(11), 1358–1370 (2024). https://doi.org/10.1016/j.joca.2024.06.011
S. Zhou, Z. Cui, J.P.G. Urban, Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage–bone interface: a modeling study. Arthritis Rheum. 50(12), 3915–3924 (2004). https://doi.org/10.1002/art.20675
S. Li, R.O.C. Oreffo, B.G. Sengers, R.S. Tare, The effect of oxygen tension on human articular chondrocyte matrix synthesis: integration of experimental and computational approaches. Biotechnol. Bioeng. 111(9), 1876–1885 (2014). https://doi.org/10.1002/bit.25241
S. Coaccioli, P. Sarzi-Puttini, P. Zis, G. Rinonapoli, G. Varrassi, Osteoarthritis: new insight on its pathophysiology. J. Clin. Med. 11(20), 6013 (2022). https://doi.org/10.3390/jcm11206013
C.L. Thompson, S. Fu, H.K. Heywood, M.M. Knight, S.D. Thorpe, Mechanical stimulation: a crucial element of organ-on-chip models. Front. Bioeng. Biotechnol. (2020). https://doi.org/10.3389/fbioe.2020.602646
K. Brandauer, S. Schweinitzer, A. Lorenz, J. Krauß, S. Schobesberger et al., Advances of dual-organ and multi-organ systems for gut, lung, skin and liver models in absorption and metabolism studies. Lab Chip 25(6), 1384–1403 (2025). https://doi.org/10.1039/D4LC01011F
L. Banh, K.K. Cheung, M.W.Y. Chan, E.W.K. Young, S. Viswanathan, Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthr. Cartil. 30(8), 1050–1061 (2022). https://doi.org/10.1016/j.joca.2022.03.012
X. Wang, J. Tao, J. Zhou, Y. Shu, J. Xu, Excessive load promotes temporomandibular joint chondrocyte apoptosis via Piezo1/endoplasmic reticulum stress pathway. J. Cell. Mol. Med. 28(11), e18472 (2024). https://doi.org/10.1111/jcmm.18472
Y. Li, M. Xie, S. Lv, Y. Sun, Z. Li et al., A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting. Int. J. Extreme Manuf. 5(4), 045502 (2023). https://doi.org/10.1088/2631-7990/acef77
J. Han, Y. Wang, J. Ding, H. Chen, C. Shi et al., Gut-on-a-chip reveals enhanced peristalsis reduces nanoplastic-induced inflammation. Small 21(3), e2408208 (2025). https://doi.org/10.1002/smll.202408208
D. Lee, A. Erickson, A.T. Dudley, S. Ryu, A microfluidic platform for stimulating chondrocytes with dynamic compression. J. Vis. Exp. 151, e59676 (2019). https://doi.org/10.3791/59676
C.A. Paggi, B. Venzac, M. Karperien, J.C.H. Leijten, S. Le Gac, Monolithic microfluidic platform for exerting gradients of compression on cell-laden hydrogels, and application to a model of the articular cartilage. Sens. Actuators B Chem. 315, 127917 (2020). https://doi.org/10.1016/j.snb.2020.127917
V. Peitso, Z. Sarmadian, J. Henriques, E. Lauwers, C.A. Paggi et al., Development of a microphysiological cartilage-on-chip platform for dynamic biomechanical stimulation of three-dimensional encapsulated chondrocytes in agarose hydrogels. Curr. Protoc. 4(12), e70079 (2024). https://doi.org/10.1002/cpz1.70079
C.A. Paggi, J. Hendriks, M. Karperien, S. Le Gac, Emulating the chondrocyte microenvironment using multi-directional mechanical stimulation in a cartilage-on-chip. Lab Chip 22(9), 1815–1828 (2022). https://doi.org/10.1039/D1LC01069G
P. Occhetta, A. Mainardi, E. Votta, Q. Vallmajo-Martin, M. Ehrbar et al., Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat. Biomed. Eng. 3(7), 545–557 (2019). https://doi.org/10.1038/s41551-019-0406-3
C. Roh, J. Lee, C. Kang, The deformation of polydimethylsiloxane (PDMS) microfluidic channels filled with embedded circular obstacles under certain circumstances. Molecules 21(6), 798 (2016). https://doi.org/10.3390/molecules21060798
R. Huang, Z. Liu, The effect of swelling/deswelling cycles on the mechanical behaviors of the polyacrylamide hydrogels. Polymer 312, 127634 (2024). https://doi.org/10.1016/j.polymer.2024.127634
H. Lin, T.P. Lozito, P.G. Alexander, R. Gottardi, R.S. Tuan, Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Mol. Pharmaceutics 11(7), 2203–2212 (2014). https://doi.org/10.1021/mp500136b
Z. Li, Z. Lin, S. Liu, H. Yagi, X. Zhang et al., Human mesenchymal stem cell-derived miniature joint system for disease modeling and drug testing. Adv. Sci. 9(21), 2105909 (2022). https://doi.org/10.1002/advs.202105909
M. Tuerlings, I. Boone, H. Eslami Amirabadi, M. Vis, E. Suchiman et al., Capturing essential physiological aspects of interacting cartilage and bone tissue with osteoarthritis pathophysiology: a human osteochondral unit-on-a-chip model. Adv. Mater. Technol. 7(8), 2101310 (2022). https://doi.org/10.1002/admt.202101310
S. Salehi, S. Brambilla, M. Rasponi, S. Lopa, M. Moretti, Development of a microfluidic vascularized osteochondral model as a drug testing platform for osteoarthritis. Adv. Healthc. Mater. 13(31), 2402350 (2024). https://doi.org/10.1002/adhm.202402350
X. Bao, Z. Li, H. Liu, K. Feng, F. Yin et al., Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Mol. Med. Rep. 17(2), 2277–2288 (2018). https://doi.org/10.3892/mmr.2017.8153
C. Mondadori, S. Palombella, S. Salehi, G. Talò, R. Visone et al., Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint. Biofabrication 13(4), 045001 (2021). https://doi.org/10.1088/1758-5090/ac0c5e
J.P. Whiteley, C.P. Brown, E.A. Gaffney, Sensitivity of cartilage mechanical behaviour to spatial variations in material properties. J. Mech. Behav. Biomed. Mater. 156, 106575 (2024). https://doi.org/10.1016/j.jmbbm.2024.106575
N.M. Elemam, S. Hannawi, A.A. Maghazachi, Role of chemokines and chemokine receptors in rheumatoid arthritis. Immunotargets Ther. 9, 43–56 (2020). https://doi.org/10.2147/ITT.S243636
Y. Cao, L. Sun, Z. Liu, Z. Shen, W. Jia et al., 3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone. Regen. Biomater. 10, rbac104 (2022). https://doi.org/10.1093/rb/rbac104
L. Fang, X. Lin, R. Xu, L. Liu, Y. Zhang et al., Advances in the development of gradient scaffolds made of nano-micromaterials for musculoskeletal tissue regeneration. Nano-Micro Lett. 17(1), 75 (2024). https://doi.org/10.1007/s40820-024-01581-4
K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
X. Wang, J. Zeng, D. Gan, K. Ling, M. He et al., Recent strategies and advances in hydrogel-based delivery platforms for bone regeneration. Nano-Micro Lett. 17(1), 73 (2024). https://doi.org/10.1007/s40820-024-01557-4
S. Jalili-Firoozinezhad, C.C. Miranda, J.M.S. Cabral, Modeling the human body on microfluidic chips. Trends Biotechnol. 39(8), 838–852 (2021). https://doi.org/10.1016/j.tibtech.2021.01.004
Y. Zhang, Y. Zhang, L. Tang, Z. Liu, Z. Jiang et al., Uniaxial compression constitutive equations for saturated hydrogel combined water-expelled behavior with environmental factors and the size effect. Mech. Adv. Mater. Struct. 29(28), 7491–7502 (2022). https://doi.org/10.1080/15376494.2021.2000682
R. Visone, G. Talò, P. Occhetta, D. Cruz-Moreira, S. Lopa et al., A microscale biomimetic platform for generation and electro-mechanical stimulation of 3D cardiac microtissues. APL Bioeng. 2(4), 046102 (2018). https://doi.org/10.1063/1.5037968
M.G. Vasconez Martinez, M. Frauenlob, M. Rothbauer, An update on microfluidic multi-organ-on-a-chip systems for reproducing drug pharmacokinetics: the current state-of-the-art. Expert Opin. Drug Metab. Toxicol. 20(6), 459–471 (2024). https://doi.org/10.1080/17425255.2024.2362183
A. Tajeddin, N. Mustafaoglu, Design and fabrication of organ-on-chips: promises and challenges. Micromachines 12(12), 1443 (2021). https://doi.org/10.3390/mi12121443
J. Christoffersson, C.-F. Mandenius, Fabrication of a microfluidic cell culture device using photolithographic and soft lithographic techniques. In: Cell-based assays using iPSCs for drug development and testing, pp. 227–233. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9477-9_21
A.V. Nielsen, M.J. Beauchamp, G.P. Nordin, A.T. Woolley, 3D printed microfluidics. Annu. Rev. Anal. Chem. 13, 45–65 (2020). https://doi.org/10.1146/annurev-anchem-091619-102649
P. Pattanayak, S.K. Singh, M. Gulati, S. Vishwas, B. Kapoor et al., Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid. Nanofluid. 25(12), 99 (2021). https://doi.org/10.1007/s10404-021-02502-2
A. Aziz, C. Geng, M. Fu, X. Yu, K. Qin et al., The role of microfluidics for organ on chip simulations. Bioengineering 4(2), 39 (2017). https://doi.org/10.3390/bioengineering4020039
H. Su, T. Ma, X. Liu, L. Wang, F. Shu et al., Microfluidic organ chip of fluid–solid dynamic curved interface. Appl. Phys. Rev. 11, 011404 (2024). https://doi.org/10.1063/5.0177386
S.F. Mohamad, R. El Koussa, J. Ghosh, R. Blosser, A. Gunawan et al., Osteomacs promote maintenance of murine hematopoiesis through megakaryocyte-induced upregulation of Embigin and CD166. Stem Cell Rep. 19(4), 486–500 (2024). https://doi.org/10.1016/j.stemcr.2024.02.004
M. Piergiovanni, S.B. Leite, R. Corvi, M. Whelan, Standardisation needs for organ on chip devices. Lab a Chip 21(15), 2857–2868 (2021). https://doi.org/10.1039/d1lc00241d
D.J. Carvalho, A.M. Kip, A. Tegel, M. Stich, C. Krause et al., A modular microfluidic organoid platform using LEGO-like bricks. Adv. Healthc. Mater. 13(13), 2303444 (2024). https://doi.org/10.1002/adhm.202303444
H. Lin, J. Sohn, H. Shen, M.T. Langhans, R.S. Tuan, Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials 203, 96–110 (2019). https://doi.org/10.1016/j.biomaterials.2018.06.026
J. Cerneckis, H. Cai, Y. Shi, Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct. Target. Ther. 9(1), 112 (2024). https://doi.org/10.1038/s41392-024-01809-0
S. Yamanaka, Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6), 678–684 (2012). https://doi.org/10.1016/j.stem.2012.05.005
M. Gosset, F. Berenbaum, S. Thirion, C. Jacques, Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3(8), 1253–1260 (2008). https://doi.org/10.1038/nprot.2008.95
K. Paek, S. Kim, S. Tak, M.K. Kim, J. Park et al., A high-throughput biomimetic bone-on-a-chip platform with artificial intelligence-assisted image analysis for osteoporosis drug testing. Bioeng. Transl. Med. 8(1), e10313 (2023). https://doi.org/10.1002/btm2.10313
K. Hiramoto, K. Ino, Y. Nashimoto, K. Ito, H. Shiku, Electric and electrochemical microfluidic devices for cell analysis. Front. Chem. 7, 396 (2019). https://doi.org/10.3389/fchem.2019.00396
A.L. Glieberman, B.D. Pope, J.F. Zimmerman, Q. Liu, J.P. Ferrier et al., Synchronized stimulation and continuous insulin sensing in a microfluidic human islet on a chip designed for scalable manufacturing. Lab Chip 19(18), 2993–3010 (2019). https://doi.org/10.1039/c9lc00253g
J. Zhang, X. Zhang, Y. Zhang, X. Yang, L. Guo et al., Emerging biosensors integrated with microfluidic devices: a promising analytical tool for on-site detection of mycotoxins. NPJ Sci. Food 9(1), 84 (2025). https://doi.org/10.1038/s41538-025-00444-5
Z. Mumtaz, Z. Rashid, A. Ali, A. Arif, F. Ameen et al., Prospects of microfluidic technology in nucleic acid detection approaches. Biosensors 13(6), 584 (2023). https://doi.org/10.3390/bios13060584
H. Zhang, L. Zhao, J. Brodský, L. Migliaccio, I. Gablech et al., Proteomics-on-a-chip—microfluidics meets proteomics. Biosens. Bioelectron. 273, 117122 (2025). https://doi.org/10.1016/j.bios.2024.117122
S.-J. Lo, D.-J. Yao, Get to understand more from single-cells: current studies of microfluidic-based techniques for single-cell analysis. Int. J. Mol. Sci. 16(8), 16763–16777 (2015). https://doi.org/10.3390/ijms160816763
Y. Huang, T. Liu, Q. Huang, Y. Wang, From organ-on-a-chip to human-on-a-chip: a review of research progress and latest applications. ACS Sens. 9(7), 3466–3488 (2024). https://doi.org/10.1021/acssensors.4c00004
Y.I. Wang, C. Carmona, J.J. Hickman, M.L. Shuler, Multiorgan microphysiological systems for drug development: strategies, advances, and challenges. Adv. Healthc. Mater. 7(2), 1701000 (2018). https://doi.org/10.1002/adhm.201701000
N.A. Segal, J.M. Nilges, W.M. Oo, Sex differences in osteoarthritis prevalence, pain perception, physical function and therapeutics. Osteoarthr. Cartil. 32(9), 1045–1053 (2024). https://doi.org/10.1016/j.joca.2024.04.002
S.-K. Kim, S.G. Kwak, J.-Y. Choe, Decline of lung function in knee and spine osteoarthritis in the Korean population: cross-sectional analysis of data from the Korea national health and nutrition examination survey. Healthcare 10(4), 736 (2022). https://doi.org/10.3390/healthcare10040736
R.C. Hubrecht, E. Carter, The 3Rs and humane experimental technique: implementing change. Animals 9(10), 754 (2019). https://doi.org/10.3390/ani9100754
J. Weidema, M. de Vries, C. Mummery, N. de Graeff, The ethical aspects of human organ-on-chip models: a mapping review. Stem Cell Reports 20(11), 102686 (2025). https://doi.org/10.1016/j.stemcr.2025.102686