High-Entropy Layered Hydroxides: Pioneering Synthesis, Mechanistic Insights, and Multifunctional Applications in Sustainable Energy and Biomedicine
Corresponding Author: Kai Xi
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 200
Abstract
High-entropy layered hydroxides (HELHs), an emerging frontier in entropy-stabilized materials derived from layered double hydroxides (LDHs), have captivated attention with their unparalleled tunability, thermodynamic stability, and electrochemical performance. The integration of the high-entropy concept into LDHs empowers HELHs to surmount the constraints of conventional materials through compositional diversity, structurally disordered configurations, and synergistic multi-element interactions. This review systematically embarks on their synthesis methodologies, functional mechanisms, and applications in energy conversion/storage and biomedicine. Advanced synthesis strategies, such as plasma-assisted hydrothermal methods, facilitate precise control over HELH architectures while supporting scalable production. HELHs demonstrate superior electrochemical performance in critical reactions, including oxygen evolution reaction, water oxidation, hydrogen evolution, and glucose electrooxidation. Future directions encompass integrating in situ characterization with simulations, leveraging machine learning for composition screening, and expanding HELHs application through interdisciplinary collaborations. This work establishes a comprehensive roadmap for advancing HELHs as next-generation multifunctional platforms for sustainable energy and biomedical technologies.
Highlights:
1 Synthesis Methodologies: We systematically investigate co-precipitation, framework-guided, and plasma-assisted hydrothermal methods for the synthesis of high-entropy layered hydroxides (HELHs), achieving precise control over the porosity, surface chemistry, and interfacial properties of ultrathin nanosheets through atomic-level mixing and defect engineering.
2 Functional Mechanisms: HELHs possess compositional disorder, synergistic interactions among multiple components, lattice distortion-induced active sites, and inherent structural stability, collectively contributing to their superior electrochemical performance.
3 Multifunctional Applications: HELHs excel as oxygen/hydrogen evolution reactions electrocatalysts for energy devices and enable photocatalytic reactive oxygen species generation for cancer treatment, underscoring their dual potential in sustainable energy conversion and biomedical therapeutics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Viswanathan, A.H. Epstein, Y.-M. Chiang, E. Takeuchi, M. Bradley et al., The challenges and opportunities of battery-powered flight. Nature 601(7894), 519–525 (2022). https://doi.org/10.1038/s41586-021-04139-1
- X. Wang, M. Salari, D.-E. Jiang, J. Chapman Varela, B. Anasori et al., Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5(11), 787–808 (2020). https://doi.org/10.1038/s41578-020-0218-9
- Y. Liu, Y. An, J. Zhu, L. Zhu, X. Li et al., Integrated energy storage and CO2 conversion using an aqueous battery with tamed asymmetric reactions. Nat. Commun. 15, 977 (2024). https://doi.org/10.1038/s41467-023-44283-y
- L. Kong, C. Tang, H.-J. Peng, J.-Q. Huang, Q. Zhang, Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1(1), 1007 (2020). https://doi.org/10.1002/smm2.1007
- Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
- Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9(3), 729–762 (2016). https://doi.org/10.1039/C5EE03109E
- L. Wang, H. Wang, C. Wu, J. Bai, T. He et al., Moisture-enabled self-charging and voltage stabilizing supercapacitor. Nat. Commun. 15(1), 4929 (2024). https://doi.org/10.1038/s41467-024-49393-9
- X. Liu, D. Lyu, C. Merlet, M.J.A. Leesmith, X. Hua et al., Structural disorder determines capacitance in nanoporous carbons. Science 384(6693), 321–325 (2024). https://doi.org/10.1126/science.adn6242
- F. Hassan, F. Jamil, A. Hussain, H.M. Ali, M.M. Janjua et al., Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review. Sustain. Energy Technol. Assess. 49, 101646 (2022). https://doi.org/10.1016/j.seta.2021.101646
- X. Chen, P. Cheng, Z. Tang, X. Xu, H. Gao et al., Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. 8(9), 2001274 (2021). https://doi.org/10.1002/advs.202001274
- X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
- Y. Zhang, Z. Peng, Y. Guan, L. Wu, Prognostics of battery cycle life in the early-cycle stage based on hybrid model. Energy 221, 119901 (2021). https://doi.org/10.1016/j.energy.2021.119901
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
- W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8(6), 471–485 (2024). https://doi.org/10.1038/s41570-024-00602-5
- B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
- J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
- B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang et al., High-entropy enhanced capacitive energy storage. Nat. Mater. 21(9), 1074–1080 (2022). https://doi.org/10.1038/s41563-022-01274-6
- P. Shi, R. Li, Y. Li, Y. Wen, Y. Zhong et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 373(6557), 912–918 (2021). https://doi.org/10.1126/science.abf6986
- Y. Wang, J. Mi, Z.-S. Wu, Recent status and challenging perspective of high entropy oxides for chemical catalysis. Chem. Catalysis 2(7), 1624–1656 (2022). https://doi.org/10.1016/j.checat.2022.05.003
- C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5(4), 295–309 (2020). https://doi.org/10.1038/s41578-019-0170-8
- W. Xu, H. Chen, K. Jie, Z. Yang, T. Li et al., Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 58(15), 5018–5022 (2019). https://doi.org/10.1002/anie.201900787
- M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(41), e202209350 (2022). https://doi.org/10.1002/anie.202209350
- Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi et al., Multi-anionic and-cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12(8), 2433–2442 (2019). https://doi.org/10.1039/c9ee00368a
- Z. Jiang, Y. Yuan, L. Tan, M. Li, K. Peng, Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction. Appl. Surf. Sci. 627, 157282 (2023). https://doi.org/10.1016/j.apsusc.2023.157282
- M. Cui, C. Yang, B. Li, Q. Dong, M. Wu et al., High-entropy metal sulfide nanops promise high-performance oxygen evolution reaction. Adv. Energy Mater. 11(3), 2002887 (2021). https://doi.org/10.1002/aenm.202002887
- L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera et al., High-entropy sulfides as electrode materials for Li-ion batteries. Adv. Energy Mater. 12(8), 2103090 (2022). https://doi.org/10.1002/aenm.202103090
- S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15(8), 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
- Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
- T. Ying, T. Yu, Y. Qi, X. Chen, H. Hosono, High entropy van der Waals materials. Adv. Sci. 9(30), 2203219 (2022). https://doi.org/10.1002/advs.202203219
- D. He, L. Cao, J. Huang, K. Kajiyoshi, J. Wu et al., In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction. J. Energy Chem. 47, 263–271 (2020). https://doi.org/10.1016/j.jechem.2020.02.010
- X. Xiong, Y. Zhao, R. Shi, W. Yin, Y. Zhao et al., Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 65(12), 987–994 (2020). https://doi.org/10.1016/j.scib.2020.03.032
- L. Zhong, S. Hu, X. Yang, M. Yang, T. Zhang et al., Difference in the preparation of two-dimensional nanosheets of montmorillonite from different regions: role of the layer charge density. Colloids Surf. A Physicochem. Eng. Aspects 617, 126364 (2021). https://doi.org/10.1016/j.colsurfa.2021.126364
- I. Amadou, M.-P. Faucon, D. Houben, New insights into sorption and desorption of organic phosphorus on goethite, gibbsite, kaolinite and montmorillonite. Appl. Geochem. 143, 105378 (2022). https://doi.org/10.1016/j.apgeochem.2022.105378
- G.M. Tomboc, J. Kim, Y. Wang, Y. Son, J. Li et al., Hybrid layered double hydroxides as multifunctional nanomaterials for overall water splitting and supercapacitor applications. J. Mater. Chem. A 9(8), 4528–4557 (2021). https://doi.org/10.1039/D0TA11606H
- K.T. Bünning, T.-H. Kim, V. Prevot, C. Forano, U.G. Nielsen, The effect of Zr(IV) addition on the phosphate removal properties of MgAl-LDH. Appl. Clay Sci. 245, 107125 (2023). https://doi.org/10.1016/j.clay.2023.107125
- S. Li, H. Xu, L. Wang, L. Ji, X. Li et al., Dual-functional sites for selective adsorption of mercury and arsenic ions in [SnS4]4-/MgFe-LDH from wastewater. J. Hazard. Mater. 403, 123940 (2021). https://doi.org/10.1016/j.jhazmat.2020.123940
- H. Bessaies, S. Iftekhar, B. Doshi, J. Kheriji, M.C. Ncibi et al., Synthesis of novel adsorbent by intercalation of biopolymer in LDH for the removal of arsenic from synthetic and natural water. J. Environ. Sci. 91, 246–261 (2020). https://doi.org/10.1016/j.jes.2020.01.028
- S. Venkateshalu, G.M. Tomboc, S.P. Nagalingam, J. Kim, T. Sawaira et al., Synergistic MXene/LDH heterostructures with extensive interfacing as emerging energy conversion and storage materials. J. Mater. Chem. A 11(27), 14469–14488 (2023). https://doi.org/10.1039/D3TA01992F
- Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
- Q. Zhao, B. Zhao, X. Long, R. Feng, M. Shakouri et al., Interfacial electronic modulation of dual-monodispersed Pt-Ni3S2 as efficacious bi-functional electrocatalysts for concurrent H2 evolution and methanol selective oxidation. Nano-Micro Lett. 16(1), 80 (2024). https://doi.org/10.1007/s40820-023-01282-4
- X. Li, Z. Qiang, G. Han, S. Guan, Y. Zhao et al., Enhanced redox electrocatalysis in high-entropy perovskite fluorides by tailoring d-p hybridization. Nano-Micro Lett. 16(1), 55 (2023). https://doi.org/10.1007/s40820-023-01275-3
- J.N. Tiwari, M. Umer, G. Bhaskaran, S. Umer, G. Lee et al., Atomic layers of ruthenium oxide coupled with Mo2TiC2Tx MXene for exceptionally high catalytic activity toward water oxidation. Appl. Catal. B Environ. 339, 123139 (2023). https://doi.org/10.1016/j.apcatb.2023.123139
- J.N. Tiwari, K. Kumar, M. Safarkhani, M. Umer, A.T. Ezhil Vilian et al., Materials containing single-, di-, tri-, and multi-metal atoms bonded to C, N, S, P, B, and O species as advanced catalysts for energy, sensor, and biomedical applications. Adv. Sci. 11(33), 2403197 (2024). https://doi.org/10.1002/advs.202403197
- A. Miura, S. Ishiyama, D. Kubo, N.C. Rosero-Navarro, K. Tadanaga, Synthesis and ionic conductivity of a high-entropy layered hydroxide. J. Ceram. Soc. Japan 128(7), 336–339 (2020). https://doi.org/10.2109/jcersj2.20001
- H. Wu, J. Zhang, Q. Lu, Y. Li, R. Jiang et al., High-entropy layered double hydroxides with highly adjustable components for enhancing electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 15(32), 38423–38432 (2023). https://doi.org/10.1021/acsami.3c05781
- E. Seliverstov, M. Yapryntsev, E. Tarasenko, O. Lebedeva, Increasing the number of cations in layered double hydroxides via mechanochemically complemented synthesis: the more the merrier, or not? RSC Mechanochem. 2(2), 307–316 (2025). https://doi.org/10.1039/D4MR00102H
- C. Deng, R. Liu, P. Wu, T. Wang, S. Xi et al., Thermally stable high-entropy layered double hydroxides for advanced catalysis. Small 20(51), e2406685 (2024). https://doi.org/10.1002/smll.202406685
- H. Tian, J. Cui, B. Cui, C. Liu, J. Fang et al., Synthesis and enhanced adsorption for F− by three novel high entropy LDHs using TEA-assisted hydrothermal technology. J. Water Process. Eng. 67, 106252 (2024). https://doi.org/10.1016/j.jwpe.2024.106252
- K. Gu, X. Zhu, D. Wang, N. Zhang, G. Huang et al., Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation. J. Energy Chem. 60, 121–126 (2021). https://doi.org/10.1016/j.jechem.2020.12.029
- H. Wu, Q. Lu, Y. Li, M. Zhao, J. Wang et al., Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 145(3), 1924–1935 (2023). https://doi.org/10.1021/jacs.2c12295
- Y. Ding, Z. Wang, Z. Liang, X. Sun, Z. Sun et al., A monolayer high-entropy layered hydroxide frame for efficient oxygen evolution reaction. Adv. Mater. 37(31), 2302860 (2025). https://doi.org/10.1002/adma.202302860
- Y. Xin, H. Fu, L. Chen, Y. Ji, Y. Li et al., High-entropy engineering in hollow layered hydroxide arrays to boost 5-hydroxymethylfurfural electrooxidation by suppressing oxygen evolution. ACS Cent. Sci. 10(10), 1920–1932 (2024). https://doi.org/10.1021/acscentsci.4c01085
- X. Wu, Z.-J. Zhao, X. Shi, L. Kang, P. Das et al., Multi-site catalysis of high-entropy hydroxides for sustainable electrooxidation of glucose to glucaric acid. Energy Environ. Sci. 17(9), 3042–3051 (2024). https://doi.org/10.1039/D4EE00221K
- C. Pitchai, C.-M. Chen, Electrochemically enhanced oxygen evolution and urea oxidation reactions with advanced high-entropy LDH nanoneedles. Sustain. Energy Fuels 9(7), 1829–1838 (2025). https://doi.org/10.1039/D5SE00054H
- X. Chu, T. Wang, H. Wang, B. Du, G. Guo et al., Ultrathin high-entropy layered double hydroxide electrocatalysts for enhancing oxygen evolution reaction. J. Alloys Compd. 1003, 175584 (2024). https://doi.org/10.1016/j.jallcom.2024.175584
- Z. Cheng, X. Han, L. Han, J. Zhang, J. Liu et al., Novel high-entropy FeCoNiMoZn-layered hydroxide as an efficient electrocatalyst for the oxygen evolution reaction. Nanomaterials 14(10), 889 (2024). https://doi.org/10.3390/nano14100889
- W. Li, G. Zhao, J. Zhong, J. Xie, Upgrading renewable biogas into syngas via bi-reforming over high-entropy spinel-type catalysts derived from layered double hydroxides. Fuel 358, 130155 (2024). https://doi.org/10.1016/j.fuel.2023.130155
- F.A. Bushira, P. Wang, Y. Jin, High-entropy oxide for highly efficient luminol–dissolved oxygen electrochemiluminescence and biosensing applications. Anal. Chem. 94(6), 2958–2965 (2022). https://doi.org/10.1021/acs.analchem.1c05005
- T. Xue, Y. Wang, L. Yang, Z. Li, Y. Gao et al., Development of quinary layered double hydroxide-derived high-entropy oxides for toluene catalytic removal. Catalysts 13(1), 119 (2023). https://doi.org/10.3390/catal13010119
- M. Kim, I. Oh, H. Choi, W. Jang, J. Song et al., A solution-based route to compositionally complex metal oxide structures using high-entropy layered double hydroxides. Cell Rep. Phys. Sci. 3(1), 100702 (2022). https://doi.org/10.1016/j.xcrp.2021.100702
- L. Wang, T. Zhong, F. Wu, D. Chen, Z. Yao et al., Anions intercalated two-dimension high entropy layered metal oxides for enhanced hydrogen storage in magnesium hydride. Chem. Eng. J. 505, 159591 (2025). https://doi.org/10.1016/j.cej.2025.159591
- K. Gu, D. Wang, C. Xie, T. Wang, G. Huang et al., Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. Int. Ed. 60(37), 20253–20258 (2021). https://doi.org/10.1002/anie.202107390
- N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15(1), 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- X. Wang, H. Zhong, S. Xi, W.S.V. Lee, J. Xue, Understanding of oxygen redox in the oxygen evolution reaction. Adv. Mater. 34(50), 2107956 (2022). https://doi.org/10.1002/adma.202107956
- M. Li, M. Song, W. Ni, Z. Xiao, Y. Li et al., Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction. Chin. Chem. Lett. 34(3), 107571 (2023). https://doi.org/10.1016/j.cclet.2022.05.085
- Y. Lao, X. Huang, L. Liu, X. Mo, J. Huang et al., Structure-activity relationship study of high entropy oxides catalysts for oxygen evolution reaction. Chem. Eng. J. 481, 148428 (2024). https://doi.org/10.1016/j.cej.2023.148428
- K. Miao, W. Jiang, Z. Chen, Y. Luo, D. Xiang et al., Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range. Adv. Mater. 36(8), 2308490 (2024). https://doi.org/10.1002/adma.202308490
- S. Qi, K. Zhu, T. Xu, H. Zhang, X. Guo et al., Water-stable high-entropy metal-organic framework nanosheets for photocatalytic hydrogen production. Adv. Mater. 36(26), e2403328 (2024). https://doi.org/10.1002/adma.202403328
- J. Xing, Y. Liu, G. Mathew, Q. He, J. Aghassi-Hagmann et al., High-entropy metal–organic frameworks and their derivatives: advances in design, synthesis, and applications for catalysis and energy storage. Adv. Sci. 12(5), 2411175 (2025). https://doi.org/10.1002/advs.202411175
- M. Yue, Y.-R. Wang, J.-Y. Weng, J.-L. Zhang, D.-Y. Chi et al., Multi-metal porous crystalline materials for electrocatalysis applications. Chin. Chem. Lett. 36(6), 110049 (2025). https://doi.org/10.1016/j.cclet.2024.110049
- X. Xi, X. Li, Y. Liu, Y. Zhang, L. Li et al., Monolithic medium-entropy alloy electrode enables efficient and stable oxygen evolution reaction. Chin. Chem. Lett. 36(12), 110535 (2025). https://doi.org/10.1016/j.cclet.2024.110535
- K. Wang, R. Chen, H. Yang, Y. Chen, H. Jia et al., The elements selection of high entropy alloy guided by thermodynamics and the enhanced electrocatalytic mechanism for oxygen reduction reaction. Adv. Funct. Mater. 34(7), 2310683 (2024). https://doi.org/10.1002/adfm.202310683
- W. Dai, T. Lu, Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power. Sources 430, 104–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.030
- P.M. Bodhankar, P.B. Sarawade, G. Singh, A. Vinu, D.S. Dhawale, Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 9(6), 3180–3208 (2021). https://doi.org/10.1039/D0TA10712C
- S. Jiang, M. Zhang, C. Xu, G. Liu, K. Zhang et al., Recent developments in nickel-based layered double hydroxides for photo (-/)electrocatalytic water oxidation. ACS Nano 18(26), 16413–16449 (2024). https://doi.org/10.1021/acsnano.4c03153
- D. Liu, P. Guo, X. Yan, Y. He, R. Wu, Manipulating the configuration entropy of layered hydroxides toward efficient oxygen evolution reaction for anion exchange membrane electrolyzer. Mater. Today 80, 101–112 (2024). https://doi.org/10.1016/j.mattod.2024.08.008
- T. Zhang, Y.-L. Meng, Y.-H. Zhao, J.-C. Ni, Y. Pan et al., Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chem. Commun. 58(55), 7682–7685 (2022). https://doi.org/10.1039/D2CC02367A
- D. Liu, X. Yan, P. Guo, Y. Yang, Y. He et al., Inert Mg incorporation to break the activity/stability relationship in high-entropy layered hydroxides for the electrocatalytic oxygen evolution reaction. ACS Catal. 13(11), 7698–7706 (2023). https://doi.org/10.1021/acscatal.3c00786
- Q. Li, Y. Hu, G. Liu, Z. Wu, X. Chen et al., Upcycling of multi-metal contaminated wastewater into high-entropy layered double hydroxide for oxygen evolution reaction. Small 21(12), 2411043 (2025). https://doi.org/10.1002/smll.202411043
- S. Li, L. Tong, Z. Peng, B. Zhang, X. Fu, Novel high-entropy layered double hydroxide microspheres as an effective and durable electrocatalyst for oxygen evolution. J. Mater. Chem. A 11(25), 13697–13707 (2023). https://doi.org/10.1039/D3TA01454A
- T.X. Nguyen, C.-C. Tsai, V.T. Nguyen, Y.-J. Huang, Y.-H. Su et al., High entropy promoted active site in layered double hydroxide for ultra-stable oxygen evolution reaction electrocatalyst. Chem. Eng. J. 466, 143352 (2023). https://doi.org/10.1016/j.cej.2023.143352
- W. Sun, S. Liu, H. Mao, Y. Xu, L. Xiao, Metal organic framework derived high entropy layered hydroxides for efficient oxygen evolution reaction. Discov. Electrochem. 2(1), 7 (2025). https://doi.org/10.1007/s44373-025-00019-9
- F. Wang, P. Zou, Y. Zhang, W. Pan, Y. Li et al., Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nat. Commun. 14(1), 6019 (2023). https://doi.org/10.1038/s41467-023-41706-8
- J. Yao, F. Wang, W. He, Y. Li, L. Liang et al., Engineering cation vacancies in high-entropy layered double hydroxides for boosting the oxygen evolution reaction. Chem. Commun. 59(25), 3719–3722 (2023). https://doi.org/10.1039/D2CC06966K
- X. Sun, X. Zhang, L. Gao, B. Jia, H. Liu et al., High-entropy layered double hydroxide catalyst decorated with Ag nanops for highly efficient water oxidation. Int. J. Hydrogen Energy 67, 111–118 (2024). https://doi.org/10.1016/j.ijhydene.2024.04.179
- J. Gao, H. Yuan, X. Du, F. Dong, Y. Zhou et al., Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chin. Chem. Lett. 36(1), 110232 (2025). https://doi.org/10.1016/j.cclet.2024.110232
- M. Li, H. Wang, Z. Yang, Z. Yin, Y. Liu et al., Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chin. Chemical Lett. 36(3), 110199 (2025). https://doi.org/10.1016/j.cclet.2024.110199
- J. Jing, W. Liu, T. Li, X. Ding, W. Xu et al., One-step synthesis of ultrathin high-entropy layered double hydroxides for ampere-level water oxidation. Catalysts 14(3), 171 (2024). https://doi.org/10.3390/catal14030171
- S. Pal, S. Khatun, P. Roy, High-entropy layered hydroxide for efficient and sustainable seawater oxidation. Mater. Adv. 5(12), 5156–5166 (2024). https://doi.org/10.1039/d3ma00941f
- M. Hao, J. Chen, J. Chen, K. Wang, J. Wang et al., Lattice-disordered high-entropy metal hydroxide nanosheets as efficient precatalysts for bifunctional electro-oxidation. J. Colloid Interface Sci. 642, 41–52 (2023). https://doi.org/10.1016/j.jcis.2023.03.152
- T.H. Wondimu, P. Leung, Y. Zuo, A. Shah, Q. Liao, High entropy layered double hydroxide supported by multiwall carbon nanotube for oxygen evolution reactions (OER). J. Power. Sources 640, 236665 (2025). https://doi.org/10.1016/j.jpowsour.2025.236665
- L. Wang, Z. Gao, K. Su, N.T. Nguyen, R.-T. Gao et al., Stacked high-entropy hydroxides promote charge transfer kinetics for photoelectrochemical water splitting. Adv. Funct. Mater. 34(40), 2403948 (2024). https://doi.org/10.1002/adfm.202403948
- S. Kuang, Z. Pi, X. Li, J. Wang, H. Lin et al., Defects trigger redox reactivities between metal and lattice oxygen in high-entropy layered double hydroxide for boosting oxygen evolution in alkaline. J. Colloid Interface Sci. 679, 296–306 (2025). https://doi.org/10.1016/j.jcis.2024.09.231
- L. Li, E. Warszawik, P. van Rijn, pH-triggered release and degradation mechanism of layered double hydroxides with high loading capacity. Adv. Mater. Interfaces 10(8), 2202396 (2023). https://doi.org/10.1002/admi.202202396
- J. Ni, Z. Shi, Y. Wang, J. Yang, H. Wu et al., Suppressing the lattice oxygen diffusion via high-entropy oxide construction towards stabilized acidic water oxidation. Nano Res. 17(3), 1107–1113 (2024). https://doi.org/10.1007/s12274-023-5913-6
- G.M. Tomboc, X. Zhang, S. Choi, D. Kim, L.Y.S. Lee et al., Stabilization, characterization, and electrochemical applications of high-entropy oxides: critical assessment of crystal phase–properties relationship. Adv. Funct. Mater. 32(43), 2205142 (2022). https://doi.org/10.1002/adfm.202205142
- A. Razazzadeh, H. Khan, A. Farithkhan, S.-H. Kwon, Acid-stable high-entropy oxide nanops for electrochemical water oxidation. ACS Appl. Nano Mater. 8(32), 16206–16218 (2025). https://doi.org/10.1021/acsanm.5c03325
- Q. Li, F. Wang, X. Liu, W. Xu, K. Zhang et al., An infrared radiation-responsive high-entropy CoCaMgMnAlFe-LDHs for controllable hydrogen generation via NaBH4 hydrolysis: utilization of steel slag and lithium-ion battery liquid waste. Chem. Eng. J. 500, 157380 (2024). https://doi.org/10.1016/j.cej.2024.157380
- Q. Li, X. Liu, W. Xu, K. Zhang, S. Zhang et al., Recycling spent LiNi1: Mn Co O2 cathodes to high-entropy NiCoMnAlFe-LDHs for controllable hydrogen generation via NaBH4 hydrolysis. Sep. Purif. Technol. 359, 130418 (2025). https://doi.org/10.1016/j.seppur.2024.130418
- H. Xu, Y. Liu, K. Wang, L. Jin, J. Chen et al., High-entropy layered double hydroxides tailor Pt electron state for promoting acidic hydrogen evolution reaction. J. Colloid Interface Sci. 684(Pt 1), 566–574 (2025). https://doi.org/10.1016/j.jcis.2025.01.077
- Y. Wang, Y. Hu, Z. Wu, Z. Song, X. Chen et al., High-entropy layered double hydroxides for efficient methanol electrooxidation. Small 21(11), e2411550 (2025). https://doi.org/10.1002/smll.202411550
- B. Li, J. Zhong, H. Wang, J. Gu, F. Lyu et al., Fluorine-lodged high-valent high-entropy layered double hydroxide for efficient, long-lasting zinc-air batteries. Angew. Chem. Int. Ed. 63(47), e202410978 (2024). https://doi.org/10.1002/anie.202410978
- X. Guan, X. Fan, E. Zhu, J. Zhang, L. Yang et al., Controlled establishment of advanced local high-entropy NiCoMnFe-based layered double hydroxide for zinc batteries and low-temperature supercapacitors. J. Colloid Interface Sci. 658, 952–965 (2024). https://doi.org/10.1016/j.jcis.2023.12.111
- X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue et al., Layered double hydroxides toward high-performance supercapacitors. J. Mater. Chem. A 5(30), 15460–15485 (2017). https://doi.org/10.1039/c7ta04001f
- Z. Zhu, Q. Chen, D. Kong, N. He, Y. Zhang, Hollow-structured and nano-flower shaped high entropy layer double hydroxide for superiority specific capacitance and rate capability of supercapacitor. J. Energy Storage 100, 113718 (2024). https://doi.org/10.1016/j.est.2024.113718
- A. Patra, J.R. Jose, S. Sahoo, B. Chakraborty et al., Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations. J. Mater. Chem. A 9(46), 25852–25891 (2021). https://doi.org/10.1039/D1TA07401F
- X. He, X. Zhang, A comprehensive review of supercapacitors: properties, electrodes, electrolytes and thermal management systems based on phase change materials. J. Energy Storage 56, 106023 (2022). https://doi.org/10.1016/j.est.2022.106023
- F.N.I. Sari, N.T.T. Tran, Y.-X. Lin, S.-Y. Li, Y.-H. Shen et al., Electronic structure modification induced electrochemical performance enhancement of bi-functional multi-metal hydroxide. Electrochim. Acta 439, 141616 (2023). https://doi.org/10.1016/j.electacta.2022.141616
- Z. Zhu, Y. Zhang, D. Kong, N. He, Q. Chen, A novel high entropy hydroxide electrode material for promoting energy density of supercapacitors and its efficient synthesis strategy. Small 20(20), 2307754 (2024). https://doi.org/10.1002/smll.202307754
- R. Ma, J. Song, H. Ding, Q. Han, X. Tang et al., Decoding the entropy-stabilized matrix of high-entropy layered double hydroxides: harnessing strain dynamics for peroxymonosulfate activation and tetracycline degradation. J. Colloid Interface Sci. 680(Pt B), 676–688 (2025). https://doi.org/10.1016/j.jcis.2024.11.123
- F. Wu, J. Qin, B. Yin, Y. Zhang, C. Li et al., In-and-out of inert sites on high-entropy layered double hydroxide to facilitate peroxymonosulfate-assisted photocatalytic removal of microplastics. Appl. Catal. B Environ. Energy 365, 124853 (2025). https://doi.org/10.1016/j.apcatb.2024.124853
- C. Wang, F. Yuan, Z. Yan, T. Zhang, C. Fu et al., High entropy 2D layered double hydroxide nanosheet toward cascaded nanozyme-initiated chemodynamic and immune synergistic therapy. J. Am. Chem. Soc. 147(1), 136–148 (2025). https://doi.org/10.1021/jacs.4c04523
- L. Dou, K. Xiao, High entropy layered double hydroxide nanozyme for sensitive detection of tetracycline. ACS Appl. Nano Mater. 8(5), 2456–2465 (2025). https://doi.org/10.1021/acsanm.4c06683
- J.N. Tiwari, M. Umer, G. Bhaskaran, M. Vandichel, M.G. Kim et al., β–phase hydroxide-steered inner-hosted metal sites for exceptional hydrogen production. Mater. Sci. Eng. R. Rep. 168, 101130 (2026). https://doi.org/10.1016/j.mser.2025.101130
- M.A. Deshmukh, A. Bakandritsos, R. Zbořil, Bimetallic single-atom catalysts for water splitting. Nano-Micro Lett. 17(1), 1 (2024). https://doi.org/10.1007/s40820-024-01505-2
- G. Wang, Z. Chen, J. Zhu, J. Xie, W. Wei et al., High-entropy amorphous catalysts for water electrolysis: a new frontier. Nano-Micro Lett. 18(1), 77 (2025). https://doi.org/10.1007/s40820-025-01936-5
References
V. Viswanathan, A.H. Epstein, Y.-M. Chiang, E. Takeuchi, M. Bradley et al., The challenges and opportunities of battery-powered flight. Nature 601(7894), 519–525 (2022). https://doi.org/10.1038/s41586-021-04139-1
X. Wang, M. Salari, D.-E. Jiang, J. Chapman Varela, B. Anasori et al., Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5(11), 787–808 (2020). https://doi.org/10.1038/s41578-020-0218-9
Y. Liu, Y. An, J. Zhu, L. Zhu, X. Li et al., Integrated energy storage and CO2 conversion using an aqueous battery with tamed asymmetric reactions. Nat. Commun. 15, 977 (2024). https://doi.org/10.1038/s41467-023-44283-y
L. Kong, C. Tang, H.-J. Peng, J.-Q. Huang, Q. Zhang, Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1(1), 1007 (2020). https://doi.org/10.1002/smm2.1007
Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9(3), 729–762 (2016). https://doi.org/10.1039/C5EE03109E
L. Wang, H. Wang, C. Wu, J. Bai, T. He et al., Moisture-enabled self-charging and voltage stabilizing supercapacitor. Nat. Commun. 15(1), 4929 (2024). https://doi.org/10.1038/s41467-024-49393-9
X. Liu, D. Lyu, C. Merlet, M.J.A. Leesmith, X. Hua et al., Structural disorder determines capacitance in nanoporous carbons. Science 384(6693), 321–325 (2024). https://doi.org/10.1126/science.adn6242
F. Hassan, F. Jamil, A. Hussain, H.M. Ali, M.M. Janjua et al., Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review. Sustain. Energy Technol. Assess. 49, 101646 (2022). https://doi.org/10.1016/j.seta.2021.101646
X. Chen, P. Cheng, Z. Tang, X. Xu, H. Gao et al., Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. 8(9), 2001274 (2021). https://doi.org/10.1002/advs.202001274
X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
Y. Zhang, Z. Peng, Y. Guan, L. Wu, Prognostics of battery cycle life in the early-cycle stage based on hybrid model. Energy 221, 119901 (2021). https://doi.org/10.1016/j.energy.2021.119901
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8(6), 471–485 (2024). https://doi.org/10.1038/s41570-024-00602-5
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang et al., High-entropy enhanced capacitive energy storage. Nat. Mater. 21(9), 1074–1080 (2022). https://doi.org/10.1038/s41563-022-01274-6
P. Shi, R. Li, Y. Li, Y. Wen, Y. Zhong et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 373(6557), 912–918 (2021). https://doi.org/10.1126/science.abf6986
Y. Wang, J. Mi, Z.-S. Wu, Recent status and challenging perspective of high entropy oxides for chemical catalysis. Chem. Catalysis 2(7), 1624–1656 (2022). https://doi.org/10.1016/j.checat.2022.05.003
C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5(4), 295–309 (2020). https://doi.org/10.1038/s41578-019-0170-8
W. Xu, H. Chen, K. Jie, Z. Yang, T. Li et al., Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 58(15), 5018–5022 (2019). https://doi.org/10.1002/anie.201900787
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(41), e202209350 (2022). https://doi.org/10.1002/anie.202209350
Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi et al., Multi-anionic and-cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12(8), 2433–2442 (2019). https://doi.org/10.1039/c9ee00368a
Z. Jiang, Y. Yuan, L. Tan, M. Li, K. Peng, Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction. Appl. Surf. Sci. 627, 157282 (2023). https://doi.org/10.1016/j.apsusc.2023.157282
M. Cui, C. Yang, B. Li, Q. Dong, M. Wu et al., High-entropy metal sulfide nanops promise high-performance oxygen evolution reaction. Adv. Energy Mater. 11(3), 2002887 (2021). https://doi.org/10.1002/aenm.202002887
L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera et al., High-entropy sulfides as electrode materials for Li-ion batteries. Adv. Energy Mater. 12(8), 2103090 (2022). https://doi.org/10.1002/aenm.202103090
S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15(8), 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
T. Ying, T. Yu, Y. Qi, X. Chen, H. Hosono, High entropy van der Waals materials. Adv. Sci. 9(30), 2203219 (2022). https://doi.org/10.1002/advs.202203219
D. He, L. Cao, J. Huang, K. Kajiyoshi, J. Wu et al., In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction. J. Energy Chem. 47, 263–271 (2020). https://doi.org/10.1016/j.jechem.2020.02.010
X. Xiong, Y. Zhao, R. Shi, W. Yin, Y. Zhao et al., Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 65(12), 987–994 (2020). https://doi.org/10.1016/j.scib.2020.03.032
L. Zhong, S. Hu, X. Yang, M. Yang, T. Zhang et al., Difference in the preparation of two-dimensional nanosheets of montmorillonite from different regions: role of the layer charge density. Colloids Surf. A Physicochem. Eng. Aspects 617, 126364 (2021). https://doi.org/10.1016/j.colsurfa.2021.126364
I. Amadou, M.-P. Faucon, D. Houben, New insights into sorption and desorption of organic phosphorus on goethite, gibbsite, kaolinite and montmorillonite. Appl. Geochem. 143, 105378 (2022). https://doi.org/10.1016/j.apgeochem.2022.105378
G.M. Tomboc, J. Kim, Y. Wang, Y. Son, J. Li et al., Hybrid layered double hydroxides as multifunctional nanomaterials for overall water splitting and supercapacitor applications. J. Mater. Chem. A 9(8), 4528–4557 (2021). https://doi.org/10.1039/D0TA11606H
K.T. Bünning, T.-H. Kim, V. Prevot, C. Forano, U.G. Nielsen, The effect of Zr(IV) addition on the phosphate removal properties of MgAl-LDH. Appl. Clay Sci. 245, 107125 (2023). https://doi.org/10.1016/j.clay.2023.107125
S. Li, H. Xu, L. Wang, L. Ji, X. Li et al., Dual-functional sites for selective adsorption of mercury and arsenic ions in [SnS4]4-/MgFe-LDH from wastewater. J. Hazard. Mater. 403, 123940 (2021). https://doi.org/10.1016/j.jhazmat.2020.123940
H. Bessaies, S. Iftekhar, B. Doshi, J. Kheriji, M.C. Ncibi et al., Synthesis of novel adsorbent by intercalation of biopolymer in LDH for the removal of arsenic from synthetic and natural water. J. Environ. Sci. 91, 246–261 (2020). https://doi.org/10.1016/j.jes.2020.01.028
S. Venkateshalu, G.M. Tomboc, S.P. Nagalingam, J. Kim, T. Sawaira et al., Synergistic MXene/LDH heterostructures with extensive interfacing as emerging energy conversion and storage materials. J. Mater. Chem. A 11(27), 14469–14488 (2023). https://doi.org/10.1039/D3TA01992F
Y. Lu, R. Zhou, N. Wang, Y. Yang, Z. Zheng et al., Engineer nanoscale defects into selective channels: MOF-enhanced Li+ separation by porous layered double hydroxide membrane. Nano-Micro Lett. 15(1), 147 (2023). https://doi.org/10.1007/s40820-023-01101-w
Q. Zhao, B. Zhao, X. Long, R. Feng, M. Shakouri et al., Interfacial electronic modulation of dual-monodispersed Pt-Ni3S2 as efficacious bi-functional electrocatalysts for concurrent H2 evolution and methanol selective oxidation. Nano-Micro Lett. 16(1), 80 (2024). https://doi.org/10.1007/s40820-023-01282-4
X. Li, Z. Qiang, G. Han, S. Guan, Y. Zhao et al., Enhanced redox electrocatalysis in high-entropy perovskite fluorides by tailoring d-p hybridization. Nano-Micro Lett. 16(1), 55 (2023). https://doi.org/10.1007/s40820-023-01275-3
J.N. Tiwari, M. Umer, G. Bhaskaran, S. Umer, G. Lee et al., Atomic layers of ruthenium oxide coupled with Mo2TiC2Tx MXene for exceptionally high catalytic activity toward water oxidation. Appl. Catal. B Environ. 339, 123139 (2023). https://doi.org/10.1016/j.apcatb.2023.123139
J.N. Tiwari, K. Kumar, M. Safarkhani, M. Umer, A.T. Ezhil Vilian et al., Materials containing single-, di-, tri-, and multi-metal atoms bonded to C, N, S, P, B, and O species as advanced catalysts for energy, sensor, and biomedical applications. Adv. Sci. 11(33), 2403197 (2024). https://doi.org/10.1002/advs.202403197
A. Miura, S. Ishiyama, D. Kubo, N.C. Rosero-Navarro, K. Tadanaga, Synthesis and ionic conductivity of a high-entropy layered hydroxide. J. Ceram. Soc. Japan 128(7), 336–339 (2020). https://doi.org/10.2109/jcersj2.20001
H. Wu, J. Zhang, Q. Lu, Y. Li, R. Jiang et al., High-entropy layered double hydroxides with highly adjustable components for enhancing electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 15(32), 38423–38432 (2023). https://doi.org/10.1021/acsami.3c05781
E. Seliverstov, M. Yapryntsev, E. Tarasenko, O. Lebedeva, Increasing the number of cations in layered double hydroxides via mechanochemically complemented synthesis: the more the merrier, or not? RSC Mechanochem. 2(2), 307–316 (2025). https://doi.org/10.1039/D4MR00102H
C. Deng, R. Liu, P. Wu, T. Wang, S. Xi et al., Thermally stable high-entropy layered double hydroxides for advanced catalysis. Small 20(51), e2406685 (2024). https://doi.org/10.1002/smll.202406685
H. Tian, J. Cui, B. Cui, C. Liu, J. Fang et al., Synthesis and enhanced adsorption for F− by three novel high entropy LDHs using TEA-assisted hydrothermal technology. J. Water Process. Eng. 67, 106252 (2024). https://doi.org/10.1016/j.jwpe.2024.106252
K. Gu, X. Zhu, D. Wang, N. Zhang, G. Huang et al., Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation. J. Energy Chem. 60, 121–126 (2021). https://doi.org/10.1016/j.jechem.2020.12.029
H. Wu, Q. Lu, Y. Li, M. Zhao, J. Wang et al., Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 145(3), 1924–1935 (2023). https://doi.org/10.1021/jacs.2c12295
Y. Ding, Z. Wang, Z. Liang, X. Sun, Z. Sun et al., A monolayer high-entropy layered hydroxide frame for efficient oxygen evolution reaction. Adv. Mater. 37(31), 2302860 (2025). https://doi.org/10.1002/adma.202302860
Y. Xin, H. Fu, L. Chen, Y. Ji, Y. Li et al., High-entropy engineering in hollow layered hydroxide arrays to boost 5-hydroxymethylfurfural electrooxidation by suppressing oxygen evolution. ACS Cent. Sci. 10(10), 1920–1932 (2024). https://doi.org/10.1021/acscentsci.4c01085
X. Wu, Z.-J. Zhao, X. Shi, L. Kang, P. Das et al., Multi-site catalysis of high-entropy hydroxides for sustainable electrooxidation of glucose to glucaric acid. Energy Environ. Sci. 17(9), 3042–3051 (2024). https://doi.org/10.1039/D4EE00221K
C. Pitchai, C.-M. Chen, Electrochemically enhanced oxygen evolution and urea oxidation reactions with advanced high-entropy LDH nanoneedles. Sustain. Energy Fuels 9(7), 1829–1838 (2025). https://doi.org/10.1039/D5SE00054H
X. Chu, T. Wang, H. Wang, B. Du, G. Guo et al., Ultrathin high-entropy layered double hydroxide electrocatalysts for enhancing oxygen evolution reaction. J. Alloys Compd. 1003, 175584 (2024). https://doi.org/10.1016/j.jallcom.2024.175584
Z. Cheng, X. Han, L. Han, J. Zhang, J. Liu et al., Novel high-entropy FeCoNiMoZn-layered hydroxide as an efficient electrocatalyst for the oxygen evolution reaction. Nanomaterials 14(10), 889 (2024). https://doi.org/10.3390/nano14100889
W. Li, G. Zhao, J. Zhong, J. Xie, Upgrading renewable biogas into syngas via bi-reforming over high-entropy spinel-type catalysts derived from layered double hydroxides. Fuel 358, 130155 (2024). https://doi.org/10.1016/j.fuel.2023.130155
F.A. Bushira, P. Wang, Y. Jin, High-entropy oxide for highly efficient luminol–dissolved oxygen electrochemiluminescence and biosensing applications. Anal. Chem. 94(6), 2958–2965 (2022). https://doi.org/10.1021/acs.analchem.1c05005
T. Xue, Y. Wang, L. Yang, Z. Li, Y. Gao et al., Development of quinary layered double hydroxide-derived high-entropy oxides for toluene catalytic removal. Catalysts 13(1), 119 (2023). https://doi.org/10.3390/catal13010119
M. Kim, I. Oh, H. Choi, W. Jang, J. Song et al., A solution-based route to compositionally complex metal oxide structures using high-entropy layered double hydroxides. Cell Rep. Phys. Sci. 3(1), 100702 (2022). https://doi.org/10.1016/j.xcrp.2021.100702
L. Wang, T. Zhong, F. Wu, D. Chen, Z. Yao et al., Anions intercalated two-dimension high entropy layered metal oxides for enhanced hydrogen storage in magnesium hydride. Chem. Eng. J. 505, 159591 (2025). https://doi.org/10.1016/j.cej.2025.159591
K. Gu, D. Wang, C. Xie, T. Wang, G. Huang et al., Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. Int. Ed. 60(37), 20253–20258 (2021). https://doi.org/10.1002/anie.202107390
N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15(1), 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
X. Wang, H. Zhong, S. Xi, W.S.V. Lee, J. Xue, Understanding of oxygen redox in the oxygen evolution reaction. Adv. Mater. 34(50), 2107956 (2022). https://doi.org/10.1002/adma.202107956
M. Li, M. Song, W. Ni, Z. Xiao, Y. Li et al., Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction. Chin. Chem. Lett. 34(3), 107571 (2023). https://doi.org/10.1016/j.cclet.2022.05.085
Y. Lao, X. Huang, L. Liu, X. Mo, J. Huang et al., Structure-activity relationship study of high entropy oxides catalysts for oxygen evolution reaction. Chem. Eng. J. 481, 148428 (2024). https://doi.org/10.1016/j.cej.2023.148428
K. Miao, W. Jiang, Z. Chen, Y. Luo, D. Xiang et al., Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range. Adv. Mater. 36(8), 2308490 (2024). https://doi.org/10.1002/adma.202308490
S. Qi, K. Zhu, T. Xu, H. Zhang, X. Guo et al., Water-stable high-entropy metal-organic framework nanosheets for photocatalytic hydrogen production. Adv. Mater. 36(26), e2403328 (2024). https://doi.org/10.1002/adma.202403328
J. Xing, Y. Liu, G. Mathew, Q. He, J. Aghassi-Hagmann et al., High-entropy metal–organic frameworks and their derivatives: advances in design, synthesis, and applications for catalysis and energy storage. Adv. Sci. 12(5), 2411175 (2025). https://doi.org/10.1002/advs.202411175
M. Yue, Y.-R. Wang, J.-Y. Weng, J.-L. Zhang, D.-Y. Chi et al., Multi-metal porous crystalline materials for electrocatalysis applications. Chin. Chem. Lett. 36(6), 110049 (2025). https://doi.org/10.1016/j.cclet.2024.110049
X. Xi, X. Li, Y. Liu, Y. Zhang, L. Li et al., Monolithic medium-entropy alloy electrode enables efficient and stable oxygen evolution reaction. Chin. Chem. Lett. 36(12), 110535 (2025). https://doi.org/10.1016/j.cclet.2024.110535
K. Wang, R. Chen, H. Yang, Y. Chen, H. Jia et al., The elements selection of high entropy alloy guided by thermodynamics and the enhanced electrocatalytic mechanism for oxygen reduction reaction. Adv. Funct. Mater. 34(7), 2310683 (2024). https://doi.org/10.1002/adfm.202310683
W. Dai, T. Lu, Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power. Sources 430, 104–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.030
P.M. Bodhankar, P.B. Sarawade, G. Singh, A. Vinu, D.S. Dhawale, Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 9(6), 3180–3208 (2021). https://doi.org/10.1039/D0TA10712C
S. Jiang, M. Zhang, C. Xu, G. Liu, K. Zhang et al., Recent developments in nickel-based layered double hydroxides for photo (-/)electrocatalytic water oxidation. ACS Nano 18(26), 16413–16449 (2024). https://doi.org/10.1021/acsnano.4c03153
D. Liu, P. Guo, X. Yan, Y. He, R. Wu, Manipulating the configuration entropy of layered hydroxides toward efficient oxygen evolution reaction for anion exchange membrane electrolyzer. Mater. Today 80, 101–112 (2024). https://doi.org/10.1016/j.mattod.2024.08.008
T. Zhang, Y.-L. Meng, Y.-H. Zhao, J.-C. Ni, Y. Pan et al., Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chem. Commun. 58(55), 7682–7685 (2022). https://doi.org/10.1039/D2CC02367A
D. Liu, X. Yan, P. Guo, Y. Yang, Y. He et al., Inert Mg incorporation to break the activity/stability relationship in high-entropy layered hydroxides for the electrocatalytic oxygen evolution reaction. ACS Catal. 13(11), 7698–7706 (2023). https://doi.org/10.1021/acscatal.3c00786
Q. Li, Y. Hu, G. Liu, Z. Wu, X. Chen et al., Upcycling of multi-metal contaminated wastewater into high-entropy layered double hydroxide for oxygen evolution reaction. Small 21(12), 2411043 (2025). https://doi.org/10.1002/smll.202411043
S. Li, L. Tong, Z. Peng, B. Zhang, X. Fu, Novel high-entropy layered double hydroxide microspheres as an effective and durable electrocatalyst for oxygen evolution. J. Mater. Chem. A 11(25), 13697–13707 (2023). https://doi.org/10.1039/D3TA01454A
T.X. Nguyen, C.-C. Tsai, V.T. Nguyen, Y.-J. Huang, Y.-H. Su et al., High entropy promoted active site in layered double hydroxide for ultra-stable oxygen evolution reaction electrocatalyst. Chem. Eng. J. 466, 143352 (2023). https://doi.org/10.1016/j.cej.2023.143352
W. Sun, S. Liu, H. Mao, Y. Xu, L. Xiao, Metal organic framework derived high entropy layered hydroxides for efficient oxygen evolution reaction. Discov. Electrochem. 2(1), 7 (2025). https://doi.org/10.1007/s44373-025-00019-9
F. Wang, P. Zou, Y. Zhang, W. Pan, Y. Li et al., Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nat. Commun. 14(1), 6019 (2023). https://doi.org/10.1038/s41467-023-41706-8
J. Yao, F. Wang, W. He, Y. Li, L. Liang et al., Engineering cation vacancies in high-entropy layered double hydroxides for boosting the oxygen evolution reaction. Chem. Commun. 59(25), 3719–3722 (2023). https://doi.org/10.1039/D2CC06966K
X. Sun, X. Zhang, L. Gao, B. Jia, H. Liu et al., High-entropy layered double hydroxide catalyst decorated with Ag nanops for highly efficient water oxidation. Int. J. Hydrogen Energy 67, 111–118 (2024). https://doi.org/10.1016/j.ijhydene.2024.04.179
J. Gao, H. Yuan, X. Du, F. Dong, Y. Zhou et al., Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chin. Chem. Lett. 36(1), 110232 (2025). https://doi.org/10.1016/j.cclet.2024.110232
M. Li, H. Wang, Z. Yang, Z. Yin, Y. Liu et al., Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chin. Chemical Lett. 36(3), 110199 (2025). https://doi.org/10.1016/j.cclet.2024.110199
J. Jing, W. Liu, T. Li, X. Ding, W. Xu et al., One-step synthesis of ultrathin high-entropy layered double hydroxides for ampere-level water oxidation. Catalysts 14(3), 171 (2024). https://doi.org/10.3390/catal14030171
S. Pal, S. Khatun, P. Roy, High-entropy layered hydroxide for efficient and sustainable seawater oxidation. Mater. Adv. 5(12), 5156–5166 (2024). https://doi.org/10.1039/d3ma00941f
M. Hao, J. Chen, J. Chen, K. Wang, J. Wang et al., Lattice-disordered high-entropy metal hydroxide nanosheets as efficient precatalysts for bifunctional electro-oxidation. J. Colloid Interface Sci. 642, 41–52 (2023). https://doi.org/10.1016/j.jcis.2023.03.152
T.H. Wondimu, P. Leung, Y. Zuo, A. Shah, Q. Liao, High entropy layered double hydroxide supported by multiwall carbon nanotube for oxygen evolution reactions (OER). J. Power. Sources 640, 236665 (2025). https://doi.org/10.1016/j.jpowsour.2025.236665
L. Wang, Z. Gao, K. Su, N.T. Nguyen, R.-T. Gao et al., Stacked high-entropy hydroxides promote charge transfer kinetics for photoelectrochemical water splitting. Adv. Funct. Mater. 34(40), 2403948 (2024). https://doi.org/10.1002/adfm.202403948
S. Kuang, Z. Pi, X. Li, J. Wang, H. Lin et al., Defects trigger redox reactivities between metal and lattice oxygen in high-entropy layered double hydroxide for boosting oxygen evolution in alkaline. J. Colloid Interface Sci. 679, 296–306 (2025). https://doi.org/10.1016/j.jcis.2024.09.231
L. Li, E. Warszawik, P. van Rijn, pH-triggered release and degradation mechanism of layered double hydroxides with high loading capacity. Adv. Mater. Interfaces 10(8), 2202396 (2023). https://doi.org/10.1002/admi.202202396
J. Ni, Z. Shi, Y. Wang, J. Yang, H. Wu et al., Suppressing the lattice oxygen diffusion via high-entropy oxide construction towards stabilized acidic water oxidation. Nano Res. 17(3), 1107–1113 (2024). https://doi.org/10.1007/s12274-023-5913-6
G.M. Tomboc, X. Zhang, S. Choi, D. Kim, L.Y.S. Lee et al., Stabilization, characterization, and electrochemical applications of high-entropy oxides: critical assessment of crystal phase–properties relationship. Adv. Funct. Mater. 32(43), 2205142 (2022). https://doi.org/10.1002/adfm.202205142
A. Razazzadeh, H. Khan, A. Farithkhan, S.-H. Kwon, Acid-stable high-entropy oxide nanops for electrochemical water oxidation. ACS Appl. Nano Mater. 8(32), 16206–16218 (2025). https://doi.org/10.1021/acsanm.5c03325
Q. Li, F. Wang, X. Liu, W. Xu, K. Zhang et al., An infrared radiation-responsive high-entropy CoCaMgMnAlFe-LDHs for controllable hydrogen generation via NaBH4 hydrolysis: utilization of steel slag and lithium-ion battery liquid waste. Chem. Eng. J. 500, 157380 (2024). https://doi.org/10.1016/j.cej.2024.157380
Q. Li, X. Liu, W. Xu, K. Zhang, S. Zhang et al., Recycling spent LiNi1: Mn Co O2 cathodes to high-entropy NiCoMnAlFe-LDHs for controllable hydrogen generation via NaBH4 hydrolysis. Sep. Purif. Technol. 359, 130418 (2025). https://doi.org/10.1016/j.seppur.2024.130418
H. Xu, Y. Liu, K. Wang, L. Jin, J. Chen et al., High-entropy layered double hydroxides tailor Pt electron state for promoting acidic hydrogen evolution reaction. J. Colloid Interface Sci. 684(Pt 1), 566–574 (2025). https://doi.org/10.1016/j.jcis.2025.01.077
Y. Wang, Y. Hu, Z. Wu, Z. Song, X. Chen et al., High-entropy layered double hydroxides for efficient methanol electrooxidation. Small 21(11), e2411550 (2025). https://doi.org/10.1002/smll.202411550
B. Li, J. Zhong, H. Wang, J. Gu, F. Lyu et al., Fluorine-lodged high-valent high-entropy layered double hydroxide for efficient, long-lasting zinc-air batteries. Angew. Chem. Int. Ed. 63(47), e202410978 (2024). https://doi.org/10.1002/anie.202410978
X. Guan, X. Fan, E. Zhu, J. Zhang, L. Yang et al., Controlled establishment of advanced local high-entropy NiCoMnFe-based layered double hydroxide for zinc batteries and low-temperature supercapacitors. J. Colloid Interface Sci. 658, 952–965 (2024). https://doi.org/10.1016/j.jcis.2023.12.111
X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue et al., Layered double hydroxides toward high-performance supercapacitors. J. Mater. Chem. A 5(30), 15460–15485 (2017). https://doi.org/10.1039/c7ta04001f
Z. Zhu, Q. Chen, D. Kong, N. He, Y. Zhang, Hollow-structured and nano-flower shaped high entropy layer double hydroxide for superiority specific capacitance and rate capability of supercapacitor. J. Energy Storage 100, 113718 (2024). https://doi.org/10.1016/j.est.2024.113718
A. Patra, J.R. Jose, S. Sahoo, B. Chakraborty et al., Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations. J. Mater. Chem. A 9(46), 25852–25891 (2021). https://doi.org/10.1039/D1TA07401F
X. He, X. Zhang, A comprehensive review of supercapacitors: properties, electrodes, electrolytes and thermal management systems based on phase change materials. J. Energy Storage 56, 106023 (2022). https://doi.org/10.1016/j.est.2022.106023
F.N.I. Sari, N.T.T. Tran, Y.-X. Lin, S.-Y. Li, Y.-H. Shen et al., Electronic structure modification induced electrochemical performance enhancement of bi-functional multi-metal hydroxide. Electrochim. Acta 439, 141616 (2023). https://doi.org/10.1016/j.electacta.2022.141616
Z. Zhu, Y. Zhang, D. Kong, N. He, Q. Chen, A novel high entropy hydroxide electrode material for promoting energy density of supercapacitors and its efficient synthesis strategy. Small 20(20), 2307754 (2024). https://doi.org/10.1002/smll.202307754
R. Ma, J. Song, H. Ding, Q. Han, X. Tang et al., Decoding the entropy-stabilized matrix of high-entropy layered double hydroxides: harnessing strain dynamics for peroxymonosulfate activation and tetracycline degradation. J. Colloid Interface Sci. 680(Pt B), 676–688 (2025). https://doi.org/10.1016/j.jcis.2024.11.123
F. Wu, J. Qin, B. Yin, Y. Zhang, C. Li et al., In-and-out of inert sites on high-entropy layered double hydroxide to facilitate peroxymonosulfate-assisted photocatalytic removal of microplastics. Appl. Catal. B Environ. Energy 365, 124853 (2025). https://doi.org/10.1016/j.apcatb.2024.124853
C. Wang, F. Yuan, Z. Yan, T. Zhang, C. Fu et al., High entropy 2D layered double hydroxide nanosheet toward cascaded nanozyme-initiated chemodynamic and immune synergistic therapy. J. Am. Chem. Soc. 147(1), 136–148 (2025). https://doi.org/10.1021/jacs.4c04523
L. Dou, K. Xiao, High entropy layered double hydroxide nanozyme for sensitive detection of tetracycline. ACS Appl. Nano Mater. 8(5), 2456–2465 (2025). https://doi.org/10.1021/acsanm.4c06683
J.N. Tiwari, M. Umer, G. Bhaskaran, M. Vandichel, M.G. Kim et al., β–phase hydroxide-steered inner-hosted metal sites for exceptional hydrogen production. Mater. Sci. Eng. R. Rep. 168, 101130 (2026). https://doi.org/10.1016/j.mser.2025.101130
M.A. Deshmukh, A. Bakandritsos, R. Zbořil, Bimetallic single-atom catalysts for water splitting. Nano-Micro Lett. 17(1), 1 (2024). https://doi.org/10.1007/s40820-024-01505-2
G. Wang, Z. Chen, J. Zhu, J. Xie, W. Wei et al., High-entropy amorphous catalysts for water electrolysis: a new frontier. Nano-Micro Lett. 18(1), 77 (2025). https://doi.org/10.1007/s40820-025-01936-5