Review on Cathode Stabilization by Electrolyte Engineering in Aqueous Batteries
Corresponding Author: Shujiang Ding
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 226
Abstract
The stability of cathode materials is a crucial factor that influence the overall performance of aqueous batteries. Electrolyte greatly influences on the stability of cathode material due to the complexed electrochemical–chemical reactions at the interfaces. Therefore, electrolyte engineering is a direct and powerful way to solve various problems at aqueous electrolyte interfaces. In this review article, we firstly summarized the fading mechanisms of different kinds of state-of-the-art aqueous battery cathodes including manganese/vanadium-based material, chalcogen and halogen materials, Prussian blue analogues, and Ni(OH)2 cathodes. Afterward, we reviewed recent progresses on electrolyte engineering on the stability of cathode materials such as bulk electrolyte modification, electrolyte additives, water-in-salt electrolytes, and hydrogel electrolytes. Finally, we proposed the issues that should be concerned in future electrolyte design for highly state aqueous battery cathodes.
Highlights:
1 The fading mechanisms of different kinds of state-of-the-art aqueous battery cathodes including manganese/vanadium-based material, chalcogen and halogen materials, Prussian blue analogues, as well as Ni(OH)2 cathodes were summarized.
2 Recent progresses on electrolyte engineering on the stability of cathode materials such as bulk electrolyte modification, electrolyte additives, water-in-salt electrolytes, and hydrogel electrolytes were systematically reviewed.
3 The issues that should be concerned in future electrolyte design for highly state aqueous battery cathodes were proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xu, G. Zhang, J. Liu, J. Zhang, X. Wang et al., Recent advances on challenges and strategies of manganese dioxide cathodes for aqueous zinc-ion batteries. Energy Environ. Mater. 6(6), e12575 (2023). https://doi.org/10.1002/eem2.12575
- R. Sinha, X. Xie, Y. Yang, Y. Li, Y. Xue et al., Failure mechanisms and strategies for vanadium oxide-based cathode in aqueous zinc batteries. Adv. Energy Mater. 15(14), 2404815 (2025). https://doi.org/10.1002/aenm.202404815
- L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang et al., Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 53(10), 4877–4925 (2024). https://doi.org/10.1039/D3CS00295K
- G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin et al., Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 34(5), 2301291 (2024). https://doi.org/10.1002/adfm.202301291
- W.R. Robinson, High-temperature crystal chemistry of V2O3 and 1% chromium-doped V2O3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 31(4), 1153–1160 (1975). https://doi.org/10.1107/s0567740875004700
- Z. Li, Y. Li, X. Ren, Y. Zhao, Z. Ren et al., Elucidating the reaction mechanism of Mn2+ electrolyte additives in aqueous zinc batteries. Small 19(38), 2301770 (2023). https://doi.org/10.1002/smll.202301770
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58(23), 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
- Z. Xing, G. Xu, J. Han, G. Chen, B. Lu et al., Facing the capacity fading of vanadium-based zinc-ion batteries. Trends Chem. 5(5), 380–392 (2023). https://doi.org/10.1016/j.trechm.2023.02.008
- Y. Aniskevich, S.-T. Myung, Gains and losses in zinc-ion batteries by proton- and water-assisted reactions. Chem. Soc. Rev. 54(9), 4531–4566 (2025). https://doi.org/10.1039/D4CS00810C
- L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14(7), 4095–4106 (2021). https://doi.org/10.1039/D1EE01158H
- V. Verma, S. Kumar, W. Manalastas Jr., J. Zhao, R. Chua et al., Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl. Energy Mater. 2(12), 8667–8674 (2019). https://doi.org/10.1021/acsaem.9b01632
- H.-Y. Shi, Y. Song, Z. Qin, C. Li, D. Guo et al., Inhibiting VOPO4⋅xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem. Int. Ed. 58(45), 16057–16061 (2019). https://doi.org/10.1002/anie.201908853
- J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/D3CS00771E
- T. Zhang, Y. Zhao, Y. Feng, B. Wang, Y. Zhang et al., Aqueous-S vs organic-S battery: volmer-step involved sulfur reaction. J. Am. Chem. Soc. 147(13), 11501–11510 (2025). https://doi.org/10.1021/jacs.5c01727
- J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li et al., Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143(38), 15475–15489 (2021). https://doi.org/10.1021/jacs.1c06923
- J. Liu, C. Ye, H. Wu, M. Jaroniec, S.-Z. Qiao, 2D mesoporous zincophilic sieve for high-rate sulfur-based aqueous zinc batteries. J. Am. Chem. Soc. 145(9), 5384–5392 (2023). https://doi.org/10.1021/jacs.2c13540
- X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu et al., Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 30(10), 1904398 (2020). https://doi.org/10.1002/adfm.201904398
- L. Kou, Y. Wang, J. Song, T. Ai, W. Li et al., Mini review: strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chin. Chem. Lett. 36(1), 110368 (2025). https://doi.org/10.1016/j.cclet.2024.110368
- J. Cattermull, M. Pasta, A.L. Goodwin, Structural complexity in Prussian blue analogues. Mater. Horiz. 8(12), 3178–3186 (2021). https://doi.org/10.1039/d1mh01124c
- M. Fiore, S. Wheeler, K. Hurlbutt, I. Capone, J. Fawdon et al., Paving the way toward highly efficient, high-energy potassium-ion batteries with ionic liquid electrolytes. Chem. Mater. 32(18), 7653–7661 (2020). https://doi.org/10.1021/acs.chemmater.0c01347
- Y. Ma, X. Song, W. Hu, J. Xiong, P. Chu et al., Recent progress and perspectives of advanced Ni-based cathodes for aqueous alkaline Zn batteries. Front. Chem. 12, 1483867 (2024). https://doi.org/10.3389/fchem.2024.1483867
- G. Fu, K. Chang, B. Li, E. Shangguan, H. Tang et al., High rate performance of surface metalized spherical nickel hydroxide via in situ chemical reduction. Electrochim. Acta 207, 28–36 (2016). https://doi.org/10.1016/j.electacta.2016.04.165
- Y. Dong, L. Miao, G. Ma, S. Di, Y. Wang et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 12(16), 5843–5852 (2021). https://doi.org/10.1039/D0SC06734B
- Y. Chen, S. Guo, L. Qin, Q. Wan, Y. Pan et al., Low current-density stable zinc-metal batteries via aqueous/organic hybrid electrolyte. Batter. Supercaps 5(5), e202200001 (2022). https://doi.org/10.1002/batt.202200001
- Y. Shang, N. Chen, Y. Li, S. Chen, J. Lai et al., An “ether-In-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv. Mater. 32(40), e2004017 (2020). https://doi.org/10.1002/adma.202004017
- C. Meng, W. He, Z. Kong, Z. Liang, H. Zhao et al., Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. Chem. Eng. J. 450, 138265 (2022). https://doi.org/10.1016/j.cej.2022.138265
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/D0EE01538E
- Y. Mei, Y. Liu, W. Xu, M. Zhang, Y. Dong et al., Suppressing vanadium dissolution in 2D V2O5/MXene heterostructures via organic/aqueous hybrid electrolyte for stable zinc ion batteries. Chem. Eng. J. 452, 139574 (2023). https://doi.org/10.1016/j.cej.2022.139574
- M. Xia, H. Fu, K. Lin, A.M. Rao, L. Cha et al., Hydrogen-bond regulation in organic/aqueous hybrid electrolyte for safe and high-voltage K-ion batteries. Energy Environ. Sci. 17(3), 1255–1265 (2024). https://doi.org/10.1039/D3EE03729K
- S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
- D.-S. Liu, Y. Zhang, S. Liu, L. Wei, S. You et al., Regulating the electrolyte solvation structure enables ultralong lifespan vanadium-based cathodes with excellent low-temperature performance. Adv. Funct. Mater. 32(24), 2111714 (2022). https://doi.org/10.1002/adfm.202111714
- S. Liu, J. He, D.-S. Liu, M. Ye, Y. Zhang et al., Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density. Energy Storage Mater. 49, 93–101 (2022). https://doi.org/10.1016/j.ensm.2022.03.038
- L. Suo, D. Oh, Y. Lin, Z. Zhuo, O. Borodin et al., How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 139(51), 18670–18680 (2017). https://doi.org/10.1021/jacs.7b10688
- I.B. Stojković, N.D. Cvjetićanin, S.V. Mentus, The improvement of the Li-ion insertion behaviour of Li1.05Cr0.10Mn1.85O4 in an aqueous medium upon addition of vinylene carbonate. Electrochem. Commun. 12(3), 371–373 (2010). https://doi.org/10.1016/j.elecom.2009.12.037
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- K. Wang, F. Liu, Q. Li, J. Zhu, T. Qiu et al., An electrolyte additive for interface regulations of both anode and cathode for aqueous zinc-vanadium oxide batteries. Chem. Eng. J. 452, 139577 (2023). https://doi.org/10.1016/j.cej.2022.139577
- Z. Chen, F. Mo, T. Wang, Q. Yang, Z. Huang et al., Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 14(4), 2441–2450 (2021). https://doi.org/10.1039/D0EE02999H
- J. Du, Y. Zhao, X. Chu, G. Wang, C. Neumann et al., A high-energy tellurium redox-amphoteric conversion cathode chemistry for aqueous zinc batteries. Adv. Mater. 36(19), 2313621 (2024). https://doi.org/10.1002/adma.202313621
- Q. Yue, Y. Wan, X. Li, Q. Zhao, T. Gao et al., Restraining the shuttle effect of polyiodides and modulating the deposition of zinc ions to enhance the cycle lifespan of aqueous Zn–I2 batteries. Chem. Sci. 15(15), 5711–5722 (2024). https://doi.org/10.1039/D4SC00792A
- H. Zhao, D. Yin, Y. Qin, X. Cui, J. Feng et al., Highly electrically conductive polyiodide ionic liquid cathode for high-capacity dual-plating zinc–iodine batteries. J. Am. Chem. Soc. 146(10), 6744–6752 (2024). https://doi.org/10.1021/jacs.3c12695
- C. Xu, C. Lei, P. Jiang, W. Yang, W. Ma et al., Practical high-energy aqueous zinc-bromine static batteries enabled by synergistic exclusion-complexation chemistry. Joule 8(2), 461–481 (2024). https://doi.org/10.1016/j.joule.2023.12.023
- T. Liu, C. Lei, H. Wang, J. Li, P. Jiang et al., Aqueous electrolyte with weak hydrogen bonds for four-electron zinc–iodine battery operates in a wide temperature range. Adv. Mater. 36(32), 2405473 (2024). https://doi.org/10.1002/adma.202405473
- W. Zong, J. Li, C. Zhang, Y. Dai, Y. Ouyang et al., Dynamical Janus interface design for reversible and fast-charging zinc–iodine battery under extreme operating conditions. J. Am. Chem. Soc. 146(31), 21377–21388 (2024). https://doi.org/10.1021/jacs.4c03615
- M. Wang, Y. Meng, M. Sajid, Z. Xie, P. Tong et al., Bidentate coordination structure facilitates high-voltage and high-utilization aqueous Zn-I2 batteries. Angew. Chem. Int. Ed. 63(39), e202404784 (2024). https://doi.org/10.1002/anie.202404784
- P. Hei, Y. Sai, C. Liu, W. Li, J. Wang et al., Facilitating the electrochemical oxidation of ZnS through iodide catalysis for aqueous zinc-sulfur batteries. Angew. Chem. Int. Ed. 63(9), e202316082 (2024). https://doi.org/10.1002/anie.202316082
- W. Wu, S. Wang, L. Lin, H.-Y. Shi, X. Sun, A dual-mediator for a sulfur cathode approaching theoretical capacity with low overpotential in aqueous Zn–S batteries. Energy Environ. Sci. 16(10), 4326–4333 (2023). https://doi.org/10.1039/d3ee01749d
- X. Zhang, Z. Deng, C. Xu, Y. Deng, Y. Jia et al., Electrolyte engineering via competitive solvation structures for developing longevous zinc ion batteries. Adv. Energy Mater. 13(48), 2302749 (2023). https://doi.org/10.1002/aenm.202302749
- C. Li, H. Yuan, T. Liu, R. Zhang, J. Zhu et al., Distinguish MnO2/Mn2+ conversion/Zn2+ intercalation/H+ conversion chemistries at different potentials in aqueous Zn||MnO2 batteries. Angew. Chem. Int. Ed. 63(22), e202403504 (2024). https://doi.org/10.1002/anie.202403504
- J. Lei, Y. Yao, Z. Wang, Y.-C. Lu, Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14(8), 4418–4426 (2021). https://doi.org/10.1039/d1ee01120k
- H. Guo, Z. Shao, Y. Zhang, X. Cui, L. Mao et al., Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. J. Colloid Interface Sci. 608, 1481–1488 (2022). https://doi.org/10.1016/j.jcis.2021.10.085
- Z. Liang, F. Tian, G. Yang, C. Wang, Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 14, 3591 (2023). https://doi.org/10.1038/s41467-023-39385-6
- Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/C6TA08736A
- Z. Khan, D. Kumar, X. Crispin, Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 35(36), e2300369 (2023). https://doi.org/10.1002/adma.202300369
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- C. Deriu, L. Fabris, A surface chemistry perspective on SERS: revisiting the basics to push the field forward. Chem. Soc. Rev. 54(11), 5224–5247 (2025). https://doi.org/10.1039/D4CS01242A
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- X. Tang, P. Wang, M. Bai, Z. Wang, H. Wang et al., Unveiling the reversibility and stability origin of the aqueous V2O5–Zn batteries with a ZnCl2 “water-in-salt” electrolyte. Adv. Sci. 8(23), 2102053 (2021). https://doi.org/10.1002/advs.202102053
- L. Wang, S. Yan, C.D. Quilty, J. Kuang, M.R. Dunkin et al., Achieving stable molybdenum oxide cathodes for aqueous zinc-ion batteries in water-in-salt electrolyte. Adv. Mater. Interfaces 8(9), 2002080 (2021). https://doi.org/10.1002/admi.202002080
- Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
- L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29(30), 1902653 (2019). https://doi.org/10.1002/adfm.201902653
- X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141(15), 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
- Y. Ji, J. Xie, Z. Shen, Y. Liu, Z. Wen et al., Advanced zinc–iodine batteries with ultrahigh capacity and superior rate performance based on reduced graphene oxide and water-in-salt electrolyte. Adv. Funct. Mater. 33(10), 2210043 (2023). https://doi.org/10.1002/adfm.202210043
- J. Zhao, Y. Chen, M. Zhang, Z. An, B. Nian et al., Iodine/chlorine multi-electron conversion realizes high energy density zinc-iodine batteries. Adv. Sci. 12(1), 2410988 (2025). https://doi.org/10.1002/advs.202410988
- L. Chen, T. Xiao, J.-L. Yang, Y. Liu, J. Xian et al., In-situ spontaneous electropolymerization enables robust hydrogel electrolyte interfaces in aqueous batteries. Angew. Chem. Int. Ed. 63(21), e202400230 (2024). https://doi.org/10.1002/anie.202400230
- S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), e2110140 (2022). https://doi.org/10.1002/adma.202110140
- X. Hou, T.P. Pollard, X. He, L. Du, X. Ju et al., “Water-in-eutectogel” electrolytes for quasi-solid-state aqueous lithium-ion batteries. Adv. Energy Mater. 12(23), 2200401 (2022). https://doi.org/10.1002/aenm.202200401
- J.-L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics. Adv. Mater. 35(44), 2306531 (2023). https://doi.org/10.1002/adma.202306531
- Y. Xiong, H. Cheng, Y. Jiang, Z. Fan, X. Li et al., A novel water-reducer-based hydrogel electrolyte for robust and flexible Zn-I2 battery. Energy Storage Mater. 74, 103981 (2025). https://doi.org/10.1016/j.ensm.2024.103981
- C. Li, T. Wang, H.C.J. Lai, S.W. Park, W.Y.K. Chan et al., Hydrophobic-unit-regulated hydrogel electrolytes with high water content and low salt concentration for high-voltage aqueous batteries. Joule 9(4), 101827 (2025). https://doi.org/10.1016/j.joule.2025.101827
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33(9), e2007559 (2021). https://doi.org/10.1002/adma.202007559
- Y. Cheng, X. Chi, J. Yang, Y. Liu, Cost attractive hydrogel electrolyte for low temperature aqueous sodium ion batteries. J. Energy Storage 40, 102701 (2021). https://doi.org/10.1016/j.est.2021.102701
- S. Farai Kuchena, Y. Wang, A full flexible NH4+ ion battery based on the concentrated hydrogel electrolyte for enhanced performance. Chemistry 27(62), 15450–15459 (2021). https://doi.org/10.1002/chem.202102442
- K. Niu, J. Shi, L. Zhang, Y. Yue, M. Wang et al., A self-healing aqueous ammonium-ion micro batteries based on PVA-NH4Cl hydrogel electrolyte and MXene-integrated perylene anode. Nano Research Energy 3(4), e9120127 (2024). https://doi.org/10.26599/nre.2024.9120127
- W. Lv, J. Liu, Z. Shen, X. Li, C. Xu, Novel approaches to aqueous zinc-ion batteries: challenges, strategies, and prospects. eScience 5(6), 100410 (2025). https://doi.org/10.1016/j.esci.2025.100410
- K. Xie, P. Zhu, D. Han, B. Zhang, X. Wang et al., Decoding “dead Mn” in MnO2 deposition/dissolution chemistry for energetic aqueous batteries: a perspective. Energy Materials and Devices 3(3), 9370071 (2025). https://doi.org/10.26599/emd.2025.9370071
- Y. Tang, J.-H. Li, C.-L. Xu, M. Liu, B. Xiao et al., Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon Neutralization 2(2), 186–212 (2023). https://doi.org/10.1002/cnl2.54
References
Y. Xu, G. Zhang, J. Liu, J. Zhang, X. Wang et al., Recent advances on challenges and strategies of manganese dioxide cathodes for aqueous zinc-ion batteries. Energy Environ. Mater. 6(6), e12575 (2023). https://doi.org/10.1002/eem2.12575
R. Sinha, X. Xie, Y. Yang, Y. Li, Y. Xue et al., Failure mechanisms and strategies for vanadium oxide-based cathode in aqueous zinc batteries. Adv. Energy Mater. 15(14), 2404815 (2025). https://doi.org/10.1002/aenm.202404815
L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang et al., Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 53(10), 4877–4925 (2024). https://doi.org/10.1039/D3CS00295K
G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin et al., Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 34(5), 2301291 (2024). https://doi.org/10.1002/adfm.202301291
W.R. Robinson, High-temperature crystal chemistry of V2O3 and 1% chromium-doped V2O3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 31(4), 1153–1160 (1975). https://doi.org/10.1107/s0567740875004700
Z. Li, Y. Li, X. Ren, Y. Zhao, Z. Ren et al., Elucidating the reaction mechanism of Mn2+ electrolyte additives in aqueous zinc batteries. Small 19(38), 2301770 (2023). https://doi.org/10.1002/smll.202301770
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58(23), 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
Z. Xing, G. Xu, J. Han, G. Chen, B. Lu et al., Facing the capacity fading of vanadium-based zinc-ion batteries. Trends Chem. 5(5), 380–392 (2023). https://doi.org/10.1016/j.trechm.2023.02.008
Y. Aniskevich, S.-T. Myung, Gains and losses in zinc-ion batteries by proton- and water-assisted reactions. Chem. Soc. Rev. 54(9), 4531–4566 (2025). https://doi.org/10.1039/D4CS00810C
L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14(7), 4095–4106 (2021). https://doi.org/10.1039/D1EE01158H
V. Verma, S. Kumar, W. Manalastas Jr., J. Zhao, R. Chua et al., Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl. Energy Mater. 2(12), 8667–8674 (2019). https://doi.org/10.1021/acsaem.9b01632
H.-Y. Shi, Y. Song, Z. Qin, C. Li, D. Guo et al., Inhibiting VOPO4⋅xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem. Int. Ed. 58(45), 16057–16061 (2019). https://doi.org/10.1002/anie.201908853
J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/D3CS00771E
T. Zhang, Y. Zhao, Y. Feng, B. Wang, Y. Zhang et al., Aqueous-S vs organic-S battery: volmer-step involved sulfur reaction. J. Am. Chem. Soc. 147(13), 11501–11510 (2025). https://doi.org/10.1021/jacs.5c01727
J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li et al., Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143(38), 15475–15489 (2021). https://doi.org/10.1021/jacs.1c06923
J. Liu, C. Ye, H. Wu, M. Jaroniec, S.-Z. Qiao, 2D mesoporous zincophilic sieve for high-rate sulfur-based aqueous zinc batteries. J. Am. Chem. Soc. 145(9), 5384–5392 (2023). https://doi.org/10.1021/jacs.2c13540
X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu et al., Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 30(10), 1904398 (2020). https://doi.org/10.1002/adfm.201904398
L. Kou, Y. Wang, J. Song, T. Ai, W. Li et al., Mini review: strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chin. Chem. Lett. 36(1), 110368 (2025). https://doi.org/10.1016/j.cclet.2024.110368
J. Cattermull, M. Pasta, A.L. Goodwin, Structural complexity in Prussian blue analogues. Mater. Horiz. 8(12), 3178–3186 (2021). https://doi.org/10.1039/d1mh01124c
M. Fiore, S. Wheeler, K. Hurlbutt, I. Capone, J. Fawdon et al., Paving the way toward highly efficient, high-energy potassium-ion batteries with ionic liquid electrolytes. Chem. Mater. 32(18), 7653–7661 (2020). https://doi.org/10.1021/acs.chemmater.0c01347
Y. Ma, X. Song, W. Hu, J. Xiong, P. Chu et al., Recent progress and perspectives of advanced Ni-based cathodes for aqueous alkaline Zn batteries. Front. Chem. 12, 1483867 (2024). https://doi.org/10.3389/fchem.2024.1483867
G. Fu, K. Chang, B. Li, E. Shangguan, H. Tang et al., High rate performance of surface metalized spherical nickel hydroxide via in situ chemical reduction. Electrochim. Acta 207, 28–36 (2016). https://doi.org/10.1016/j.electacta.2016.04.165
Y. Dong, L. Miao, G. Ma, S. Di, Y. Wang et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 12(16), 5843–5852 (2021). https://doi.org/10.1039/D0SC06734B
Y. Chen, S. Guo, L. Qin, Q. Wan, Y. Pan et al., Low current-density stable zinc-metal batteries via aqueous/organic hybrid electrolyte. Batter. Supercaps 5(5), e202200001 (2022). https://doi.org/10.1002/batt.202200001
Y. Shang, N. Chen, Y. Li, S. Chen, J. Lai et al., An “ether-In-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv. Mater. 32(40), e2004017 (2020). https://doi.org/10.1002/adma.202004017
C. Meng, W. He, Z. Kong, Z. Liang, H. Zhao et al., Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. Chem. Eng. J. 450, 138265 (2022). https://doi.org/10.1016/j.cej.2022.138265
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/D0EE01538E
Y. Mei, Y. Liu, W. Xu, M. Zhang, Y. Dong et al., Suppressing vanadium dissolution in 2D V2O5/MXene heterostructures via organic/aqueous hybrid electrolyte for stable zinc ion batteries. Chem. Eng. J. 452, 139574 (2023). https://doi.org/10.1016/j.cej.2022.139574
M. Xia, H. Fu, K. Lin, A.M. Rao, L. Cha et al., Hydrogen-bond regulation in organic/aqueous hybrid electrolyte for safe and high-voltage K-ion batteries. Energy Environ. Sci. 17(3), 1255–1265 (2024). https://doi.org/10.1039/D3EE03729K
S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
D.-S. Liu, Y. Zhang, S. Liu, L. Wei, S. You et al., Regulating the electrolyte solvation structure enables ultralong lifespan vanadium-based cathodes with excellent low-temperature performance. Adv. Funct. Mater. 32(24), 2111714 (2022). https://doi.org/10.1002/adfm.202111714
S. Liu, J. He, D.-S. Liu, M. Ye, Y. Zhang et al., Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density. Energy Storage Mater. 49, 93–101 (2022). https://doi.org/10.1016/j.ensm.2022.03.038
L. Suo, D. Oh, Y. Lin, Z. Zhuo, O. Borodin et al., How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 139(51), 18670–18680 (2017). https://doi.org/10.1021/jacs.7b10688
I.B. Stojković, N.D. Cvjetićanin, S.V. Mentus, The improvement of the Li-ion insertion behaviour of Li1.05Cr0.10Mn1.85O4 in an aqueous medium upon addition of vinylene carbonate. Electrochem. Commun. 12(3), 371–373 (2010). https://doi.org/10.1016/j.elecom.2009.12.037
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
K. Wang, F. Liu, Q. Li, J. Zhu, T. Qiu et al., An electrolyte additive for interface regulations of both anode and cathode for aqueous zinc-vanadium oxide batteries. Chem. Eng. J. 452, 139577 (2023). https://doi.org/10.1016/j.cej.2022.139577
Z. Chen, F. Mo, T. Wang, Q. Yang, Z. Huang et al., Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 14(4), 2441–2450 (2021). https://doi.org/10.1039/D0EE02999H
J. Du, Y. Zhao, X. Chu, G. Wang, C. Neumann et al., A high-energy tellurium redox-amphoteric conversion cathode chemistry for aqueous zinc batteries. Adv. Mater. 36(19), 2313621 (2024). https://doi.org/10.1002/adma.202313621
Q. Yue, Y. Wan, X. Li, Q. Zhao, T. Gao et al., Restraining the shuttle effect of polyiodides and modulating the deposition of zinc ions to enhance the cycle lifespan of aqueous Zn–I2 batteries. Chem. Sci. 15(15), 5711–5722 (2024). https://doi.org/10.1039/D4SC00792A
H. Zhao, D. Yin, Y. Qin, X. Cui, J. Feng et al., Highly electrically conductive polyiodide ionic liquid cathode for high-capacity dual-plating zinc–iodine batteries. J. Am. Chem. Soc. 146(10), 6744–6752 (2024). https://doi.org/10.1021/jacs.3c12695
C. Xu, C. Lei, P. Jiang, W. Yang, W. Ma et al., Practical high-energy aqueous zinc-bromine static batteries enabled by synergistic exclusion-complexation chemistry. Joule 8(2), 461–481 (2024). https://doi.org/10.1016/j.joule.2023.12.023
T. Liu, C. Lei, H. Wang, J. Li, P. Jiang et al., Aqueous electrolyte with weak hydrogen bonds for four-electron zinc–iodine battery operates in a wide temperature range. Adv. Mater. 36(32), 2405473 (2024). https://doi.org/10.1002/adma.202405473
W. Zong, J. Li, C. Zhang, Y. Dai, Y. Ouyang et al., Dynamical Janus interface design for reversible and fast-charging zinc–iodine battery under extreme operating conditions. J. Am. Chem. Soc. 146(31), 21377–21388 (2024). https://doi.org/10.1021/jacs.4c03615
M. Wang, Y. Meng, M. Sajid, Z. Xie, P. Tong et al., Bidentate coordination structure facilitates high-voltage and high-utilization aqueous Zn-I2 batteries. Angew. Chem. Int. Ed. 63(39), e202404784 (2024). https://doi.org/10.1002/anie.202404784
P. Hei, Y. Sai, C. Liu, W. Li, J. Wang et al., Facilitating the electrochemical oxidation of ZnS through iodide catalysis for aqueous zinc-sulfur batteries. Angew. Chem. Int. Ed. 63(9), e202316082 (2024). https://doi.org/10.1002/anie.202316082
W. Wu, S. Wang, L. Lin, H.-Y. Shi, X. Sun, A dual-mediator for a sulfur cathode approaching theoretical capacity with low overpotential in aqueous Zn–S batteries. Energy Environ. Sci. 16(10), 4326–4333 (2023). https://doi.org/10.1039/d3ee01749d
X. Zhang, Z. Deng, C. Xu, Y. Deng, Y. Jia et al., Electrolyte engineering via competitive solvation structures for developing longevous zinc ion batteries. Adv. Energy Mater. 13(48), 2302749 (2023). https://doi.org/10.1002/aenm.202302749
C. Li, H. Yuan, T. Liu, R. Zhang, J. Zhu et al., Distinguish MnO2/Mn2+ conversion/Zn2+ intercalation/H+ conversion chemistries at different potentials in aqueous Zn||MnO2 batteries. Angew. Chem. Int. Ed. 63(22), e202403504 (2024). https://doi.org/10.1002/anie.202403504
J. Lei, Y. Yao, Z. Wang, Y.-C. Lu, Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14(8), 4418–4426 (2021). https://doi.org/10.1039/d1ee01120k
H. Guo, Z. Shao, Y. Zhang, X. Cui, L. Mao et al., Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. J. Colloid Interface Sci. 608, 1481–1488 (2022). https://doi.org/10.1016/j.jcis.2021.10.085
Z. Liang, F. Tian, G. Yang, C. Wang, Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 14, 3591 (2023). https://doi.org/10.1038/s41467-023-39385-6
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/C6TA08736A
Z. Khan, D. Kumar, X. Crispin, Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 35(36), e2300369 (2023). https://doi.org/10.1002/adma.202300369
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
C. Deriu, L. Fabris, A surface chemistry perspective on SERS: revisiting the basics to push the field forward. Chem. Soc. Rev. 54(11), 5224–5247 (2025). https://doi.org/10.1039/D4CS01242A
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
X. Tang, P. Wang, M. Bai, Z. Wang, H. Wang et al., Unveiling the reversibility and stability origin of the aqueous V2O5–Zn batteries with a ZnCl2 “water-in-salt” electrolyte. Adv. Sci. 8(23), 2102053 (2021). https://doi.org/10.1002/advs.202102053
L. Wang, S. Yan, C.D. Quilty, J. Kuang, M.R. Dunkin et al., Achieving stable molybdenum oxide cathodes for aqueous zinc-ion batteries in water-in-salt electrolyte. Adv. Mater. Interfaces 8(9), 2002080 (2021). https://doi.org/10.1002/admi.202002080
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29(30), 1902653 (2019). https://doi.org/10.1002/adfm.201902653
X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141(15), 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
Y. Ji, J. Xie, Z. Shen, Y. Liu, Z. Wen et al., Advanced zinc–iodine batteries with ultrahigh capacity and superior rate performance based on reduced graphene oxide and water-in-salt electrolyte. Adv. Funct. Mater. 33(10), 2210043 (2023). https://doi.org/10.1002/adfm.202210043
J. Zhao, Y. Chen, M. Zhang, Z. An, B. Nian et al., Iodine/chlorine multi-electron conversion realizes high energy density zinc-iodine batteries. Adv. Sci. 12(1), 2410988 (2025). https://doi.org/10.1002/advs.202410988
L. Chen, T. Xiao, J.-L. Yang, Y. Liu, J. Xian et al., In-situ spontaneous electropolymerization enables robust hydrogel electrolyte interfaces in aqueous batteries. Angew. Chem. Int. Ed. 63(21), e202400230 (2024). https://doi.org/10.1002/anie.202400230
S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34(14), e2110140 (2022). https://doi.org/10.1002/adma.202110140
X. Hou, T.P. Pollard, X. He, L. Du, X. Ju et al., “Water-in-eutectogel” electrolytes for quasi-solid-state aqueous lithium-ion batteries. Adv. Energy Mater. 12(23), 2200401 (2022). https://doi.org/10.1002/aenm.202200401
J.-L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics. Adv. Mater. 35(44), 2306531 (2023). https://doi.org/10.1002/adma.202306531
Y. Xiong, H. Cheng, Y. Jiang, Z. Fan, X. Li et al., A novel water-reducer-based hydrogel electrolyte for robust and flexible Zn-I2 battery. Energy Storage Mater. 74, 103981 (2025). https://doi.org/10.1016/j.ensm.2024.103981
C. Li, T. Wang, H.C.J. Lai, S.W. Park, W.Y.K. Chan et al., Hydrophobic-unit-regulated hydrogel electrolytes with high water content and low salt concentration for high-voltage aqueous batteries. Joule 9(4), 101827 (2025). https://doi.org/10.1016/j.joule.2025.101827
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33(9), e2007559 (2021). https://doi.org/10.1002/adma.202007559
Y. Cheng, X. Chi, J. Yang, Y. Liu, Cost attractive hydrogel electrolyte for low temperature aqueous sodium ion batteries. J. Energy Storage 40, 102701 (2021). https://doi.org/10.1016/j.est.2021.102701
S. Farai Kuchena, Y. Wang, A full flexible NH4+ ion battery based on the concentrated hydrogel electrolyte for enhanced performance. Chemistry 27(62), 15450–15459 (2021). https://doi.org/10.1002/chem.202102442
K. Niu, J. Shi, L. Zhang, Y. Yue, M. Wang et al., A self-healing aqueous ammonium-ion micro batteries based on PVA-NH4Cl hydrogel electrolyte and MXene-integrated perylene anode. Nano Research Energy 3(4), e9120127 (2024). https://doi.org/10.26599/nre.2024.9120127
W. Lv, J. Liu, Z. Shen, X. Li, C. Xu, Novel approaches to aqueous zinc-ion batteries: challenges, strategies, and prospects. eScience 5(6), 100410 (2025). https://doi.org/10.1016/j.esci.2025.100410
K. Xie, P. Zhu, D. Han, B. Zhang, X. Wang et al., Decoding “dead Mn” in MnO2 deposition/dissolution chemistry for energetic aqueous batteries: a perspective. Energy Materials and Devices 3(3), 9370071 (2025). https://doi.org/10.26599/emd.2025.9370071
Y. Tang, J.-H. Li, C.-L. Xu, M. Liu, B. Xiao et al., Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon Neutralization 2(2), 186–212 (2023). https://doi.org/10.1002/cnl2.54