FeOOH Cocatalysts with Gradient Oxygen Vacancy Distribution Enabling Efficient and Stable BiVO4 Photoanodes
Corresponding Author: Hongqiang Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 147
Abstract
Highly active and stable FeOOH cocatalysts are essential for achieving optimal performance of BiVO4 (BVO) photoanodes. Despite offering remarkable structural stability, widely used thick FeOOH cocatalysts often suffer from insufficient hole transport capability, which hinders the overall activity. The present study demonstrates that a simple photoetching strategy is able to introduce gradient distributed oxygen vacancies (GOV) in the thick FeOOH layer and significantly enhances the photogenerated holes transport dynamics. The incorporation of GOV within FeOOH not only realizes the “relay transport” of photogenerated hole through the progressive upward shift of the valence band in the spatial distribution, but also provides abundant oxidation active sites by efficient hole trapping. These improvements effectively improve the oxygen evolution reaction (OER) activities and mitigate photocorrosion by the instantaneous hole extraction. Consequently, the FeOOH-GOV layer enables the BVO/FeOOH-GOV photoanode to achieve an impressive photocurrent density of 5.37 mA cm−2 and a robust operational stability up to 160 h at 1.23 VRHE, setting new benchmarks for current density and stability in FeOOH-based BVO photoanodes. This work provides an effective avenue to optimize OER cocatalysts for constructing highly efficient and stable photoelectrochemical water splitting devices.
Highlights:
1 First demonstration of a gradient distributed oxygen vacancies (GOV) strategy to promote hole transport within FeOOH.
2 Clearly monitoring and verifying the progressive upward shift of the valence band within the shallow surface of FeOOH-GOv for enhancing holes transport capability.
3 Setting new photoelectrochemical activity and stability benchmarks of FeOOH based-BiVO4 photoanodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- J. Gong, C. Li, M.R. Wasielewski, Advances in solar energy conversion. Chem. Soc. Rev. 48(7), 1862–1864 (2019). https://doi.org/10.1039/C9CS90020A
- J. Jian, G. Jiang, R. van de Krol, B. Wei, H. Wang, Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 51, 457–480 (2018). https://doi.org/10.1016/j.nanoen.2018.06.074
- M. Abbas, S. Chen, Z. Li, M. Ishaq, Z. Zheng et al., Highest solar-to-hydrogen conversion efficiency in Cu2ZnSnS4 photocathodes and its directly unbiased solar seawater splitting. Nano-Micro Lett. 17(1), 257 (2025). https://doi.org/10.1007/s40820-025-01755-8
- J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31(20), 1806938 (2019). https://doi.org/10.1002/adma.201806938
- S.D. Tilley, Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv. Energy Mater. 9(2), 1802877 (2019). https://doi.org/10.1002/aenm.201802877
- J. Jian, S. Wang, Q. Ye, F. Li, G. Su et al., Activating a semiconductor-liquid junction via laser-derived dual interfacial layers for boosted photoelectrochemical water splitting. Adv. Mater. 34(19), e2201140 (2022). https://doi.org/10.1002/adma.202201140
- B. Jin, Y. Cho, C. Park, J. Jeong, S. Kim et al., A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ. Sci. 15(2), 672–679 (2022). https://doi.org/10.1039/D1EE03014K
- Y. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li et al., Engineering MoOx/MXene hole transfer layers for unexpected boosting of photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 61(16), e202200946 (2022). https://doi.org/10.1002/anie.202200946
- L. Wang, Y. Zhang, W. Li, L. Wang, Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting. Mater. Rep. Energy 3(4), 100232 (2023). https://doi.org/10.1016/j.matre.2023.100232
- K.J. McDonald, K.-S. Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 5(9), 8553–8557 (2012). https://doi.org/10.1039/c2ee22608a
- J. Jian, Y. Xu, X. Yang, W. Liu, M. Fu et al., Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 10(1), 2609 (2019). https://doi.org/10.1038/s41467-019-10543-z
- S. Feng, T. Wang, B. Liu, C. Hu, L. Li et al., Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew. Chem. Int. Ed. 59(5), 2044–2048 (2020). https://doi.org/10.1002/anie.201913295
- R.T. Gao, S. Liu, X. Guo, R. Zhang, J. He et al., Pt-induced defects curing on BiVO4 photoanodes for near-threshold charge separation. Adv. Energy Mater. 11(45), 2102384 (2021). https://doi.org/10.1002/aenm.202102384
- N. Österbacka, F. Ambrosio, J. Wiktor, Charge localization in defective bivo4. J. Phys. Chem. C 126(6), 2960–2970 (2022). https://doi.org/10.1021/acs.jpcc.1c09990
- B. Liu, X. Wang, Y. Zhang, K. Wan, L. Xu et al., Bismuth vacancies induced lattice strain in BiVO4 photoanodes boosting charge separation for water oxidation. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202403835
- S. Wang, M. Jiao, J. Jian, F. Li, Z. Zhang et al., Proton-acceptor interfered hydrolysis enabling highly stable FeOOH(α+β) cocatalysts for efficient photoelectrochemical water oxidation. Appl. Catal. B Environ. Energy 366, 125026 (2025). https://doi.org/10.1016/j.apcatb.2025.125026
- T.W. Kim, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). https://doi.org/10.1126/science.1246913
- B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 57(8), 2248–2252 (2018). https://doi.org/10.1002/anie.201712499
- W. Zhang, J. Ma, L. Xiong, H.-Y. Jiang, J. Tang, Well-crystallized α- FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting. ACS Appl. Energy Mater. 3(6), 5927–5936 (2020). https://doi.org/10.1021/acsaem.0c00834
- H. She, P. Yue, J. Huang, L. Wang, Q. Wang, One-step hydrothermal deposition F: FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chem. Eng. J. 392, 123703 (2020). https://doi.org/10.1016/j.cej.2019.123703
- T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li et al., Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by Co-modification of CQDs and ultrathin β- FeOOH layers. Chem. Eng. J. 403, 126350 (2021). https://doi.org/10.1016/j.cej.2020.126350
- X. Xiong, C. Zhang, X. Zhang, L. Fan, L. Zhou et al., Uniformly citrate-assisted deposition of small-sized feooh on BiVO4 photoanode for efficient solar water oxidation. Electrochim. Acta 389, 138795 (2021). https://doi.org/10.1016/j.electacta.2021.138795
- M.A. Gaikwad, U.V. Ghorpade, U.P. Suryawanshi, P.V. Kumar, S. Jang et al., Rapid synthesis of ultrathin Ni: FeOOH with in situ-induced oxygen vacancies for enhanced water oxidation activity and stability of BiVO4 photoanodes. ACS Appl. Mater. Interfaces 15(17), 21123–21133 (2023). https://doi.org/10.1021/acsami.3c01877
- L. Cai, J. Zhao, H. Li, J. Park, I.S. Cho et al., One-step hydrothermal deposition of Ni: FeOOH onto photoanodes for enhanced water oxidation. ACS Energy Lett. 1(3), 624–632 (2016). https://doi.org/10.1021/acsenergylett.6b00303
- R.T. Gao, D. He, L. Wu, K. Hu, X. Liu et al., Towards long-term photostability of nickel hydroxide/BiVO4 photoanodes for oxygen evolution catalysts via in situ catalyst tuning. Angew. Chem. Int. Ed. 59(15), 6213–6218 (2020). https://doi.org/10.1002/anie.201915671
- F. Yu, F. Li, T. Yao, J. Du, Y. Liang et al., Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode. ACS Catal. 7(3), 1868–1874 (2017). https://doi.org/10.1021/acscatal.6b03483
- G.F. Chen, Y. Luo, L.X. Ding, H. Wang, Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 8(1), 526–530 (2017). https://doi.org/10.1021/acscatal.7b03319
- J. Wang, Y. Zhang, J. Bai, J. Li, C. Zhou et al., Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced pec performance of BiVO4. J. Colloid Interface Sci. 644, 509–518 (2023). https://doi.org/10.1016/j.jcis.2023.03.162
- Z. Kang, X. Lv, Z. Sun, S. Wang, Y.-Z. Zheng et al., Borate and iron hydroxide co-modified BiVO4 photoanodes for high-performance photoelectrochemical water oxidation. Chem. Eng. J. 421, 129819 (2021). https://doi.org/10.1016/j.cej.2021.129819
- J. Hu, S. Li, J. Chu, S. Niu, J. Wang et al., Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 9(12), 10705–10711 (2019). https://doi.org/10.1021/acscatal.9b03876
- L. Li, C. Guo, J. Ning, Y. Zhong, D. Chen et al., Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 293, 120203 (2021). https://doi.org/10.1016/j.apcatb.2021.120203
- X. Wu, T. Liu, W. Ni, H. Yang, H. Huang et al., Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-fenton-like oxidation. J. Colloid Interface Sci. 623, 9–20 (2022). https://doi.org/10.1016/j.jcis.2022.04.094
- P.R.B. Laurence, A.J. Garvie, Ratios of ferrousto ferric iron fromnanometre-sized areas inminerals. Nature 396, 667–670 (1998). https://doi.org/10.1038/25334
- Y. Li, In situ investigation of the valence states of iron-bearing phases in chang’E-5 lunar soil using FIB, AES, and TEM-EELS techniques. At. Spectrosc. 43(1), 53–59 (2022). https://doi.org/10.46770/as.2022.014
- B.L.P.A. van Aken, V.J. Styrsa, Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 25, 323–327 (1998). https://doi.org/10.1007/s002690050122
- J. Chen, Y. Qi, M. Lu, Y. Niu, B. Zhang, Identify fine microstructure of multifarious iron oxides via O k-edge EELS spectra. Chin. Chem. Lett. 33(9), 4375–4379 (2022). https://doi.org/10.1016/j.cclet.2021.12.027
- H. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012). https://doi.org/10.1016/j.ultramic.2012.03.002
- X. Liu, Z. Guo, L. Zhou, J. Yang, H. Cao et al., Hierarchical biomimetic BiVO4 for the treatment of pharmaceutical wastewater in visible-light photocatalytic ozonation. Chemosphere 222, 38–45 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.084
- H. Ullah, A.A. Tahir, T.K. Mallick, Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4 (001) thin film for the applications of photocatalysis. Appl. Catal. B-Environ. 224, 895–903 (2018). https://doi.org/10.1016/j.apcatb.2017.11.034
- J. Miao, Y. Yang, P. Cui, C. Ru, K. Zhang, Improving charge transfer beyond conventional heterojunction photoelectrodes: fundamentals, strategies and applications. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202406443
- A.N. Ren-De Sun, A. Fujishima, T. Watanabe, K. Hashimoto, Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105, 1984–1990 (2001). https://doi.org/10.1021/jp002525j
- D.K. Lee, K.S. Choi, Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3(1), 53–60 (2018). https://doi.org/10.1038/s41560-017-0057-0
- Z. Zhang, X. Huang, B. Zhang, Y. Bi, High-performance and stable BiVO4 photoanodes for solar water splitting via phosphorus-oxygen bonded feni catalysts. Energy Environ. Sci. 15(7), 2867–2873 (2022). https://doi.org/10.1039/d2ee00936f
- L. Chen, F.M. Toma, J.K. Cooper, A. Lyon, Y. Lin et al., Mo-doped BiVO4 photoanodes synthesized by reactive sputtering. Chemsuschem 8(6), 1066–1071 (2015). https://doi.org/10.1002/cssc.201402984
- Y. Guo, Y. Wu, Z. Wang, D. Dai, X. Liu et al., Multi-strategy preparation of BiVO4 photoanode with abundant oxygen vacancies for efficient water oxidation. Appl. Surf. Sci. 614, 156164 (2023). https://doi.org/10.1016/j.apsusc.2022.156164
- X. Lu, Kh. Ye, S. Zhang, J. Zhang, J. Yang et al., Amorphous type feooh modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chem. Eng. J. 428, 131027 (2022). https://doi.org/10.1016/j.cej.2021.131027
- L. Yu, K. Xue, H. Luo, C. Liu, H. Liu et al., Phase engineering of 1 t-MoS2 on BiVO4 photoanode with p-n junctions: establishing high speed charges transport channels for efficient photoelectrochemical water splitting. Chem. Eng. J. 472, 144965 (2023). https://doi.org/10.1016/j.cej.2023.144965
- K. Zhang, B. Jin, C. Park, Y. Cho, X. Song et al., Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 10(1), 2001 (2019). https://doi.org/10.1038/s41467-019-10034-1
- A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4(8), 859–864 (2003). https://doi.org/10.1002/cphc.200200615
- H. Zhang, D. Li, W.J. Byun, X. Wang, T.J. Shin et al., Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 11(1), 4622 (2020). https://doi.org/10.1038/s41467-020-18484-8
- R.T. Gao, J. Zhang, T. Nakajima, J. He, X. Liu et al., Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat. Commun. 14(1), 2640 (2023). https://doi.org/10.1038/s41467-023-38343-6
- M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al., Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
- L. Bertoluzzi, J. Bisquert, Investigating the consistency of models for water splitting systems by light and voltage modulated techniques. Phys. Chem. Lett. 8(1), 172–180 (2017). https://doi.org/10.1021/acs.jpclett.6b02714
- X. Ning, P. Du, Z. Han, J. Chen, X. Lu, Insight into the transition-metal hydroxide cover layer for enhancing photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 60(7), 3504–3509 (2021). https://doi.org/10.1002/anie.202013014
- F. Li, J. Jian, J. Zou, S. Wang, Z. Zhang et al., Bulk embedding of Ti-defected TiO2 nano-heterointerfaces in hematite photoanode for boosted photoelectrochemical water splitting. Chem. Eng. J. 473, 145254 (2023). https://doi.org/10.1016/j.cej.2023.145254
- A. Kahraman, M. Barzgar Vishlaghi, I. Baylam, A. Sennaroglu, S. Kaya, Roles of charge carriers in the excited state dynamics of BiVO4 photoanodes. J. Phys. Chem. C 123(47), 28576–28583 (2019). https://doi.org/10.1021/acs.jpcc.9b07391
- H. Chen, M. Lyu, G. Liu, L. Wang, Abnormal cathodic photocurrent generated on an n-type FeOOH nanorod-array photoelectrode. Chem.-Eur. J. 22(14), 4802–4808 (2016). https://doi.org/10.1002/chem.201504512
- T. Wang, Z. Jiang, K.H. Chu, D. Wu, B. Wang et al., X-shaped α-FeOOH with enhanced charge separation for visible-light-driven photocatalytic overall water splitting. Chemsuschem 11(8), 1365–1373 (2018). https://doi.org/10.1002/cssc.201800059
- T. Liu, Z. Pan, J.J.M. Vequizo, K. Kato, B. Wu et al., Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 13(1), 1034 (2022). https://doi.org/10.1038/s41467-022-28686-x
- M. Barawi, M. Gomez-Mendoza, F.E. Oropeza, G. Gorni, I.J. Villar-Garcia et al., Laser-reduced BiVO4 for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 14, 33200–33210 (2022). https://doi.org/10.1021/acsami.2c07451
- S. Hua, S.A. Shah, G.E.O. Nsang, R. Sayyar, B. Ullah et al., Unveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splitting. J. Colloid Interface Sci. 679, 487–495 (2025). https://doi.org/10.1016/j.jcis.2024.09.219
- X. Zhan, Z. Ding, S. Shang, K. Chu, Y. Guo, Mxene quantum dot-modified flower-like FeOOH for dual-mode nitrite sensing. ACS Appl. Nano Mater. 7(21), 24914–24924 (2024). https://doi.org/10.1021/acsanm.4c04800
References
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
J. Gong, C. Li, M.R. Wasielewski, Advances in solar energy conversion. Chem. Soc. Rev. 48(7), 1862–1864 (2019). https://doi.org/10.1039/C9CS90020A
J. Jian, G. Jiang, R. van de Krol, B. Wei, H. Wang, Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 51, 457–480 (2018). https://doi.org/10.1016/j.nanoen.2018.06.074
M. Abbas, S. Chen, Z. Li, M. Ishaq, Z. Zheng et al., Highest solar-to-hydrogen conversion efficiency in Cu2ZnSnS4 photocathodes and its directly unbiased solar seawater splitting. Nano-Micro Lett. 17(1), 257 (2025). https://doi.org/10.1007/s40820-025-01755-8
J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31(20), 1806938 (2019). https://doi.org/10.1002/adma.201806938
S.D. Tilley, Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv. Energy Mater. 9(2), 1802877 (2019). https://doi.org/10.1002/aenm.201802877
J. Jian, S. Wang, Q. Ye, F. Li, G. Su et al., Activating a semiconductor-liquid junction via laser-derived dual interfacial layers for boosted photoelectrochemical water splitting. Adv. Mater. 34(19), e2201140 (2022). https://doi.org/10.1002/adma.202201140
B. Jin, Y. Cho, C. Park, J. Jeong, S. Kim et al., A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ. Sci. 15(2), 672–679 (2022). https://doi.org/10.1039/D1EE03014K
Y. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li et al., Engineering MoOx/MXene hole transfer layers for unexpected boosting of photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 61(16), e202200946 (2022). https://doi.org/10.1002/anie.202200946
L. Wang, Y. Zhang, W. Li, L. Wang, Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting. Mater. Rep. Energy 3(4), 100232 (2023). https://doi.org/10.1016/j.matre.2023.100232
K.J. McDonald, K.-S. Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 5(9), 8553–8557 (2012). https://doi.org/10.1039/c2ee22608a
J. Jian, Y. Xu, X. Yang, W. Liu, M. Fu et al., Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 10(1), 2609 (2019). https://doi.org/10.1038/s41467-019-10543-z
S. Feng, T. Wang, B. Liu, C. Hu, L. Li et al., Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew. Chem. Int. Ed. 59(5), 2044–2048 (2020). https://doi.org/10.1002/anie.201913295
R.T. Gao, S. Liu, X. Guo, R. Zhang, J. He et al., Pt-induced defects curing on BiVO4 photoanodes for near-threshold charge separation. Adv. Energy Mater. 11(45), 2102384 (2021). https://doi.org/10.1002/aenm.202102384
N. Österbacka, F. Ambrosio, J. Wiktor, Charge localization in defective bivo4. J. Phys. Chem. C 126(6), 2960–2970 (2022). https://doi.org/10.1021/acs.jpcc.1c09990
B. Liu, X. Wang, Y. Zhang, K. Wan, L. Xu et al., Bismuth vacancies induced lattice strain in BiVO4 photoanodes boosting charge separation for water oxidation. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202403835
S. Wang, M. Jiao, J. Jian, F. Li, Z. Zhang et al., Proton-acceptor interfered hydrolysis enabling highly stable FeOOH(α+β) cocatalysts for efficient photoelectrochemical water oxidation. Appl. Catal. B Environ. Energy 366, 125026 (2025). https://doi.org/10.1016/j.apcatb.2025.125026
T.W. Kim, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). https://doi.org/10.1126/science.1246913
B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 57(8), 2248–2252 (2018). https://doi.org/10.1002/anie.201712499
W. Zhang, J. Ma, L. Xiong, H.-Y. Jiang, J. Tang, Well-crystallized α- FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting. ACS Appl. Energy Mater. 3(6), 5927–5936 (2020). https://doi.org/10.1021/acsaem.0c00834
H. She, P. Yue, J. Huang, L. Wang, Q. Wang, One-step hydrothermal deposition F: FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chem. Eng. J. 392, 123703 (2020). https://doi.org/10.1016/j.cej.2019.123703
T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li et al., Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by Co-modification of CQDs and ultrathin β- FeOOH layers. Chem. Eng. J. 403, 126350 (2021). https://doi.org/10.1016/j.cej.2020.126350
X. Xiong, C. Zhang, X. Zhang, L. Fan, L. Zhou et al., Uniformly citrate-assisted deposition of small-sized feooh on BiVO4 photoanode for efficient solar water oxidation. Electrochim. Acta 389, 138795 (2021). https://doi.org/10.1016/j.electacta.2021.138795
M.A. Gaikwad, U.V. Ghorpade, U.P. Suryawanshi, P.V. Kumar, S. Jang et al., Rapid synthesis of ultrathin Ni: FeOOH with in situ-induced oxygen vacancies for enhanced water oxidation activity and stability of BiVO4 photoanodes. ACS Appl. Mater. Interfaces 15(17), 21123–21133 (2023). https://doi.org/10.1021/acsami.3c01877
L. Cai, J. Zhao, H. Li, J. Park, I.S. Cho et al., One-step hydrothermal deposition of Ni: FeOOH onto photoanodes for enhanced water oxidation. ACS Energy Lett. 1(3), 624–632 (2016). https://doi.org/10.1021/acsenergylett.6b00303
R.T. Gao, D. He, L. Wu, K. Hu, X. Liu et al., Towards long-term photostability of nickel hydroxide/BiVO4 photoanodes for oxygen evolution catalysts via in situ catalyst tuning. Angew. Chem. Int. Ed. 59(15), 6213–6218 (2020). https://doi.org/10.1002/anie.201915671
F. Yu, F. Li, T. Yao, J. Du, Y. Liang et al., Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode. ACS Catal. 7(3), 1868–1874 (2017). https://doi.org/10.1021/acscatal.6b03483
G.F. Chen, Y. Luo, L.X. Ding, H. Wang, Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 8(1), 526–530 (2017). https://doi.org/10.1021/acscatal.7b03319
J. Wang, Y. Zhang, J. Bai, J. Li, C. Zhou et al., Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced pec performance of BiVO4. J. Colloid Interface Sci. 644, 509–518 (2023). https://doi.org/10.1016/j.jcis.2023.03.162
Z. Kang, X. Lv, Z. Sun, S. Wang, Y.-Z. Zheng et al., Borate and iron hydroxide co-modified BiVO4 photoanodes for high-performance photoelectrochemical water oxidation. Chem. Eng. J. 421, 129819 (2021). https://doi.org/10.1016/j.cej.2021.129819
J. Hu, S. Li, J. Chu, S. Niu, J. Wang et al., Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 9(12), 10705–10711 (2019). https://doi.org/10.1021/acscatal.9b03876
L. Li, C. Guo, J. Ning, Y. Zhong, D. Chen et al., Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 293, 120203 (2021). https://doi.org/10.1016/j.apcatb.2021.120203
X. Wu, T. Liu, W. Ni, H. Yang, H. Huang et al., Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-fenton-like oxidation. J. Colloid Interface Sci. 623, 9–20 (2022). https://doi.org/10.1016/j.jcis.2022.04.094
P.R.B. Laurence, A.J. Garvie, Ratios of ferrousto ferric iron fromnanometre-sized areas inminerals. Nature 396, 667–670 (1998). https://doi.org/10.1038/25334
Y. Li, In situ investigation of the valence states of iron-bearing phases in chang’E-5 lunar soil using FIB, AES, and TEM-EELS techniques. At. Spectrosc. 43(1), 53–59 (2022). https://doi.org/10.46770/as.2022.014
B.L.P.A. van Aken, V.J. Styrsa, Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 25, 323–327 (1998). https://doi.org/10.1007/s002690050122
J. Chen, Y. Qi, M. Lu, Y. Niu, B. Zhang, Identify fine microstructure of multifarious iron oxides via O k-edge EELS spectra. Chin. Chem. Lett. 33(9), 4375–4379 (2022). https://doi.org/10.1016/j.cclet.2021.12.027
H. Tan, J. Verbeeck, A. Abakumov, G. Van Tendeloo, Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012). https://doi.org/10.1016/j.ultramic.2012.03.002
X. Liu, Z. Guo, L. Zhou, J. Yang, H. Cao et al., Hierarchical biomimetic BiVO4 for the treatment of pharmaceutical wastewater in visible-light photocatalytic ozonation. Chemosphere 222, 38–45 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.084
H. Ullah, A.A. Tahir, T.K. Mallick, Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4 (001) thin film for the applications of photocatalysis. Appl. Catal. B-Environ. 224, 895–903 (2018). https://doi.org/10.1016/j.apcatb.2017.11.034
J. Miao, Y. Yang, P. Cui, C. Ru, K. Zhang, Improving charge transfer beyond conventional heterojunction photoelectrodes: fundamentals, strategies and applications. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202406443
A.N. Ren-De Sun, A. Fujishima, T. Watanabe, K. Hashimoto, Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105, 1984–1990 (2001). https://doi.org/10.1021/jp002525j
D.K. Lee, K.S. Choi, Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3(1), 53–60 (2018). https://doi.org/10.1038/s41560-017-0057-0
Z. Zhang, X. Huang, B. Zhang, Y. Bi, High-performance and stable BiVO4 photoanodes for solar water splitting via phosphorus-oxygen bonded feni catalysts. Energy Environ. Sci. 15(7), 2867–2873 (2022). https://doi.org/10.1039/d2ee00936f
L. Chen, F.M. Toma, J.K. Cooper, A. Lyon, Y. Lin et al., Mo-doped BiVO4 photoanodes synthesized by reactive sputtering. Chemsuschem 8(6), 1066–1071 (2015). https://doi.org/10.1002/cssc.201402984
Y. Guo, Y. Wu, Z. Wang, D. Dai, X. Liu et al., Multi-strategy preparation of BiVO4 photoanode with abundant oxygen vacancies for efficient water oxidation. Appl. Surf. Sci. 614, 156164 (2023). https://doi.org/10.1016/j.apsusc.2022.156164
X. Lu, Kh. Ye, S. Zhang, J. Zhang, J. Yang et al., Amorphous type feooh modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chem. Eng. J. 428, 131027 (2022). https://doi.org/10.1016/j.cej.2021.131027
L. Yu, K. Xue, H. Luo, C. Liu, H. Liu et al., Phase engineering of 1 t-MoS2 on BiVO4 photoanode with p-n junctions: establishing high speed charges transport channels for efficient photoelectrochemical water splitting. Chem. Eng. J. 472, 144965 (2023). https://doi.org/10.1016/j.cej.2023.144965
K. Zhang, B. Jin, C. Park, Y. Cho, X. Song et al., Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 10(1), 2001 (2019). https://doi.org/10.1038/s41467-019-10034-1
A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4(8), 859–864 (2003). https://doi.org/10.1002/cphc.200200615
H. Zhang, D. Li, W.J. Byun, X. Wang, T.J. Shin et al., Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 11(1), 4622 (2020). https://doi.org/10.1038/s41467-020-18484-8
R.T. Gao, J. Zhang, T. Nakajima, J. He, X. Liu et al., Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat. Commun. 14(1), 2640 (2023). https://doi.org/10.1038/s41467-023-38343-6
M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al., Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
L. Bertoluzzi, J. Bisquert, Investigating the consistency of models for water splitting systems by light and voltage modulated techniques. Phys. Chem. Lett. 8(1), 172–180 (2017). https://doi.org/10.1021/acs.jpclett.6b02714
X. Ning, P. Du, Z. Han, J. Chen, X. Lu, Insight into the transition-metal hydroxide cover layer for enhancing photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 60(7), 3504–3509 (2021). https://doi.org/10.1002/anie.202013014
F. Li, J. Jian, J. Zou, S. Wang, Z. Zhang et al., Bulk embedding of Ti-defected TiO2 nano-heterointerfaces in hematite photoanode for boosted photoelectrochemical water splitting. Chem. Eng. J. 473, 145254 (2023). https://doi.org/10.1016/j.cej.2023.145254
A. Kahraman, M. Barzgar Vishlaghi, I. Baylam, A. Sennaroglu, S. Kaya, Roles of charge carriers in the excited state dynamics of BiVO4 photoanodes. J. Phys. Chem. C 123(47), 28576–28583 (2019). https://doi.org/10.1021/acs.jpcc.9b07391
H. Chen, M. Lyu, G. Liu, L. Wang, Abnormal cathodic photocurrent generated on an n-type FeOOH nanorod-array photoelectrode. Chem.-Eur. J. 22(14), 4802–4808 (2016). https://doi.org/10.1002/chem.201504512
T. Wang, Z. Jiang, K.H. Chu, D. Wu, B. Wang et al., X-shaped α-FeOOH with enhanced charge separation for visible-light-driven photocatalytic overall water splitting. Chemsuschem 11(8), 1365–1373 (2018). https://doi.org/10.1002/cssc.201800059
T. Liu, Z. Pan, J.J.M. Vequizo, K. Kato, B. Wu et al., Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 13(1), 1034 (2022). https://doi.org/10.1038/s41467-022-28686-x
M. Barawi, M. Gomez-Mendoza, F.E. Oropeza, G. Gorni, I.J. Villar-Garcia et al., Laser-reduced BiVO4 for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 14, 33200–33210 (2022). https://doi.org/10.1021/acsami.2c07451
S. Hua, S.A. Shah, G.E.O. Nsang, R. Sayyar, B. Ullah et al., Unveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splitting. J. Colloid Interface Sci. 679, 487–495 (2025). https://doi.org/10.1016/j.jcis.2024.09.219
X. Zhan, Z. Ding, S. Shang, K. Chu, Y. Guo, Mxene quantum dot-modified flower-like FeOOH for dual-mode nitrite sensing. ACS Appl. Nano Mater. 7(21), 24914–24924 (2024). https://doi.org/10.1021/acsanm.4c04800