Photocatalytic H2O2 Production over Ultrathin Layered Double Hydroxide with 3.92% Solar-to-H2O2 Efficiency
Corresponding Author: Chao Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 192
Abstract
Artificial photosynthesis of hydrogen peroxide (H2O2) from earth-abundant water and oxygen is a sustainable approach, however current photocatalysts suffer from low production rate and solar-to-chemical conversion efficiency (< 1.5%). Herein, we report that nickel–chromium layered double hydroxide with intercalated nitrate (NiCrOOH-NO3) and a thickness of ~ 4.4 nm is an efficient photocatalyst, enabling a H2O2 production yield of 28.7 mmol g−1 h−1 under visible light irradiation with 3.92% solar-to-chemical conversion efficiency. Experimental and computational studies have revealed an inherent facet-dependent reduction–oxidation reaction behavior and spatial separation of photogenerated electrons and holes. An unexpected role of intercalated nitrate is demonstrated, which promotes excited electron—hole spatial separation and facilitates the electron transfer to oxygen intermediate via delocalization. This work provides understandings in the impact of nanostructure and anion in the design of advanced photocatalysts, paving the way toward practical synthesis of H2O2 using fully solar-driven renewable energy.
Highlights:
1 The use of layered double hydroxides for photocatalytic for H2O2 production is innovatively demonstrated.
2 Facet-dependent spatial charge separation enables maximized carrier utilization efficiency.
3 The unique role of intercalated nitrate in promoting electron-hole separation and facilitating intermolecular electron transfer is unveiled.
4 A record-high H2O2 production rate of 28.7 mmol g-1 h-1 with 3.92% solar-to-chemical efficiency is achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cheng, Y. Wu, W. Zhang, L. Wang, X. Wu et al., Unlocking topological effects in covalent organic frameworks for high-performance photosynthesis of hydrogen peroxide. Adv. Mater. 37(1), 2410247 (2025). https://doi.org/10.1002/adma.202410247
- J. Yang, X. Zeng, M. Tebyetekerwa, Z. Wang, C. Bie et al., Engineering 2D photocatalysts for solar hydrogen peroxide production. Adv. Energy Mater. 14(23), 2400740 (2024). https://doi.org/10.1002/aenm.202400740
- J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45(42), 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
- T. Freese, J.T. Meijer, B.L. Feringa, S.B. Beil, An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal. 6(7), 553–558 (2023). https://doi.org/10.1038/s41929-023-00980-x
- C. Liu, T. Bao, L. Yuan, C. Zhang, J. Wang et al., Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters. Adv. Funct. Mater. 32(15), 2111404 (2022). https://doi.org/10.1002/adfm.202111404
- C. Xia, L. Yuan, H. Song, C. Zhang, Z. Li et al., Spatial specific Janus S-scheme photocatalyst with enhanced H2O2 production performance. Small 19(29), e2300292 (2023). https://doi.org/10.1002/smll.202300292
- F. He, Y. Lu, Y. Wu, S. Wang, Y. Zhang et al., Rejoint of carbon nitride fragments into multi-interfacial order-disorder homojunction for robust photo-driven generation of H2O2. Adv. Mater. 36(9), e2307490 (2024). https://doi.org/10.1002/adma.202307490
- J.Y. Choi, B. Check, X. Fang, S. Blum, H.T.B. Pham et al., Photocatalytic hydrogen peroxide production through functionalized semiconductive metal-organic frameworks. J. Am. Chem. Soc. 146(16), 11319–11327 (2024). https://doi.org/10.1021/jacs.4c00681
- A. Chakraborty, A. Alam, U. Pal, A. Sinha, S. Das et al., Enhancing photocatalytic hydrogen peroxide generation by tuning hydrazone linkage density in covalent organic frameworks. Nat. Commun. 16(1), 503 (2025). https://doi.org/10.1038/s41467-025-55894-y
- C. Zhao, H. Li, Y. Yin, W. Tian, X. Yan et al., Non-radical mediated photocatalytic H2O2 synthesis in conjugate-enhanced phenolic resins with ultrafast charge separation. Angew. Chem. Int. Ed. 64(9), e202420895 (2025). https://doi.org/10.1002/anie.202420895
- C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- Q. Li, Y. Jiao, Y. Tang, J. Zhou, B. Wu et al., Shear stress triggers ultrathin-nanosheet carbon nitride assembly for photocatalytic H2O2 production coupled with selective alcohol oxidation. J. Am. Chem. Soc. 145(38), 20837–20848 (2023). https://doi.org/10.1021/jacs.3c05234
- L. Kuo, V.K. Sangwan, S.V. Rangnekar, T.-C. Chu, D. Lam et al., All-printed ultrahigh-responsivity MoS2 nanosheet photodetectors enabled by megasonic exfoliation. Adv. Mater. 34(34), e2203772 (2022). https://doi.org/10.1002/adma.202203772
- M. Guan, C. Xiao, J. Zhang, S. Fan, R. An et al., Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135(28), 10411–10417 (2013). https://doi.org/10.1021/ja402956f
- W. Liu, X. Li, C. Wang, H. Pan, W. Liu et al., A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 141(43), 17431–17440 (2019). https://doi.org/10.1021/jacs.9b09502
- J. Ran, H. Zhang, S. Fu, M. Jaroniec, J. Shan et al., NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 13(1), 4600 (2022). https://doi.org/10.1038/s41467-022-32256-6
- C. Ning, S. Bai, J. Wang, Z. Li, Z. Han et al., Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coord. Chem. Rev. 480, 215008 (2023). https://doi.org/10.1016/j.ccr.2022.215008
- Y. Wang, M. Zhang, Y. Liu, Z. Zheng, B. Liu et al., Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv. Sci. 10(13), 2207519 (2023). https://doi.org/10.1002/advs.202207519
- Y. Zhao, X. Jia, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung et al., Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 6(6), 1501974 (2016). https://doi.org/10.1002/aenm.201501974
- S. Li, Z. Li, J. Yue, H. Wang, Y. Wang et al., Photocatalytic CO2 reduction by near-infrared-light (1200 nm) irradiation and a ruthenium-intercalated NiAl-layered double hydroxide. Angew. Chem. Int. Ed. 63(45), e202407638 (2024). https://doi.org/10.1002/anie.202407638
- Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian et al., Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv. Energy Mater. 10(34), 2002199 (2020). https://doi.org/10.1002/aenm.202002199
- M. Yu, D. Liu, L. Wang, J. Xia, J. Ren et al., A Zn-Al-Zr layered double hydroxide/graphene oxide nanocomposite enables rapid photocatalytic removal of kanamycin-resistance bacteria and genes via nano-confinement effects. Appl. Catal. B Environ. Energy 350, 123922 (2024). https://doi.org/10.1016/j.apcatb.2024.123922
- S. Zhang, Y. Zhao, R. Shi, C. Zhou, G.I.N. Waterhouse et al., Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Adv. Energy Mater. 10(8), 1901973 (2020). https://doi.org/10.1002/aenm.201901973
- Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I.N. Waterhouse et al., Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27(47), 7824–7831 (2015). https://doi.org/10.1002/adma.201503730
- A. Cai, G. Hu, W. Chen, S. An, B. Qi et al., Single-atom Pt anchored polyoxometalate as electron-proton shuttle for efficient photoreduction of CO2 to CH4 catalyzed by NiCo layered doubled hydroxide. Small 21(2), 2410343 (2025). https://doi.org/10.1002/smll.202410343
- X. Han, B. Lu, X. Huang, C. Liu, S. Chen et al., Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity. Appl. Catal. B Environ. 316, 121587 (2022). https://doi.org/10.1016/j.apcatb.2022.121587
- X. Feng, X. Li, H. Luo, B. Su, J. Ma, Facile synthesis of Ni-based layered double hydroxides with superior photocatalytic performance for tetracycline antibiotic degradation. J. Solid State Chem. 307, 122827 (2022). https://doi.org/10.1016/j.jssc.2021.122827
- R. Wang, Z. Qiu, S. Wan, Y. Wang, Q. Liu et al., Insight into mechanism of divalent metal cations with different d-bands classification in layered double hydroxides for light-driven CO2 reduction. Chem. Eng. J. 427, 130863 (2022). https://doi.org/10.1016/j.cej.2021.130863
- W. Kou, Z. Fang, H. Ding, W. Luo, C. Liu et al., Valence engineering boosts kinetics and storage capacity of layered double hydroxides for aqueous magnesium-ion batteries. Adv. Funct. Mater. 34(41), 2406423 (2024). https://doi.org/10.1002/adfm.202406423
- Y. Xi, Y. Xiang, T. Bao, Z. Li, C. Zhang et al., Nanoarchitectonics of S-scheme heterojunction photocatalysts: a nanohouse design improves photocatalytic nitrate reduction to ammonia performance. Angew. Chem. Int. Ed. 63(38), e202409163 (2024). https://doi.org/10.1002/anie.202409163
- B.C. Moon, B. Bayarkhuu, K.A.I. Zhang, D.K. Lee, J. Byun, Solar-driven H2O2 production via cooperative auto- and photocatalytic oxidation in fine-tuned reaction media. Energy Environ. Sci. 15(12), 5082–5092 (2022). https://doi.org/10.1039/D2EE02504C
- J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang et al., COF/In2S3 S-scheme photocatalyst with enhanced light absorption and H2O2-production activity and fs-TA investigation. Adv. Mater. 36(24), 2400288 (2024). https://doi.org/10.1002/adma.202400288
- Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo et al., Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8(5), 504–514 (2023). https://doi.org/10.1038/s41560-023-01242-7
- W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang et al., A photocatalytic redox cycle over a polyimide catalyst drives efficient solar-to-H2O2 conversion. Nat. Commun. 15(1), 5316 (2024). https://doi.org/10.1038/s41467-024-49663-6
- R. Ji, Y. Dong, X. Sun, P. Li, R. Zhang et al., Novel A–D–a type naphthalenediimide supramolecule for H2O2 photosynthesis with solar-to-chemical conversion 1.03%. Adv. Energy Mater. 14(30), 2401437 (2024). https://doi.org/10.1002/aenm.202401437
- M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang et al., Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 61(19), e202200413 (2022). https://doi.org/10.1002/anie.202200413
- P. Liu, T. Liang, Y. Li, Z. Zhang, Z. Li et al., Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters. Nat. Commun. 15(1), 9224 (2024). https://doi.org/10.1038/s41467-024-53482-0
- T. Liu, Z. Pan, J.J.M. Vequizo, K. Kato, B. Wu et al., Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 13, 1034 (2022). https://doi.org/10.1038/s41467-022-28686-x
- Y. Liu, L. Li, Z. Sang, H. Tan, N. Ye et al., Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution. Nat. Synth. 4(1), 134–141 (2025). https://doi.org/10.1038/s44160-024-00644-z
- Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji et al., Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18(9), 985–993 (2019). https://doi.org/10.1038/s41563-019-0398-0
- Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang et al., Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4(5), 374–384 (2021). https://doi.org/10.1038/s41929-021-00605-1
- Q. Tian, X.-K. Zeng, C. Zhao, L.-Y. Jing, X.-W. Zhang et al., Exceptional photocatalytic hydrogen peroxide production from sandwich-structured graphene interlayered phenolic resins nanosheets with mesoporous channels. Adv. Funct. Mater. 33(21), 2213173 (2023). https://doi.org/10.1002/adfm.202213173
- W. Wang, Q. Song, Q. Luo, L. Li, X. Huo et al., Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater. Nat. Commun. 14(1), 2493 (2023). https://doi.org/10.1038/s41467-023-38211-3
- X. Wang, X. Yang, C. Zhao, Y. Pi, X. Li et al., Ambient preparation of benzoxazine-based phenolic resins enables long-term sustainable photosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 62(23), e202302829 (2023). https://doi.org/10.1002/anie.202302829
- X. Zhang, S. Cheng, C. Chen, X. Wen, J. Miao et al., Keto-anthraquinone covalent organic framework for H2O2 photosynthesis with oxygen and alkaline water. Nat. Commun. 15(1), 2649 (2024). https://doi.org/10.1038/s41467-024-47023-y
- Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong et al., H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 8(4), 361–371 (2023). https://doi.org/10.1038/s41560-023-01218-7
- C. Zhao, X. Wang, Y. Yin, W. Tian, G. Zeng et al., Molecular level modulation of anthraquinone-containing resorcinol-formaldehyde resin photocatalysts for H2O2 production with exceeding 1.2% efficiency. Angew. Chem. Int. Ed. 62(12), e202218318 (2023). https://doi.org/10.1002/anie.202218318
- C. Chen, G. Qiu, T. Wang, Z. Zheng, M. Huang et al., Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production. J. Colloid Interface Sci. 592, 1–12 (2021). https://doi.org/10.1016/j.jcis.2021.02.036
- X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J. Mater. Chem. A 8(4), 1904–1910 (2020). https://doi.org/10.1039/C9TA11120D
- X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, Heterometallic and hydrophobic metal–organic frameworks as durable photocatalysts for boosting hydrogen peroxide production in a two-phase system. ACS Appl. Energy Mater. 4(5), 4823–4830 (2021). https://doi.org/10.1021/acsaem.1c00371
- P. Das, J. Roeser, A. Thomas, Solar light driven H2O2 production and selective oxidations using a covalent organic framework photocatalyst prepared by a multicomponent reaction. Angew. Chem. Int. Ed. 62(29), e202304349 (2023). https://doi.org/10.1002/anie.202304349
- Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Two-phase system utilizing hydrophobic metal–organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 58(16), 5402–5406 (2019). https://doi.org/10.1002/anie.201901961
- L. Li, X. Huo, S. Chen, Q. Luo, W. Wang et al., Solar-driven production of hydrogen peroxide and benzaldehyde in two-phase system by an interface-engineered Co9S8-CoZnIn2S4 heterostructure. Small 19(38), 2301865 (2023). https://doi.org/10.1002/smll.202301865
- A. Rodríguez-Camargo, M.W. Terban, M. Paetsch, E.A. Rico, D. Graf et al., Cyclopalladation of a covalent organic framework for near-infrared-light-driven photocatalytic hydrogen peroxide production. Nat. Synth. 4(6), 710–719 (2025). https://doi.org/10.1038/s44160-024-00731-1
- Z. Sun, X. Yang, X.-F. Yu, L. Xia, Y. Peng et al., Surface oxygen vacancies of Pd/Bi2MoO6-x acts as “Electron Bridge” to promote photocatalytic selective oxidation of alcohol. Appl. Catal. B Environ. 285, 119790 (2021). https://doi.org/10.1016/j.apcatb.2020.119790
- Z. Zheng, F. Han, B. Xing, X. Han, B. Li, Synthesis of Fe3O4@CdS@CQDs ternary core–shell heterostructures as a magnetically recoverable photocatalyst for selective alcohol oxidation coupled with H2O2 production. J. Colloid Interface Sci. 624, 460–470 (2022). https://doi.org/10.1016/j.jcis.2022.05.161
- X. Zeng, T. Wang, Z. Wang, M. Tebyetekerwa, Y. Liu et al., Fast photocatalytic hydrogen peroxide generation by singlet oxygen-engaged sequential excitation energy and electron-transfer process. ACS Catal. 14(13), 9955–9968 (2024). https://doi.org/10.1021/acscatal.4c01591
- L. Zhai, Z. Xie, C.-X. Cui, X. Yang, Q. Xu et al., Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production. Chem. Mater. 34(11), 5232–5240 (2022). https://doi.org/10.1021/acs.chemmater.2c00910
- Z. Xue, B. Zhang, Q. Guo, Y. Wang, Q. Li et al., Sacrificial-agent-triggered mass transfer gating in covalent organic framework for hydrogen peroxide photocatalysis. Adv. Mater. 37(42), e10201 (2025). https://doi.org/10.1002/adma.202510201
- Z. Chen, H. Weng, C. Chu, D. Yao, Q. Li et al., Nitrogen heterocyclic covalent organic frameworks for efficient H2O2 photosynthesis and in situ water treatment. Nat. Commun. 16(1), 6943 (2025). https://doi.org/10.1038/s41467-025-62371-z
- S. Nayak, I.J. McPherson, K.A. Vincent, Adsorbed intermediates in oxygen reduction on platinum nanops observed by in situ IR spectroscopy. Angew. Chem. Int. Ed. 130(39), 13037–13040 (2018). https://doi.org/10.1002/ange.201804978
- L. Yuan, P. Du, C. Zhang, Y. Xi, Y. Zou et al., Facet-dependent spatial separation of dual cocatalysts on MOF photocatalysts for H2O2 production coupling biomass oxidation with enhanced performance. Appl. Catal. B Environ. Energy 364, 124855 (2025). https://doi.org/10.1016/j.apcatb.2024.124855
- L. Yuan, Y. Zou, L. Zhao, C. Zhang, J. Wang et al., Unveiling the lattice distortion and electron-donating effects in methoxy-functionalized MOF photocatalysts for H2O2 production. Appl. Catal. B Environ. 318, 121859 (2022). https://doi.org/10.1016/j.apcatb.2022.121859
- Y. Deng, W. Liu, R. Xu, R. Gao, N. Huang et al., Reduction of superoxide radical intermediate by polydopamine for efficient hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 63(14), e202319216 (2024). https://doi.org/10.1002/anie.202319216
- Y. Xi, Y. Xiang, C. Zhang, T. Bao, Y. Zou et al., Perfect is perfect: nickel Prussian blue analogue as a high-efficiency electrocatalyst for hydrogen peroxide production. Angew. Chem. Int. Ed. 64(1), e202413866 (2025). https://doi.org/10.1002/anie.202413866
- C. Zhang, L. Yuan, C. Liu, Z. Li, Y. Zou et al., Crystal engineering enables cobalt-based metal-organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 145(14), 7791–7799 (2023). https://doi.org/10.1021/jacs.2c11446
- K. Wang, Y. Liu, Z. Ding, Z. Chen, X. Xu et al., Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization. Chem. Eng. J. 433, 133578 (2022). https://doi.org/10.1016/j.cej.2021.133578
References
J. Cheng, Y. Wu, W. Zhang, L. Wang, X. Wu et al., Unlocking topological effects in covalent organic frameworks for high-performance photosynthesis of hydrogen peroxide. Adv. Mater. 37(1), 2410247 (2025). https://doi.org/10.1002/adma.202410247
J. Yang, X. Zeng, M. Tebyetekerwa, Z. Wang, C. Bie et al., Engineering 2D photocatalysts for solar hydrogen peroxide production. Adv. Energy Mater. 14(23), 2400740 (2024). https://doi.org/10.1002/aenm.202400740
J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45(42), 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
T. Freese, J.T. Meijer, B.L. Feringa, S.B. Beil, An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal. 6(7), 553–558 (2023). https://doi.org/10.1038/s41929-023-00980-x
C. Liu, T. Bao, L. Yuan, C. Zhang, J. Wang et al., Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters. Adv. Funct. Mater. 32(15), 2111404 (2022). https://doi.org/10.1002/adfm.202111404
C. Xia, L. Yuan, H. Song, C. Zhang, Z. Li et al., Spatial specific Janus S-scheme photocatalyst with enhanced H2O2 production performance. Small 19(29), e2300292 (2023). https://doi.org/10.1002/smll.202300292
F. He, Y. Lu, Y. Wu, S. Wang, Y. Zhang et al., Rejoint of carbon nitride fragments into multi-interfacial order-disorder homojunction for robust photo-driven generation of H2O2. Adv. Mater. 36(9), e2307490 (2024). https://doi.org/10.1002/adma.202307490
J.Y. Choi, B. Check, X. Fang, S. Blum, H.T.B. Pham et al., Photocatalytic hydrogen peroxide production through functionalized semiconductive metal-organic frameworks. J. Am. Chem. Soc. 146(16), 11319–11327 (2024). https://doi.org/10.1021/jacs.4c00681
A. Chakraborty, A. Alam, U. Pal, A. Sinha, S. Das et al., Enhancing photocatalytic hydrogen peroxide generation by tuning hydrazone linkage density in covalent organic frameworks. Nat. Commun. 16(1), 503 (2025). https://doi.org/10.1038/s41467-025-55894-y
C. Zhao, H. Li, Y. Yin, W. Tian, X. Yan et al., Non-radical mediated photocatalytic H2O2 synthesis in conjugate-enhanced phenolic resins with ultrafast charge separation. Angew. Chem. Int. Ed. 64(9), e202420895 (2025). https://doi.org/10.1002/anie.202420895
C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
Q. Li, Y. Jiao, Y. Tang, J. Zhou, B. Wu et al., Shear stress triggers ultrathin-nanosheet carbon nitride assembly for photocatalytic H2O2 production coupled with selective alcohol oxidation. J. Am. Chem. Soc. 145(38), 20837–20848 (2023). https://doi.org/10.1021/jacs.3c05234
L. Kuo, V.K. Sangwan, S.V. Rangnekar, T.-C. Chu, D. Lam et al., All-printed ultrahigh-responsivity MoS2 nanosheet photodetectors enabled by megasonic exfoliation. Adv. Mater. 34(34), e2203772 (2022). https://doi.org/10.1002/adma.202203772
M. Guan, C. Xiao, J. Zhang, S. Fan, R. An et al., Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135(28), 10411–10417 (2013). https://doi.org/10.1021/ja402956f
W. Liu, X. Li, C. Wang, H. Pan, W. Liu et al., A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 141(43), 17431–17440 (2019). https://doi.org/10.1021/jacs.9b09502
J. Ran, H. Zhang, S. Fu, M. Jaroniec, J. Shan et al., NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 13(1), 4600 (2022). https://doi.org/10.1038/s41467-022-32256-6
C. Ning, S. Bai, J. Wang, Z. Li, Z. Han et al., Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coord. Chem. Rev. 480, 215008 (2023). https://doi.org/10.1016/j.ccr.2022.215008
Y. Wang, M. Zhang, Y. Liu, Z. Zheng, B. Liu et al., Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv. Sci. 10(13), 2207519 (2023). https://doi.org/10.1002/advs.202207519
Y. Zhao, X. Jia, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung et al., Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 6(6), 1501974 (2016). https://doi.org/10.1002/aenm.201501974
S. Li, Z. Li, J. Yue, H. Wang, Y. Wang et al., Photocatalytic CO2 reduction by near-infrared-light (1200 nm) irradiation and a ruthenium-intercalated NiAl-layered double hydroxide. Angew. Chem. Int. Ed. 63(45), e202407638 (2024). https://doi.org/10.1002/anie.202407638
Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian et al., Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv. Energy Mater. 10(34), 2002199 (2020). https://doi.org/10.1002/aenm.202002199
M. Yu, D. Liu, L. Wang, J. Xia, J. Ren et al., A Zn-Al-Zr layered double hydroxide/graphene oxide nanocomposite enables rapid photocatalytic removal of kanamycin-resistance bacteria and genes via nano-confinement effects. Appl. Catal. B Environ. Energy 350, 123922 (2024). https://doi.org/10.1016/j.apcatb.2024.123922
S. Zhang, Y. Zhao, R. Shi, C. Zhou, G.I.N. Waterhouse et al., Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Adv. Energy Mater. 10(8), 1901973 (2020). https://doi.org/10.1002/aenm.201901973
Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I.N. Waterhouse et al., Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27(47), 7824–7831 (2015). https://doi.org/10.1002/adma.201503730
A. Cai, G. Hu, W. Chen, S. An, B. Qi et al., Single-atom Pt anchored polyoxometalate as electron-proton shuttle for efficient photoreduction of CO2 to CH4 catalyzed by NiCo layered doubled hydroxide. Small 21(2), 2410343 (2025). https://doi.org/10.1002/smll.202410343
X. Han, B. Lu, X. Huang, C. Liu, S. Chen et al., Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity. Appl. Catal. B Environ. 316, 121587 (2022). https://doi.org/10.1016/j.apcatb.2022.121587
X. Feng, X. Li, H. Luo, B. Su, J. Ma, Facile synthesis of Ni-based layered double hydroxides with superior photocatalytic performance for tetracycline antibiotic degradation. J. Solid State Chem. 307, 122827 (2022). https://doi.org/10.1016/j.jssc.2021.122827
R. Wang, Z. Qiu, S. Wan, Y. Wang, Q. Liu et al., Insight into mechanism of divalent metal cations with different d-bands classification in layered double hydroxides for light-driven CO2 reduction. Chem. Eng. J. 427, 130863 (2022). https://doi.org/10.1016/j.cej.2021.130863
W. Kou, Z. Fang, H. Ding, W. Luo, C. Liu et al., Valence engineering boosts kinetics and storage capacity of layered double hydroxides for aqueous magnesium-ion batteries. Adv. Funct. Mater. 34(41), 2406423 (2024). https://doi.org/10.1002/adfm.202406423
Y. Xi, Y. Xiang, T. Bao, Z. Li, C. Zhang et al., Nanoarchitectonics of S-scheme heterojunction photocatalysts: a nanohouse design improves photocatalytic nitrate reduction to ammonia performance. Angew. Chem. Int. Ed. 63(38), e202409163 (2024). https://doi.org/10.1002/anie.202409163
B.C. Moon, B. Bayarkhuu, K.A.I. Zhang, D.K. Lee, J. Byun, Solar-driven H2O2 production via cooperative auto- and photocatalytic oxidation in fine-tuned reaction media. Energy Environ. Sci. 15(12), 5082–5092 (2022). https://doi.org/10.1039/D2EE02504C
J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang et al., COF/In2S3 S-scheme photocatalyst with enhanced light absorption and H2O2-production activity and fs-TA investigation. Adv. Mater. 36(24), 2400288 (2024). https://doi.org/10.1002/adma.202400288
Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo et al., Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8(5), 504–514 (2023). https://doi.org/10.1038/s41560-023-01242-7
W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang et al., A photocatalytic redox cycle over a polyimide catalyst drives efficient solar-to-H2O2 conversion. Nat. Commun. 15(1), 5316 (2024). https://doi.org/10.1038/s41467-024-49663-6
R. Ji, Y. Dong, X. Sun, P. Li, R. Zhang et al., Novel A–D–a type naphthalenediimide supramolecule for H2O2 photosynthesis with solar-to-chemical conversion 1.03%. Adv. Energy Mater. 14(30), 2401437 (2024). https://doi.org/10.1002/aenm.202401437
M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang et al., Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 61(19), e202200413 (2022). https://doi.org/10.1002/anie.202200413
P. Liu, T. Liang, Y. Li, Z. Zhang, Z. Li et al., Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters. Nat. Commun. 15(1), 9224 (2024). https://doi.org/10.1038/s41467-024-53482-0
T. Liu, Z. Pan, J.J.M. Vequizo, K. Kato, B. Wu et al., Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 13, 1034 (2022). https://doi.org/10.1038/s41467-022-28686-x
Y. Liu, L. Li, Z. Sang, H. Tan, N. Ye et al., Enhanced hydrogen peroxide photosynthesis in covalent organic frameworks through induced asymmetric electron distribution. Nat. Synth. 4(1), 134–141 (2025). https://doi.org/10.1038/s44160-024-00644-z
Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji et al., Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18(9), 985–993 (2019). https://doi.org/10.1038/s41563-019-0398-0
Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang et al., Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4(5), 374–384 (2021). https://doi.org/10.1038/s41929-021-00605-1
Q. Tian, X.-K. Zeng, C. Zhao, L.-Y. Jing, X.-W. Zhang et al., Exceptional photocatalytic hydrogen peroxide production from sandwich-structured graphene interlayered phenolic resins nanosheets with mesoporous channels. Adv. Funct. Mater. 33(21), 2213173 (2023). https://doi.org/10.1002/adfm.202213173
W. Wang, Q. Song, Q. Luo, L. Li, X. Huo et al., Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater. Nat. Commun. 14(1), 2493 (2023). https://doi.org/10.1038/s41467-023-38211-3
X. Wang, X. Yang, C. Zhao, Y. Pi, X. Li et al., Ambient preparation of benzoxazine-based phenolic resins enables long-term sustainable photosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 62(23), e202302829 (2023). https://doi.org/10.1002/anie.202302829
X. Zhang, S. Cheng, C. Chen, X. Wen, J. Miao et al., Keto-anthraquinone covalent organic framework for H2O2 photosynthesis with oxygen and alkaline water. Nat. Commun. 15(1), 2649 (2024). https://doi.org/10.1038/s41467-024-47023-y
Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong et al., H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 8(4), 361–371 (2023). https://doi.org/10.1038/s41560-023-01218-7
C. Zhao, X. Wang, Y. Yin, W. Tian, G. Zeng et al., Molecular level modulation of anthraquinone-containing resorcinol-formaldehyde resin photocatalysts for H2O2 production with exceeding 1.2% efficiency. Angew. Chem. Int. Ed. 62(12), e202218318 (2023). https://doi.org/10.1002/anie.202218318
C. Chen, G. Qiu, T. Wang, Z. Zheng, M. Huang et al., Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production. J. Colloid Interface Sci. 592, 1–12 (2021). https://doi.org/10.1016/j.jcis.2021.02.036
X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J. Mater. Chem. A 8(4), 1904–1910 (2020). https://doi.org/10.1039/C9TA11120D
X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, Heterometallic and hydrophobic metal–organic frameworks as durable photocatalysts for boosting hydrogen peroxide production in a two-phase system. ACS Appl. Energy Mater. 4(5), 4823–4830 (2021). https://doi.org/10.1021/acsaem.1c00371
P. Das, J. Roeser, A. Thomas, Solar light driven H2O2 production and selective oxidations using a covalent organic framework photocatalyst prepared by a multicomponent reaction. Angew. Chem. Int. Ed. 62(29), e202304349 (2023). https://doi.org/10.1002/anie.202304349
Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Two-phase system utilizing hydrophobic metal–organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 58(16), 5402–5406 (2019). https://doi.org/10.1002/anie.201901961
L. Li, X. Huo, S. Chen, Q. Luo, W. Wang et al., Solar-driven production of hydrogen peroxide and benzaldehyde in two-phase system by an interface-engineered Co9S8-CoZnIn2S4 heterostructure. Small 19(38), 2301865 (2023). https://doi.org/10.1002/smll.202301865
A. Rodríguez-Camargo, M.W. Terban, M. Paetsch, E.A. Rico, D. Graf et al., Cyclopalladation of a covalent organic framework for near-infrared-light-driven photocatalytic hydrogen peroxide production. Nat. Synth. 4(6), 710–719 (2025). https://doi.org/10.1038/s44160-024-00731-1
Z. Sun, X. Yang, X.-F. Yu, L. Xia, Y. Peng et al., Surface oxygen vacancies of Pd/Bi2MoO6-x acts as “Electron Bridge” to promote photocatalytic selective oxidation of alcohol. Appl. Catal. B Environ. 285, 119790 (2021). https://doi.org/10.1016/j.apcatb.2020.119790
Z. Zheng, F. Han, B. Xing, X. Han, B. Li, Synthesis of Fe3O4@CdS@CQDs ternary core–shell heterostructures as a magnetically recoverable photocatalyst for selective alcohol oxidation coupled with H2O2 production. J. Colloid Interface Sci. 624, 460–470 (2022). https://doi.org/10.1016/j.jcis.2022.05.161
X. Zeng, T. Wang, Z. Wang, M. Tebyetekerwa, Y. Liu et al., Fast photocatalytic hydrogen peroxide generation by singlet oxygen-engaged sequential excitation energy and electron-transfer process. ACS Catal. 14(13), 9955–9968 (2024). https://doi.org/10.1021/acscatal.4c01591
L. Zhai, Z. Xie, C.-X. Cui, X. Yang, Q. Xu et al., Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production. Chem. Mater. 34(11), 5232–5240 (2022). https://doi.org/10.1021/acs.chemmater.2c00910
Z. Xue, B. Zhang, Q. Guo, Y. Wang, Q. Li et al., Sacrificial-agent-triggered mass transfer gating in covalent organic framework for hydrogen peroxide photocatalysis. Adv. Mater. 37(42), e10201 (2025). https://doi.org/10.1002/adma.202510201
Z. Chen, H. Weng, C. Chu, D. Yao, Q. Li et al., Nitrogen heterocyclic covalent organic frameworks for efficient H2O2 photosynthesis and in situ water treatment. Nat. Commun. 16(1), 6943 (2025). https://doi.org/10.1038/s41467-025-62371-z
S. Nayak, I.J. McPherson, K.A. Vincent, Adsorbed intermediates in oxygen reduction on platinum nanops observed by in situ IR spectroscopy. Angew. Chem. Int. Ed. 130(39), 13037–13040 (2018). https://doi.org/10.1002/ange.201804978
L. Yuan, P. Du, C. Zhang, Y. Xi, Y. Zou et al., Facet-dependent spatial separation of dual cocatalysts on MOF photocatalysts for H2O2 production coupling biomass oxidation with enhanced performance. Appl. Catal. B Environ. Energy 364, 124855 (2025). https://doi.org/10.1016/j.apcatb.2024.124855
L. Yuan, Y. Zou, L. Zhao, C. Zhang, J. Wang et al., Unveiling the lattice distortion and electron-donating effects in methoxy-functionalized MOF photocatalysts for H2O2 production. Appl. Catal. B Environ. 318, 121859 (2022). https://doi.org/10.1016/j.apcatb.2022.121859
Y. Deng, W. Liu, R. Xu, R. Gao, N. Huang et al., Reduction of superoxide radical intermediate by polydopamine for efficient hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 63(14), e202319216 (2024). https://doi.org/10.1002/anie.202319216
Y. Xi, Y. Xiang, C. Zhang, T. Bao, Y. Zou et al., Perfect is perfect: nickel Prussian blue analogue as a high-efficiency electrocatalyst for hydrogen peroxide production. Angew. Chem. Int. Ed. 64(1), e202413866 (2025). https://doi.org/10.1002/anie.202413866
C. Zhang, L. Yuan, C. Liu, Z. Li, Y. Zou et al., Crystal engineering enables cobalt-based metal-organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 145(14), 7791–7799 (2023). https://doi.org/10.1021/jacs.2c11446
K. Wang, Y. Liu, Z. Ding, Z. Chen, X. Xu et al., Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization. Chem. Eng. J. 433, 133578 (2022). https://doi.org/10.1016/j.cej.2021.133578