Inorganic High-Performance Fiber-Based Materials for Electromagnetic Interference Shielding: Fundamentals, Fabrications, and Emerging Applications
Corresponding Author: Fengxiang Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 229
Abstract
Confronted with increasingly severe challenges of electromagnetic interference (EMI) and electromagnetic radiation pollution in industrial, military, and aerospace applications, the development of novel materials that combine high shielding efficiency with excellent comprehensive performance has become a research hotspot. Inorganic high-performance fibers (IHPFs), recognized for their lightweight nature, outstanding mechanical properties, and chemical stability, are regarded as ideal candidate materials for designing lightweight, durable, and structurally functional integrated EM shielding systems. However, besides metal fibers, most IHPFs exhibit intrinsic surface chemical inertness and physical smoothness, resulting in poor interfacial compatibility and weak adhesion with functional coatings or resin matrices, which significantly undermine the long-term service reliability of composites under extreme conditions. This paper introduces the EM shielding mechanism, highlights common issues of surface inertness in IHPFs, and elaborates on both “dry” and “wet” surface modification strategies. These strategies enable the formation of robust functional layers, facilitating the integration of high strength, high modulus, and multifunctionality, while ensuring interfacial reliability in composites. Furthermore, the principles and processing techniques of various strategies for fabricating EMI shielding functional layers on IHPFs surfaces are reviewed, and recent advances in the application of functionalized IHPFs, as well as service reliability and environmental stability, are summarized, including EMI shielding protection and radar-absorbing stealth. Finally, the challenges and future research directions for the large-scale and long-term stable application of IHPF-based EMI shielding functionalization in high-end fields are discussed, offering insights that may accelerate the development of next-generation lightweight, sustainable, and multifunctional EMI shielding materials.
Highlights:
1 Inorganic high-performance fibers (IHPFs)-based composites development and electromagnetic interference (EMI) shielding mechanisms are reviewed.
2 Surface modification strategies for IHPF’s surface inertness challenge and EMI shielding layer construction are summarized.
3 Future directions and current challenges for achieving large-scale, durable, and environmentally stable IHPF-based EMI shielding materials are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Tao, X. Wen, C. Yang, K. Yan, Z. Li et al., Controlled twill surface structure endowing nanofiber composite membrane excellent electromagnetic interference shielding. Nano-Micro Lett. 16(1), 236 (2024). https://doi.org/10.1007/s40820-024-01444-y
- J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
- A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), e2414085 (2025). https://doi.org/10.1002/adma.202414085
- W. Zhao, M. Li, Z. Zhang, H.-X. Peng, EMI shielding effectiveness of silver nanop-decorated multi-walled carbon nanotube sheets. Int. J. Smart Nano Mater. 1(4), 249–260 (2010). https://doi.org/10.1080/19475411.2010.511477
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13(1), 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- Z. Shi, Z. Liang, Z. Huang, A. He, S. Qiao et al., Revolutionizing fiber materials for space: multi-scale interface engineering unlocks new aerospace frontiers. Mater. Today 88, 643–704 (2025). https://doi.org/10.1016/j.mattod.2025.06.010
- W. Lu, M. Zu, J.-H. Byun, B.-S. Kim, T.-W. Chou, State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24(14), 1805–1833 (2012). https://doi.org/10.1002/adma.201104672
- G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
- L. Chen, Y. He, S. Chai, H. Qiang, F. Chen et al., Toward high performance graphene fibers. Nanoscale 5(13), 5809 (2013). https://doi.org/10.1039/c3nr01083j
- P.-Y. Hung, K.T. Lau, Q. Guo, B. Jia, B. Fox, Tailoring specific properties of polymer-based composites by using graphene and its associated compounds. Int. J. Smart Nano Mater. 11(2), 173–189 (2020). https://doi.org/10.1080/19475411.2020.1786477
- V. Dhand, G. Mittal, K.Y. Rhee, S.-J. Park, D. Hui, A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 73, 166–180 (2015). https://doi.org/10.1016/j.compositesb.2014.12.011
- B. Mainzer, C. Lin, M. Frieß, R. Riedel, J. Riesch et al., Novel ceramic matrix composites with tungsten and molybdenum fiber reinforcement. J. Eur. Ceram. Soc. 41(5), 3030–3036 (2021). https://doi.org/10.1016/j.jeurceramsoc.2019.10.049
- Y. Mao, J. Coenen, S. Sistla, C. Liu, A. Terra et al., Design of tungsten fiber-reinforced tungsten composites with porous matrix. Mater. Sci. Eng. A 817, 141361 (2021). https://doi.org/10.1016/j.msea.2021.141361
- V.E. Ogbonna, A.P.I. Popoola, O.M. Popoola, S.O. Adeosun, A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations. Polym. Bull. 79(9), 6857–6884 (2022). https://doi.org/10.1007/s00289-021-03846-z
- H. Liu, Y. Sun, Y. Yu, M. Zhang, L. Li et al., Effect of nano-SiO2 modification on mechanical and insulation properties of basalt fiber reinforced composites. Polymers 14(16), 3353 (2022). https://doi.org/10.3390/polym14163353
- L. Xie, Y. Han, Y. Huang, Study on the effect of heat treatment on the structure, mechanical and electrical properties of alumina fiber insulation. J. Phys. D Appl. Phys. 57(42), 425401 (2024). https://doi.org/10.1088/1361-6463/ad6456
- M. Sharma, S. Gao, E. Mäder, H. Sharma, L.Y. Wei et al., Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 102, 35–50 (2014). https://doi.org/10.1016/j.compscitech.2014.07.005
- C.-P. Ma, Y. Zhang, H. Zhang, A.-J. Gao, Y. Wang, Effects of acid–base properties of ammonium salt electrolyte on electrochemical surface activation of carbon fibers. Fibers Polym. 24(10), 3501–3511 (2023). https://doi.org/10.1007/s12221-023-00322-5
- T. Ma, R. Shao, A. Siddique, W. Wang, T. Li et al., Repairing surface defects of carbon fibers: electrostatic spraying nano-carbons on stabilized PAN-fibers and subsequent thermal annealing. Surf. Interfaces 52, 104783 (2024). https://doi.org/10.1016/j.surfin.2024.104783
- A. Stolle, B. Ondruschka, I. Morgenthal, O. Andersen, W. Bonrath, Metallic short fibers for liquid-phase oxidation reactions. J. Mol. Catal. A Chem. 335(1–2), 228–235 (2011). https://doi.org/10.1016/j.molcata.2010.11.038
- Y. Wang, Z. Wang, X. Wang, H. Liu, Y. Ma et al., The effect of liquid-phase preoxidation on the use of carbon fibers in Al2O3-C refractories. Int. J. Appl. Ceram. Technol. 22(5), e15160 (2025). https://doi.org/10.1111/ijac.15160
- X. Qian, X. Wang, Q. OuYang, Y. Chen, Q. Yan, Surface structural evolvement in electrochemical oxidation and sizing and its effect on carbon fiber/epoxy composites properties. J. Reinf. Plast. Compos. 31(15), 999–1008 (2012). https://doi.org/10.1177/0731684412449895
- X. Qian, J. Zhi, L. Chen, J. Huang, Y. Zhang, Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites. Surf. Interface Anal. 45(5), 937–942 (2013). https://doi.org/10.1002/sia.5185
- Y. Luo, Y. Zhang, T. Xing, A. He, S. Zhao et al., Full-color tunable and highly fire-retardant colored carbon fibers. Adv. Fiber Mater. 5(5), 1618–1631 (2023). https://doi.org/10.1007/s42765-023-00294-4
- F. Chen, Y. Huang, R. Li, S. Zhang, Q. Jiang et al., Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci. Adv. 8(26), eabn5882 (2022). https://doi.org/10.1126/sciadv.abn5882
- Z. Dai, F. Shi, B. Zhang, M. Li, Z. Zhang, Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl. Surf. Sci. 257(15), 6980–6985 (2011). https://doi.org/10.1016/j.apsusc.2011.03.047
- C. Ralph, P. Lemoine, A. Boyd, E. Archer, A. McIlhagger, The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene. Appl. Surf. Sci. 475, 435–445 (2019). https://doi.org/10.1016/j.apsusc.2019.01.001
- Y.-S. Wei, X.-Z. Huang, Z.-J. Du, Y. Cheng, Synthesis of BN coatings on carbon fiber by dip coating. Surf. Interface Anal. 49(3), 177–181 (2017). https://doi.org/10.1002/sia.6105
- G. Zhang, W. Yang, J. Ding, M. Liu, C. Di et al., Influence of carbon fibers on interfacial bonding properties of copper-coated carbon fibers. Carbon Lett. 34(3), 1055–1064 (2024). https://doi.org/10.1007/s42823-023-00671-4
- A.S. Nitai, T. Chowdhury, M.N. Inam, M.S. Rahman, M.I.H. Mondal et al., Carbon fiber and carbon fiber composites: creating defects for superior material properties. Adv. Compos. Hybrid Mater. 7(5), 169 (2024). https://doi.org/10.1007/s42114-024-00971-x
- O. Dagdag, H. Kim, Advances in flame retardant technologies for epoxy resins: chemical grafting onto carbon fiber techniques, reactive agents, and applications in composite materials. Molecules 29(24), 5996 (2024). https://doi.org/10.3390/molecules29245996
- L. Yang, H. Xia, Z. Xu, L. Zou, Q. Ni, Influence of surface modification of carbon fiber based on magnetron sputtering technology on mechanical properties of carbon fiber composites. Mater. Res. Express 7(10), 105602 (2020). https://doi.org/10.1088/2053-1591/abbc90
- L. Yang, Y. Chen, Z. Xu, H. Xia, T. Natuski et al., Effect of surface modification of carbon fiber based on magnetron sputtering technology on tensile properties. Carbon 204, 377–386 (2023). https://doi.org/10.1016/j.carbon.2022.12.045
- W. Wang, J. Li, J. Shi, Y. Jiao, X. Wang et al., Structure and physical properties of conductive bamboo fiber bundle fabricated by magnetron sputtering. Materials 16(8), 3154 (2023). https://doi.org/10.3390/ma16083154
- S. Lu, X. Yang, L. Zhang, J. Ma, S. Wang et al., Real-time monitoring of resin infiltration process in vacuum assisted molding(VARI) of composites with carbon nanotube buckypaper sensor. Mater. Res. Express 6(11), 115628 (2019). https://doi.org/10.1088/2053-1591/ab507b
- Z. Wang, L. Zhang, X. Liu, X. Dong, L. Yang et al., Basalt flake/epoxy resin nacre-inspired bulk composite fabricated by vacuum-assisted resin transfer molding technique. Mater. Lett. 384, 138122 (2025). https://doi.org/10.1016/j.matlet.2025.138122
- D. Chen, C. Liu, Z. Kang, Thin copper hybrid structures by spray-assisted layer by layer chemical deposition on fabric surfaces for electromagnetic interference shielding. Colloid Interface Sci. Commun. 40, 100365 (2021). https://doi.org/10.1016/j.colcom.2021.100365
- S. Hwang, C.C. Walker, D. Johnson, Y. Han, D.J. Gardner, Spray drying enzyme-treated cellulose nanofibrils. Polymers 15(20), 4086 (2023). https://doi.org/10.3390/polym15204086
- J. Zhang, S. Liu, J. Liu, Y. Lu, Y. Liu et al., Electroless nickel plating and spontaneous infiltration behavior of woven carbon fibers. Mater. Des. 186, 108301 (2020). https://doi.org/10.1016/j.matdes.2019.108301
- J.N. Balaraju, P. Radhakrishnan, V. Ezhilselvi, A.A. Kumar, Z. Chen et al., Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites. Surf. Coat. Technol. 302, 389–397 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.040
- R.H. Guo, S.X. Jiang, C.W.M. Yuen, M.C.F. Ng, J.W. Lan et al., Influence of deposition parameters and kinetics of electroless Ni-P plating on polyester fiber. Fibers Polym. 13(8), 1037–1043 (2012). https://doi.org/10.1007/s12221-012-1037-4
- J. Li, S. Bi, B. Mei, F. Shi, W. Cheng et al., Effects of three-dimensional reduced graphene oxide coupled with nickel nanops on the microwave absorption of carbon fiber-based composites. J. Alloys Compd. 717, 205–213 (2017). https://doi.org/10.1016/j.jallcom.2017.03.098
- W. Wang, Z. Zhai, J. Liu, Y. Wang, Z. Yang, Influence of carbon fiber nickel electroplating on the electromagnetic interference shielding and mechanical properties of carbon fiber reinforced polyamide 6 composites. Polym. Compos. 44(12), 8838–8848 (2023). https://doi.org/10.1002/pc.27741
- J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30(12), e1705380 (2018). https://doi.org/10.1002/adma.201705380
- X. Luo, S. Wu, Y.-Q. Yang, N. Jin, S. Liu et al., Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I2 system. Appl. Surf. Sci. 406, 62–68 (2017). https://doi.org/10.1016/j.apsusc.2017.02.141
- Z.-X. Chen, C. Chang, X. Yue, H. Li, C.-G. Liang et al., Experimental and theoretical study on the electromagnetic shielding performance of polymer nanocomposites consisting of basalt fiber and CNTs. Compos. Sci. Technol. 247, 110399 (2024). https://doi.org/10.1016/j.compscitech.2023.110399
- Z. Wang, Y. Dong, J.-C. Yang, X.-J. Wang, M.-L. Zhang et al., Improved interfacial shear strength in carbon fiber enhanced semi-aromatic polyamide 6T composite via in situ polymerization on fiber surface. Compos. Sci. Technol. 223, 109401 (2022). https://doi.org/10.1016/j.compscitech.2022.109401
- H. Li, Z. Sha, Y. Song, J. Fan, J. Wei et al., Developing wearable photothermal and antibacterial fabrics: In-situ polymerization of MoS2-hybridized PET fibers. Compos. Sci. Technol. 270, 111291 (2025). https://doi.org/10.1016/j.compscitech.2025.111291
- E. Fedorenko, G.A. Luinstra, In situ polymerization and synthesis of UHMWPE/carbon fiber composites. Polymers 17(1), 90 (2025). https://doi.org/10.3390/polym17010090
- K. Mosnáčková, M.M. Chehimi, P. Fedorko, M. Omastová, Polyamide grafted with polypyrrole: formation, properties, and stability. Chem. Pap. 67(8), 979–994 (2013). https://doi.org/10.2478/s11696-012-0305-5
- H. Fang, L. Yuan, G. Liang, A. Gu, Aramid fibre-based wearable electrochemical capacitors with high energy density and mechanical properties through chemical synergistic combination of multi-coatings. Electrochim. Acta 284, 149–158 (2018). https://doi.org/10.1016/j.electacta.2018.07.155
- S. Qiao, Z. Shi, A. Tong, Y. Luo, Y. Zhang et al., Atomic layer deposition paves the way for next-generation smart and functional textiles. Adv. Colloid Interface Sci. 341, 103500 (2025). https://doi.org/10.1016/j.cis.2025.103500
- S. Qiao, Z. Shi, Y. Zhang, G. Zhang, Z. Huang et al., Colorful polyester with high-efficiency flame retardant and anti-dripping properties. Chem. Eng. J. 521, 166544 (2025). https://doi.org/10.1016/j.cej.2025.166544
- F. Chen, H. Yang, K. Li, B. Deng, Q. Li et al., Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano 11(10), 10330–10336 (2017). https://doi.org/10.1021/acsnano.7b05139
- P. Lorenz, M. Ehrhardt, K. Zimmer, Structuring of glass fibre surfaces by laser-induced front side etching. Appl. Surf. Sci. 302, 52–57 (2014). https://doi.org/10.1016/j.apsusc.2014.01.045
- C. Vass, B. Kiss, J. Kopniczky, B. Hopp, Etching of fused silica fiber by metallic laser-induced backside wet etching technique. Appl. Surf. Sci. 278, 241–244 (2013). https://doi.org/10.1016/j.apsusc.2012.11.163
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14(1), 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- X. Hou, X.-R. Feng, K. Jiang, Y.-C. Zheng, J.-T. Liu et al., Recent progress in smart electromagnetic interference shielding materials. J. Mater. Sci. Technol. 186, 256–271 (2024). https://doi.org/10.1016/j.jmst.2024.01.008
- J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- Y. Zhuo, Y. Yao, Y. Zhuge, Enhancing electromagnetic shielding performance of cement-based materials using industrial waste copper swarf. Constr. Build. Mater. 426, 136162 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136162
- D. Ji, Y. Wang, C. He, K. Cui, P. Han et al., High-efficiency electromagnetic shielding based on multipolar effect in RGO/MXene aerogels decorated with ordered Fe3O4 cluster. Carbon 226, 119189 (2024). https://doi.org/10.1016/j.carbon.2024.119189
- S.A. Schelkunoff, A mathematical theory of linear arrays. Bell Syst. Tech. J. 22(1), 80–107 (1943). https://doi.org/10.1002/j.1538-7305.1943.tb01306.x
- J. Xue, X. Yin, F. Ye, L. Zhang, L. Cheng, Theoretical prediction and experimental verification on EMI shielding effectiveness of dielectric composites using complex permittivity. Ceram. Int. 43(18), 16736–16743 (2017). https://doi.org/10.1016/j.ceramint.2017.09.067
- A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah et al., Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53(12), 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
- R. Kumar, S. Sahoo, E. Joanni, J.-J. Shim, Cutting edge composite materials based on MXenes: synthesis and electromagnetic interference shielding applications. Compos. Part B Eng. 264, 110874 (2023). https://doi.org/10.1016/j.compositesb.2023.110874
- D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites - a review. Polym. Rev. 59(2), 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
- H.-J. Kim, S.-H. Kim, S. Park, Effects of the carbon fiber-carbon microcoil hybrid formation on the effectiveness of electromagnetic wave shielding on carbon fibers-based fabrics. Materials 11(12), 2344 (2018). https://doi.org/10.3390/ma11122344
- H. Gao, Y. Wang, W. Xu, Research progress of fiber-based electromagnetic shielding materials. Fibres. Polym. 26(9), 3689–3713 (2025). https://doi.org/10.1007/s12221-025-01063-3
- W. Zhang, L. Wei, Z. Ma, Q. Fan, J. Ma, Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 177, 412–426 (2021). https://doi.org/10.1016/j.carbon.2021.02.093
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der Waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
- X.-X. Wang, Q. Zheng, Y.-J. Zheng, M.-S. Cao, Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
- X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
- X. Jia, Y. Li, B. Shen, W. Zheng, Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. B Eng. 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
- P.P. Singh, A. De, B.B. Khatua, Bio-inspired smart composite architecture for thermally tunable green EMI shielding. Appl. Surf. Sci. 643, 158643 (2024). https://doi.org/10.1016/j.apsusc.2023.158643
- D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, A. Long, Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos. B Eng. 173, 106906 (2019). https://doi.org/10.1016/j.compositesb.2019.106906
- K. Zdeněk, K. Pavel, P. David, S. Jiří, On the shielding effectiveness calculation. Computing 95(1), 111–121 (2013). https://doi.org/10.1007/s00607-013-0312-6
- J.-H. Lee, Y.-S. Kim, H.-J. Ru, S.-Y. Lee, S.-J. Park, Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 14(1), 188 (2022). https://doi.org/10.1007/s40820-022-00926-1
- G. Mittal, K.Y. Rhee, Hierarchical structures of CNT@basalt fabric for tribological and electrical applications: impact of growth temperature and time during synthesis. Compos. Part A Appl. Sci. Manuf. 115, 8–21 (2018). https://doi.org/10.1016/j.compositesa.2018.09.006
- B. Cheng, J. Wang, F. Zhang, S. Qi, Preparation of silver/carbon fiber/polyaniline microwave absorption composite and its application in epoxy resin. Polym. Bull. 75(1), 381–393 (2018). https://doi.org/10.1007/s00289-017-2035-x
- J. Zhang, P. Liu, R. Chen, Y. Zhang, K. Jiang, CNT fibers based laminated composites resistant to extreme environments: synergistic design of electromagnetic shielding performance and high-temperature resistance. Mater Charact 227, 115310 (2025). https://doi.org/10.1016/j.matchar.2025.115310
- C. Wan, Y. Jiao, X. Li, W. Tian, J. Li et al., A multi-dimensional and level-by-level assembly strategy for constructing flexible and sandwich-type nanoheterostructures for high-performance electromagnetic interference shielding. Nanoscale 12(5), 3308–3316 (2020). https://doi.org/10.1039/C9NR09087H
- Q. Xiao, Z. Chen, J. Liao, Y. Li, L. Xue et al., Electromagnetic interference shielding performance and mechanism of Fe/Al modified SiC f/SiC composites. J. Alloys Compd. 887, 161359 (2021). https://doi.org/10.1016/j.jallcom.2021.161359
- H. Liu, J. Dang, C. Lei, Z. Zhu, X. Li et al., Modulating interface of Ni-embedded hollow porous Ti3C2Tx MXene film toward efficient EMI shielding. Small (2025). https://doi.org/10.1002/smll.202410937
- Q. Ding, J. Yang, H. Yang, S. Gu, Z. Cheng et al., Superior EMI shielding and thermal management of flexible, fire-resistant SiBCNZr nanofiber fabrics enhanced by defect engineering and graphitization. Adv. Funct. Mater. 35(9), 2416039 (2025). https://doi.org/10.1002/adfm.202416039
- R. Verma, P. Thakur, A. Chauhan, R. Jasrotia, A. Thakur, A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon 208, 170–190 (2023). https://doi.org/10.1016/j.carbon.2023.03.050
- G. Wang, J. Chen, W. Zheng, B. Shen, High-efficiency flexible liquid metal/elastomer composite film with designability for strain-invariant electromagnetic shielding and Joule-heating applications. Chem. Eng. J. 488, 151052 (2024). https://doi.org/10.1016/j.cej.2024.151052
- X. Yang, L. Xuan, W. Men, X. Wu, D. Lan et al., Carbonyl iron/glass fiber cloth composites: achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 491, 151862 (2024). https://doi.org/10.1016/j.cej.2024.151862
- W.C. Wang, B. Zhou, S.H. Xu, Z.M. Yang, Q.Y. Zhang, Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 101, 90–171 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.003
- J. Li, Y. Wang, W. Zhao, P. Xu, T. Wang et al., High-performance quartz fiber/polysilazane and epoxy-modified cyanate ester microwave-transparent composites. Adv. Compos. Hybrid Mater. 5(3), 1830–1840 (2022). https://doi.org/10.1007/s42114-022-00456-9
- H. Jamshaid, R. Mishra, A green material from rock: basalt fiber–a review. J. Text. Inst. 107(7), 923–937 (2016). https://doi.org/10.1080/00405000.2015.1071940
- P. Jagadeesh, S.M. Rangappa, S. Siengchin, Basalt fibers: an environmentally acceptable and sustainable green material for polymer composites. Constr. Build. Mater. 436, 136834 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136834
- H. Jia, Y. Qiao, Y. Zhang, C. Liu, X. Jian, Excellent and effective interfacial transition layer with an organic/inorganic hybrid carbon nanotube network structure for basalt fiber reinforced high-performance thermoplastic composites. Chem. Eng. J. 465, 142995 (2023). https://doi.org/10.1016/j.cej.2023.142995
- Y. Zhang, Y. Luo, Y. Huang, M. Wang, A. He et al., Desired color diversity of carbon fiber with excellent environmental super-durability and remarkable flame retardancy. ACS Appl. Mater. Interfaces 17(5), 8340–8348 (2025). https://doi.org/10.1021/acsami.4c19626
- Y. Luo, Z. Shi, S. Qiao, A. Tong, X. Liao et al., Advances in nanomaterials as exceptional fillers to reinforce carbon fiber-reinforced polymers composites and their emerging applications. Polym. Compos. 46(1), 54–80 (2025). https://doi.org/10.1002/pc.29027
- Y. Zhang, Y. Luo, M. Wang, T. Xing, A. He et al., Advances in colored carbon-based fiber materials and their emerging applications. SusMat 4(6), e243 (2024). https://doi.org/10.1002/sus2.243
- K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff et al., High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007). https://doi.org/10.1126/science.1147635
- B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), e1902664 (2020). https://doi.org/10.1002/adma.201902664
- L. Li, X. Liu, G. Wang, Y. Liu, W. Kang et al., Research progress of ultrafine alumina fiber prepared by sol-gel method: a review. Chem. Eng. J. 421, 127744 (2021). https://doi.org/10.1016/j.cej.2020.127744
- L. Oppenheimer, M. Ramkumar, I. Machado, C. Scott, S. Winroth et al., Development of an atomic-oxygen-erosion-resistant, alumina-fiber-reinforced, fluorinated polybenzoxazine composite for low-earth orbital applications. Polymers 15, 112 (2022). https://doi.org/10.3390/polym15010112
- Y. Lei, Y. Wang, Y. Song, Y. Li, C. Deng et al., Nearly stoichiometric BN fiber with low dielectric constant derived from poly [(alkylamino)borazine. Mater. Lett. 65(2), 157–159 (2011). https://doi.org/10.1016/j.matlet.2010.09.089
- S. Li, Y. Li, H. Xiao, X. Li, Q. Wang et al., Oxidation behavior of Si3N4 fibers derived from polycarbosilane. Corros. Sci. 136, 9–17 (2018). https://doi.org/10.1016/j.corsci.2018.02.032
- F. Li, W. Cui, J. Zhang, S. Du, Z. Chen et al., Synthesis, characterization and growth mechanism of SiC fibers. Mater. Chem. Phys. 291, 126703 (2022). https://doi.org/10.1016/j.matchemphys.2022.126703
- Y.K. Chih, J. Hwang, C.S. Kou, C.C. Chuang, J.L. Hu et al., Surface modification of hollow carbon fibres using plasma treatment. Surf. Eng. 27(8), 623–626 (2011). https://doi.org/10.1179/026708410x12786785573391
- M. Bonitz, A. Filinov, J.-W. Abraham, K. Balzer, H. Kählert et al., Towards an integrated modeling of the plasma-solid interface. Front. Chem. Sci. Eng. 13(2), 201–237 (2019). https://doi.org/10.1007/s11705-019-1793-4
- Z. Yang, X. Huang, J. Li, B. Tang, G. Huang et al., Improved amine functionalization of carbon fiber surfaces by O2 plasma activation treatment. Compos. Interfaces 30(12), 1411–1427 (2023). https://doi.org/10.1080/09276440.2023.2223407
- A. Vesel, M. Mozetic, New developments in surface functionalization of polymers using controlled plasma treatments. J. Phys. D Appl. Phys. 50(29), 293001 (2017). https://doi.org/10.1088/1361-6463/aa748a
- L. Xing, L. Liu, Y. Huang, D. Jiang, B. Jiang et al., Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation. Compos. Part B Eng. 69, 50–57 (2015). https://doi.org/10.1016/j.compositesb.2014.09.027
- D. Bhattacharyya, V. Baheti, Ozone assisted modification and pulverization of plant fibres. Ind. Crops Prod. 199, 116711 (2023). https://doi.org/10.1016/j.indcrop.2023.116711
- H.S. Maqsood, U. Bashir, J. Wiener, M. Puchalski, S. Sztajnowski et al., Ozone treatment of jute fibers. Cellulose 24(3), 1543–1553 (2017). https://doi.org/10.1007/s10570-016-1164-y
- Y.V. Tertyshnaya, S.G. Karpova, M.V. Podzorova, Effect of ozone on nonwoven polylactide/natural rubber fibers. Polymers 17(15), 2102 (2025). https://doi.org/10.3390/polym17152102
- J. Yu, X. Gao, W. Yang, Z. Zhang, T. Sheng et al., Preparation of nanocarbon-coated glass fibre/phenolic composites for EMI shielding. Bull. Mater. Sci. 45(3), 116 (2022). https://doi.org/10.1007/s12034-022-02702-8
- Y. Cheng, K. Wang, Y. Qi, Z. Liu, Chemical vapor deposition method for graphene fiber materials. Acta Phys. Chim. Sin. 38, 2006046 (2020). https://doi.org/10.3866/pku.whxb202006046
- X. Luo, S. Wu, Y.-Q. Yang, N. Jin, S. Liu et al., Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition. Mater. Chem. Phys. 184, 189–196 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.041
- A. Saffar Shamshirgar, M.F. Álvarez, A. del Campo, J.F. Fernández, R.E. Rojas Hernández et al., Versatile graphene-alumina nanofibers for microwave absorption and EMI shielding. Carbon 210, 118057 (2023). https://doi.org/10.1016/j.carbon.2023.118057
- M. Pitto, H. Fiedler, N.K. Kim, C.J.R. Verbeek, T.D. Allen et al., Carbon fibre surface modification by plasma for enhanced polymeric composite performance: a review. Compos. A Appl. Sci. Manuf. 180, 108087 (2024). https://doi.org/10.1016/j.compositesa.2024.108087
- Z. Huang, H. Einaga, Effect of ozone treatment on microwave heating properties of carbon fiber. Catal. Today 458, 115386 (2025). https://doi.org/10.1016/j.cattod.2025.115386
- G. Kim, H. Lee, K. Kim, D.U. Kim, Effects of heat treatment atmosphere and temperature on the properties of carbon fibers. Polymers 14(12), 2412 (2022). https://doi.org/10.3390/polym14122412
- C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), e2003425 (2020). https://doi.org/10.1002/adma.202003425
- H.P.L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque et al., Liquid phase oxidation chemistry in continuous-flow microreactors. Chem. Soc. Rev. 45(1), 83–117 (2016). https://doi.org/10.1039/c5cs00447k
- W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin et al., Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 8(6), 5533–5541 (2018). https://doi.org/10.1021/acscatal.8b01017
- J. Moosburger-Will, M. Bauer, E. Laukmanis, R. Horny, D. Wetjen et al., Interaction between carbon fibers and polymer sizing: influence of fiber surface chemistry and sizing reactivity. Appl. Surf. Sci. 439, 305–312 (2018). https://doi.org/10.1016/j.apsusc.2017.12.251
- Z. Jia, T. Xu, S. Yang, Y. Luo, D. Jia, Interfacial mechano-chemical grafting in styrene-butadiene rubber/halloysite nanotubes composites. Polym. Test. 54, 29–39 (2016). https://doi.org/10.1016/j.polymertesting.2016.06.022
- P. Purohit, A. Bhatt, R.K. Mittal, M.H. Abdellattif, T.A. Farghaly, Polymer grafting and its chemical reactions. Front. Bioeng. Biotechnol. 10, 1044927 (2023). https://doi.org/10.3389/fbioe.2022.1044927
- B. Sudduth, J. Sun, Y. Wang, Chemical grafting of highly dispersed VOx/CeO2 for increased catalytic activity in methanol oxidative dehydrogenation. Catal. Lett. 152(10), 2980–2992 (2022). https://doi.org/10.1007/s10562-021-03862-8
- G. Ni, Y. Yang, K. Chen, C. Liu, S. Wang, Optimization of pore structure and surface chemical properties of activated carbon fiber via liquid-phase stabilization for enhanced supercapacitor performance. Diam. Relat. Mater. 149, 111607 (2024). https://doi.org/10.1016/j.diamond.2024.111607
- Y. Fu, H. Li, W. Cao, Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting. Compos. Part A Appl. Sci. Manuf. 130, 105719 (2020). https://doi.org/10.1016/j.compositesa.2019.105719
- T. Li, Y. Jiang, L. Zeng, H. Zhang, Z. Yuan et al., Surface sizing introducing Fe3O4 nanops for magnetic properties strengthening of basalt fibers. Ceram. Int. 51(2), 2216–2225 (2025). https://doi.org/10.1016/j.ceramint.2024.11.199
- H. Gupta, P.K. Agnihotri, S. Basu, N. Gupta, Carbon nanotube grafting for better electromagnetic shielding with carbon fiber/epoxy composites. Polym. Compos. 46(S3), S856–S866 (2025). https://doi.org/10.1002/pc.30003
- F. Ji, C. Liu, Y. Hu, S. Xu, Y. He et al., Chemically grafting carbon nanotubes onto carbon fibers for enhancing interfacial properties of fiber metal laminate. Materials 13(17), 3813 (2020). https://doi.org/10.3390/ma13173813
- H. Lee, M.K. Choi, S.-H. Kang, W. Han, B.-J. Kim et al., Heat-treated Ni-coated fibers for EMI shielding: balancing electrical performance and interfacial integrity. Polymers 17(12), 1610 (2025). https://doi.org/10.3390/polym17121610
- X. Li, S. Zhou, Z. Ji, Q. Xu, J. Dong et al., Fabrication of conductive polyimide/metal composite fibers for high temperature EMI shielding. Appl. Surf. Sci. 680, 161293 (2025). https://doi.org/10.1016/j.apsusc.2024.161293
- J.-H. Park, C. Cho, K.H. Kim, J.-H. Kang, M.-K. Seo et al., Effect of plating thickness on PA6/nickel-plated carbon fiber composites manufactured using LFT pellets. Polym. Compos. 46(10), 9576–9585 (2025). https://doi.org/10.1002/pc.29580
- S. Zhou, J. Dong, X. Li, X. Zhao, Q. Zhang, Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 5(6), 1892–1904 (2023). https://doi.org/10.1007/s42765-023-00317-0
- H. Zhao, L. Hou, Y. Lu, Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater. Des. 95, 97–106 (2016). https://doi.org/10.1016/j.matdes.2016.01.088
- R. Zhang, G. Zhang, S. Zhuang, X. Lu, D. Zhang et al., Flexible Ni-Fe-P/PPy@PI fiber paper-based composites with three-layer structure for 5 G electromagnetic shielding applications. J. Alloys Compd. 897, 163232 (2022). https://doi.org/10.1016/j.jallcom.2021.163232
- Y. Duan, X. Fang, Z. Zhang, R. Sun, J. Hong et al., Lightweight, flexible rCEF@PPy/MXene for ultra-efficient EMI shielding felt with Joule heating performance. Mater. Lett. 341, 134297 (2023). https://doi.org/10.1016/j.matlet.2023.134297
- D. Zhang, H. Yang, J. Pan, B. Lewis, W. Zhou et al., Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes. Compos. Part B Eng. 182, 107646 (2020). https://doi.org/10.1016/j.compositesb.2019.107646
- Y. Shao, L. Zou, Y. Chen, L. Wang, L. Song et al., Core-sheath structured CNT@Ni-CNT fiber-based multifunctional fabric with high-sensitivity, wide-range strain sensing, and enhanced electromagnetic shielding absorption. Chem. Eng. J. 512, 162358 (2025). https://doi.org/10.1016/j.cej.2025.162358
- J. Hu, X. Xiong, Y. Chen, H. Long, Design and construction of interface engineering in short carbon fiber composites for excellent mechanical properties and efficient electromagnetic interference shielding. Appl. Surf. Sci. 685, 162098 (2025). https://doi.org/10.1016/j.apsusc.2024.162098
- W. Feng, L. Zou, C. Lan, S. E, X. Pu, Core-sheath CNT@MXene fibers toward absorption-dominated electromagnetic interference shielding fabrics. Adv. Fiber Mater. 6(5), 1657–1668 (2024). https://doi.org/10.1007/s42765-024-00452-2
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15(1), 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- Q. Wang, Y. Wang, C. Sun, Y. Zhang, R. Qu et al., Multifunctional aramid nanofiber/MXene/aramid fiber composite fabric with outstanding EMI shielding performance. Coatings 15(3), 354 (2025). https://doi.org/10.3390/coatings15030354
- J. Yu, Z. Cui, J. Lu, J. Zhao, Y. Zhang et al., Integrated hierarchical macrostructures of flexible basalt fiber composites with tunable electromagnetic interference (EMI) shielding and rapid electrothermal response. Compos. Part B Eng. 224, 109193 (2021). https://doi.org/10.1016/j.compositesb.2021.109193
- X. Zhang, D. Miao, X. Ning, M. Cai, Y. Tian et al., The stability study of copper sputtered polyester fabrics in synthetic perspiration. Vacuum 164, 205–211 (2019). https://doi.org/10.1016/j.vacuum.2019.03.023
- C.L. Xia, H. Ren, S.Q. Shi, H.L. Zhang, J.T. Cheng et al., Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering. Appl. Surf. Sci. 362, 335–340 (2016). https://doi.org/10.1016/j.apsusc.2015.11.202
- Q. Wang, S. Xiao, S.Q. Shi, S. Xu, L. Cai, Self-bonded natural fiber product with high hydrophobic and EMI shielding performance via magnetron sputtering Cu film. Appl. Surf. Sci. 475, 947–952 (2019). https://doi.org/10.1016/j.apsusc.2019.01.059
- A. Singh, G. den Van Mooter, Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 100, 27–50 (2016). https://doi.org/10.1016/j.addr.2015.12.010
- S. Huang, M.-L. Vignolles, X.D. Chen, Y. Le Loir, G. Jan et al., Spray drying of probiotics and other food-grade bacteria: a review. Trends Food Sci. Technol. 63, 1–17 (2017). https://doi.org/10.1016/j.tifs.2017.02.007
- H. Wang, X. Sun, Y. Wang, K. Li, J. Wang et al., Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14(1), 380 (2023). https://doi.org/10.1038/s41467-023-36082-2
- T. Arunkumar, R. Karthikeyan, R. Ram Subramani, K. Viswanathan, M. Anish, Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). Int. J. Ambient Energy 41(4), 452–456 (2020). https://doi.org/10.1080/01430750.2018.1472657
- B.-J. Kim, B.K. Deka, I.-J. Bae, D.-H. Choi, D.-I. Son et al., Unidirectional spread-tow carbon fiber/polypropylene composites reinforced with mechanically aligned multi-walled carbon nanotubes and exfoliated graphite nanoplatelets. Polym. Compos. 39(S2), E1251–E1261 (2018). https://doi.org/10.1002/pc.24835
- M.-S. Kim, J. Yan, K.-M. Kang, K.-H. Joo, Y.-J. Kang et al., Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. Int. J. Precis. Eng. Manuf. 14(6), 1087–1092 (2013). https://doi.org/10.1007/s12541-013-0146-3
- J.R.N. Gnidakouong, J.-H. Kim, H. Kim, Y.-B. Park, Electromagnetic interference shielding behavior of hybrid carbon nanotube/exfoliated graphite nanoplatelet coated glass fiber composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 248, 114403 (2019). https://doi.org/10.1016/j.mseb.2019.114403
- P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong et al., Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 223, 1–23 (2017). https://doi.org/10.1016/j.mseb.2017.05.002
- T. Hao, H. Ji, D. Xu, D. Liu, Z. Ren et al., Capillary force-induced graphene spontaneous transfer and encapsulation of silver nanowires for highly-stable transparent electrodes. ACS Appl. Mater. Interfaces 16(30), 40199–40209 (2024). https://doi.org/10.1021/acsami.4c06315
- C. Liang, Q. Huo, J. Qi, Y. Zhang, C. Liu et al., Robust solid–solid phase change coating encapsulated glass fiber fabric with electromagnetic interference shielding for thermal management and message encryption. Adv. Funct. Mater. 34(49), 2409146 (2024). https://doi.org/10.1002/adfm.202409146
- Y. Yang, W. Chen, Y. Xue, Interfacial bonding within Cu-based composites reinforced with TiC-or Ni-coated carbon fiber. Chin. J. Mater. Res. 35, 467–473 (2021). https://doi.org/10.11901/1005.3093.2020.357
- B.-L. Sun, X.-L. Shi, Q. Hu, M. Du, H. Gong et al., Ultrahigh-strength textile fiber-supported schiff base copper complexes for photocatalytic degradation of methyl orange. ACS Appl. Polym. Mater. 6(21), 13077–13088 (2024). https://doi.org/10.1021/acsapm.4c02009
- Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 29(24), 1809004 (2019). https://doi.org/10.1002/adfm.201809004
- A. Agresti, F. Di Giacomo, S. Pescetelli, A. Di Carlo, Scalable deposition techniques for large-area perovskite photovoltaic technology: a multi-perspective review. Nano Energy 122, 109317 (2024). https://doi.org/10.1016/j.nanoen.2024.109317
- J. Feng, Y. Jiao, H. Wang, X. Zhu, Y. Sun et al., High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14(5), 3035–3043 (2021). https://doi.org/10.1039/d1ee00634g
- J.H. Koo, J. Kang, S. Lee, J.-K. Song, J. Choi et al., A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6(2), 137–145 (2023). https://doi.org/10.1038/s41928-023-00918-y
- S. Song, L. Li, D. Ji, J. Zhao, Q. Wu et al., Flexible basalt fiber/aramid nanofiber/carbon nanotube electromagnetic shielding paper with outstanding environmental stability and joule heating performance. ACS Appl. Mater. Interfaces 15(29), 35495–35506 (2023). https://doi.org/10.1021/acsami.3c06138
- N. De Greef, L. Zhang, A. Magrez, L. Forró, J.-P. Locquet et al., Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diamond Relat. Mater. 51, 39–48 (2015). https://doi.org/10.1016/j.diamond.2014.11.002
- D. Luo, F. Wang, L. Li, Y. Cao, S. Yang et al., Recycling wind turbine blade to fabricate 3D framework for ultra-robust composite with enhanced electromagnetic interference shielding. Compos. Part B Eng. 305, 112734 (2025). https://doi.org/10.1016/j.compositesb.2025.112734
- Z. Wang, D. Gong, W. Chen, C. Zhang, A high-sensitivity and fast-recovery strain sensor based on gradient polyurethane and electroless silver-plating on a high aspect ratio glass fibers. Chem. Eng. J. 507, 160439 (2025). https://doi.org/10.1016/j.cej.2025.160439
- J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
- L. Xu, R. Si, Q. Ni, J. Chen, J. Zhang et al., Synergistic magnetic/dielectric loss and layered structural design of Ni@carbon fiber/Ag@graphene fiber/polydimethylsiloxane composite for high-absorption EMI shielding. Carbon 225, 119155 (2024). https://doi.org/10.1016/j.carbon.2024.119155
- Y. Liu, D. He, O. Dubrunfaut, A. Zhang, L. Pichon et al., In-situ growing carbon nanotubes on nickel modified glass fiber reinforced epoxy composites for EMI application. Appl. Compos. Mater. 28(3), 777–790 (2021). https://doi.org/10.1007/s10443-021-09894-y
- A. Parkash, A. Kadier, P.-C. Ma, Enhanced EMI shielding performance of glass fiber fabric via optimized electroless copper deposition. Mater. Sci. Eng. B 318, 118333 (2025). https://doi.org/10.1016/j.mseb.2025.118333
- W. Yang, Y. Fu, A. Xia, K. Zhang, Z. Wu, Microwave absorption property of Ni–Co–Fe–P-coated flake graphite prepared by electroless plating. J. Alloys Compd. 518, 6–10 (2012). https://doi.org/10.1016/j.jallcom.2011.12.014
- W. Jang, S. Mallesh, L. Bok, K. Hyeon, Microwave absorption properties of core-shell structured FeCoNi@PMMA filled in composites. Curr. Appl. Phys. 20(4), 525–530 (2020). https://doi.org/10.1016/j.cap.2020.01.019
- Q. Wang, Y. Xu, S. Bi, Y. Lu, Enhanced electromagnetic-interference shielding effectiveness and mechanical strength of Co-Ni coated aramid-carbon blended fabric. Chin. J. Aeronaut. 34(10), 103–114 (2021). https://doi.org/10.1016/j.cja.2021.03.011
- Y. Wang, J. Wang, Z. Liu, S. Zheng, W. Lu et al., Nanocone-shaped Ni-electroplated carbon fiber composite films for electromagnetic shielding applications. J. Mater. Res. Technol. 27, 4625–4632 (2023). https://doi.org/10.1016/j.jmrt.2023.10.216
- A. Bhattacharya, A. De, Conducting composites of polypyrrole and polyaniline a review. Prog. Solid State Chem. 24(3), 141–181 (1996). https://doi.org/10.1016/0079-6786(96)00002-7
- M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, properties, and applications of polyaniline and polyaniline thin films-a review. Polymers 13(12), 2003 (2021). https://doi.org/10.3390/polym13122003
- Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040
- Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
- X. He, C. Cui, Y. Chen, L. Zhang, X. Sheng et al., MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Mater. 34(51), 2409675 (2024). https://doi.org/10.1002/adfm.202409675
- J. Luo, Y. Xue, C. Yang, Y. Liu, L. Zhang et al., Core-shell BN/SCF architecture with phonon-electronic dual conduction pathways for synergistic enhancement of thermal conductivity, EMI shielding and mechanical properties in CF/EP composites. Compos. Part B Eng. 305, 112747 (2025). https://doi.org/10.1016/j.compositesb.2025.112747
- M. Ma, Z. Liao, X. Su, Q. Zheng, Y. Liu et al., Magnetic CoNi alloy ps embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 608(Pt 3), 2203–2212 (2022). https://doi.org/10.1016/j.jcis.2021.10.006
- Y. Gou, H. Wen, W. Zhang, A promising CF@PANI multifunctional absorbents: preparation and microwave absorption performance investigation. Mater. Res. Bull. 192, 113610 (2025). https://doi.org/10.1016/j.materresbull.2025.113610
- C. Chang, X. Yue, B. Hao, D. Xing, P.-C. Ma, Direct growth of carbon nanotubes on basalt fiber for the application of electromagnetic interference shielding. Carbon 167, 31–39 (2020). https://doi.org/10.1016/j.carbon.2020.05.074
- Q. Men, S. Wang, Z. Yan, B. Zhao, L. Guan et al., Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Adv. Compos. Hybrid Mater. 5(3), 2429–2439 (2022). https://doi.org/10.1007/s42114-022-00457-8
- N. Yamamoto, R. de Guzman Villoria, B.L. Wardle, Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72(16), 2009–2015 (2012). https://doi.org/10.1016/j.compscitech.2012.09.006
- W. Li, F. Liang, X. Sun, K. Zheng, R. Liu et al., Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat. Commun. 15(1), 6825 (2024). https://doi.org/10.1038/s41467-024-51118-x
- F. Liang, W. Li, K. Zheng, K. Huang, S. Cheng et al., Graphene-skinned alumina fiber fabric for diverse electrothermal and electromagnetic compatibility and its mass production. Adv. Mater. 37(28), 2501226 (2025). https://doi.org/10.1002/adma.202501226
- X. Gao, Q. Zhou, J. Wang, L. Xu, W. Zeng, Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: a DFT study. Nanomaterials 10(2), 299 (2020). https://doi.org/10.3390/nano10020299
- K. Pirabul, Q. Zhao, Z.-Z. Pan, H. Liu, M. Itoh et al., Silicon radical-induced CH4 dissociation for uniform graphene coating on silica surface. Small 20(16), e2306325 (2024). https://doi.org/10.1002/smll.202306325
- K. Zheng, C. Yu, W. Li, F. liang, L. Liu et al., Rapid preparation of graphene-skinned alumina fiber fabric and its electromagnetic interference shielding application. Nano Res. 18(5), 94907330 (2025). https://doi.org/10.26599/nr.2025.94907330
- G. Zhang, J. Yu, C. Su, C. Di, S. Ci et al., The effect of annealing on the properties of copper-coated carbon fiber. Surf. Interface. 37, 102630 (2023). https://doi.org/10.1016/j.surfin.2023.102630
- Z. Wang, G. Cai, Y. Xia, P. Li, S. Shi et al., Highly conductive graphene fiber textile for electromagnetic interference shielding. Carbon 222, 118996 (2024). https://doi.org/10.1016/j.carbon.2024.118996
- X. Gao, X. Wang, J. Cai, Y. Zhang, J. Zhang et al., CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing. Carbon 211, 118083 (2023). https://doi.org/10.1016/j.carbon.2023.118083
- B. Wu, G. Qian, Y. Yan, M.M. Alam, R. Xia et al., Design of interconnected carbon fiber thermal management composites with effective EMI shielding activity. ACS Appl. Mater. Interfaces 14(43), 49082–49093 (2022). https://doi.org/10.1021/acsami.2c13433
- Y. Xing, Y. Wan, Z. Wu, J. Wang, S. Jiao et al., Multilayer ultrathin MXene@AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl. Mater. Interfaces 15(4), 5787–5797 (2023). https://doi.org/10.1021/acsami.2c18759
- L. Li, Q. Cheng, MXene based nanocomposite films. Exploration 2(4), 20220049 (2022). https://doi.org/10.1002/exp.20220049
- Y.-J. Choi, S.C. Gong, D.C. Johnson, S. Golledge, G.Y. Yeom et al., Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition. Appl. Surf. Sci. 269, 92–97 (2013). https://doi.org/10.1016/j.apsusc.2012.09.159
- X. Wan, Y. Zhao, Z. Li, L. Li, Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2(1), 20210029 (2022). https://doi.org/10.1002/EXP.20210029
- A. He, Y. Luo, M. Wang, Y. Zhang, Z. Huang et al., Pearl-inspired colored carbon fibers with electromagnetic interference and optical camouflage properties. Energy Environ. Mater. 8(2), e12840 (2025). https://doi.org/10.1002/eem2.12840
- P.G. Gordon, G. Bačić, G.P. Lopinski, S.T. Barry, Work function of doped zinc oxide films deposited by ALD. J. Mater. Res. 35(7), 756–761 (2020). https://doi.org/10.1557/jmr.2019.334
- G. Lin, T. Zhou, Z. Zhou, W. Sun, Laser induced graphene for EMI shielding and ballistic impact damage detection in basalt fiber reinforced composites. Compos. Sci. Technol. 242, 110182 (2023). https://doi.org/10.1016/j.compscitech.2023.110182
- X. Tang, X. Yan, Dip-coating for fibrous materials: mechanism, methods and applications. J. Sol-Gel Sci. Technol. 81(2), 378–404 (2017). https://doi.org/10.1007/s10971-016-4197-7
- J. Wu, X. Zhao, C. Tang, J. Lei, L. Li, One-step dipping method to prepare inorganic-organic composite superhydrophobic coating for durable protection of magnesium alloys. J. Taiwan Inst. Chem. Eng. 135, 104364 (2022). https://doi.org/10.1016/j.jtice.2022.104364
- S.J. Pothupitiya Gamage, K. Yang, R. Braveenth, K. Raagulan, H.S. Kim et al., MWCNT coated free-standing carbon fiber fabric for enhanced performance in EMI shielding with a higher absolute EMI SE. Materials 10(12), 1350 (2017). https://doi.org/10.3390/ma10121350
- X. Mei, L. Lu, Y. Xie, Y.-X. Yu, Y. Tang et al., Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(43), 49030–49041 (2020). https://doi.org/10.1021/acsami.0c08868
- Y. Zhang, G. Shen, S.S. Lam, S. Ansar, S.-C. Jung et al., A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 471, 144679 (2023). https://doi.org/10.1016/j.cej.2023.144679
- M. Qi, G. Xiao, S. Chen, X. Wang, A. Duan et al., Modification of a chromogenic inorganic basalt fabric via a functionalized anthraquinone polyurethane mixed coating: exceptional wear resistance and EMI shielding. ACS Appl. Polym. Mater. 7(19), 13415–13427 (2025). https://doi.org/10.1021/acsapm.5c03050
- G. Yu, G. Shao, Z. Xu, Y. Chen, X. Huang, Hierarchical interface-engineered magnetic graphene-sicn aerogels via stepwise confinement strategy for low-frequency and broadband microwave absorption. J. Adv. Ceram. (2025). https://doi.org/10.26599/jac.2025.9221187
- G. Yu, G. Shao, R. Xu, Y. Chen, X. Zhu et al., Metal-organic framework-manipulated dielectric genes inside silicon carbonitride toward tunable electromagnetic wave absorption. Small 19(46), e2304694 (2023). https://doi.org/10.1002/smll.202304694
- G. Yu, G. Shao, Y. Chen, Z. Xu, B. Quan et al., Intelligent hygroscopic aerogels: moisture-activated dual-mode switchable electromagnetic response. Adv. Funct. Mater. 35(42), 2506857 (2025). https://doi.org/10.1002/adfm.202506857
- X. Huang, G. Yu, B. Quan, J. Xu, G. Sun et al., Harnessing pseudo-jahn-teller disordering of monoclinic birnessite for excited interfacial polarization and local magnetic domains. Small Methods 7(9), e2300045 (2023). https://doi.org/10.1002/smtd.202300045
- X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
- J. Liang, S. Zhu, D. Chen, Y. Li, D. Zhou et al., Dual built-in electric field engineering in heterostructure nickel-cobalt bimetallic composites for boosted electromagnetic energy dissipation. Adv. Powder Mater. 4(6), 100344 (2025). https://doi.org/10.1016/j.apmate.2025.100344
- X. Huang, J. Guan, Y. Feng, Q. Zhang, B. Quan et al., Mn and O defect modulation in birnessite creates multiplicate polyhedra to improve dielectric and magnetic losses. Cell Rep. Phys. Sci. 6(1), 102350 (2025). https://doi.org/10.1016/j.xcrp.2024.102350
- Z. Liu, J. Liu, H. bian, X. Zhou, H. Liang et al., Lattice expansion/contraction triggered by etching-assisted strain engineering of cobalt sulfide heterostructures to boost electromagnetic wave absorption. Adv. Powder Mater. 5(2), 100367 (2026). https://doi.org/10.1016/j.apmate.2025.100367
- Y. Wan, J. Xiao, C. Li, G. Xiong, R. Guo et al., Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J. Magn. Magn. Mater. 399, 252–259 (2016). https://doi.org/10.1016/j.jmmm.2015.10.006
- S. Liu, J. Wang, B. Zhang, X. Su, X. Chen et al., Transformation of traditional carbon fibers from microwaves reflection to efficient absorption via carbon fiber microstructure modulation. Carbon 219, 118802 (2024). https://doi.org/10.1016/j.carbon.2024.118802
References
D. Tao, X. Wen, C. Yang, K. Yan, Z. Li et al., Controlled twill surface structure endowing nanofiber composite membrane excellent electromagnetic interference shielding. Nano-Micro Lett. 16(1), 236 (2024). https://doi.org/10.1007/s40820-024-01444-y
J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), e2414085 (2025). https://doi.org/10.1002/adma.202414085
W. Zhao, M. Li, Z. Zhang, H.-X. Peng, EMI shielding effectiveness of silver nanop-decorated multi-walled carbon nanotube sheets. Int. J. Smart Nano Mater. 1(4), 249–260 (2010). https://doi.org/10.1080/19475411.2010.511477
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13(1), 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
Z. Shi, Z. Liang, Z. Huang, A. He, S. Qiao et al., Revolutionizing fiber materials for space: multi-scale interface engineering unlocks new aerospace frontiers. Mater. Today 88, 643–704 (2025). https://doi.org/10.1016/j.mattod.2025.06.010
W. Lu, M. Zu, J.-H. Byun, B.-S. Kim, T.-W. Chou, State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24(14), 1805–1833 (2012). https://doi.org/10.1002/adma.201104672
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
L. Chen, Y. He, S. Chai, H. Qiang, F. Chen et al., Toward high performance graphene fibers. Nanoscale 5(13), 5809 (2013). https://doi.org/10.1039/c3nr01083j
P.-Y. Hung, K.T. Lau, Q. Guo, B. Jia, B. Fox, Tailoring specific properties of polymer-based composites by using graphene and its associated compounds. Int. J. Smart Nano Mater. 11(2), 173–189 (2020). https://doi.org/10.1080/19475411.2020.1786477
V. Dhand, G. Mittal, K.Y. Rhee, S.-J. Park, D. Hui, A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 73, 166–180 (2015). https://doi.org/10.1016/j.compositesb.2014.12.011
B. Mainzer, C. Lin, M. Frieß, R. Riedel, J. Riesch et al., Novel ceramic matrix composites with tungsten and molybdenum fiber reinforcement. J. Eur. Ceram. Soc. 41(5), 3030–3036 (2021). https://doi.org/10.1016/j.jeurceramsoc.2019.10.049
Y. Mao, J. Coenen, S. Sistla, C. Liu, A. Terra et al., Design of tungsten fiber-reinforced tungsten composites with porous matrix. Mater. Sci. Eng. A 817, 141361 (2021). https://doi.org/10.1016/j.msea.2021.141361
V.E. Ogbonna, A.P.I. Popoola, O.M. Popoola, S.O. Adeosun, A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations. Polym. Bull. 79(9), 6857–6884 (2022). https://doi.org/10.1007/s00289-021-03846-z
H. Liu, Y. Sun, Y. Yu, M. Zhang, L. Li et al., Effect of nano-SiO2 modification on mechanical and insulation properties of basalt fiber reinforced composites. Polymers 14(16), 3353 (2022). https://doi.org/10.3390/polym14163353
L. Xie, Y. Han, Y. Huang, Study on the effect of heat treatment on the structure, mechanical and electrical properties of alumina fiber insulation. J. Phys. D Appl. Phys. 57(42), 425401 (2024). https://doi.org/10.1088/1361-6463/ad6456
M. Sharma, S. Gao, E. Mäder, H. Sharma, L.Y. Wei et al., Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 102, 35–50 (2014). https://doi.org/10.1016/j.compscitech.2014.07.005
C.-P. Ma, Y. Zhang, H. Zhang, A.-J. Gao, Y. Wang, Effects of acid–base properties of ammonium salt electrolyte on electrochemical surface activation of carbon fibers. Fibers Polym. 24(10), 3501–3511 (2023). https://doi.org/10.1007/s12221-023-00322-5
T. Ma, R. Shao, A. Siddique, W. Wang, T. Li et al., Repairing surface defects of carbon fibers: electrostatic spraying nano-carbons on stabilized PAN-fibers and subsequent thermal annealing. Surf. Interfaces 52, 104783 (2024). https://doi.org/10.1016/j.surfin.2024.104783
A. Stolle, B. Ondruschka, I. Morgenthal, O. Andersen, W. Bonrath, Metallic short fibers for liquid-phase oxidation reactions. J. Mol. Catal. A Chem. 335(1–2), 228–235 (2011). https://doi.org/10.1016/j.molcata.2010.11.038
Y. Wang, Z. Wang, X. Wang, H. Liu, Y. Ma et al., The effect of liquid-phase preoxidation on the use of carbon fibers in Al2O3-C refractories. Int. J. Appl. Ceram. Technol. 22(5), e15160 (2025). https://doi.org/10.1111/ijac.15160
X. Qian, X. Wang, Q. OuYang, Y. Chen, Q. Yan, Surface structural evolvement in electrochemical oxidation and sizing and its effect on carbon fiber/epoxy composites properties. J. Reinf. Plast. Compos. 31(15), 999–1008 (2012). https://doi.org/10.1177/0731684412449895
X. Qian, J. Zhi, L. Chen, J. Huang, Y. Zhang, Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites. Surf. Interface Anal. 45(5), 937–942 (2013). https://doi.org/10.1002/sia.5185
Y. Luo, Y. Zhang, T. Xing, A. He, S. Zhao et al., Full-color tunable and highly fire-retardant colored carbon fibers. Adv. Fiber Mater. 5(5), 1618–1631 (2023). https://doi.org/10.1007/s42765-023-00294-4
F. Chen, Y. Huang, R. Li, S. Zhang, Q. Jiang et al., Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci. Adv. 8(26), eabn5882 (2022). https://doi.org/10.1126/sciadv.abn5882
Z. Dai, F. Shi, B. Zhang, M. Li, Z. Zhang, Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl. Surf. Sci. 257(15), 6980–6985 (2011). https://doi.org/10.1016/j.apsusc.2011.03.047
C. Ralph, P. Lemoine, A. Boyd, E. Archer, A. McIlhagger, The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene. Appl. Surf. Sci. 475, 435–445 (2019). https://doi.org/10.1016/j.apsusc.2019.01.001
Y.-S. Wei, X.-Z. Huang, Z.-J. Du, Y. Cheng, Synthesis of BN coatings on carbon fiber by dip coating. Surf. Interface Anal. 49(3), 177–181 (2017). https://doi.org/10.1002/sia.6105
G. Zhang, W. Yang, J. Ding, M. Liu, C. Di et al., Influence of carbon fibers on interfacial bonding properties of copper-coated carbon fibers. Carbon Lett. 34(3), 1055–1064 (2024). https://doi.org/10.1007/s42823-023-00671-4
A.S. Nitai, T. Chowdhury, M.N. Inam, M.S. Rahman, M.I.H. Mondal et al., Carbon fiber and carbon fiber composites: creating defects for superior material properties. Adv. Compos. Hybrid Mater. 7(5), 169 (2024). https://doi.org/10.1007/s42114-024-00971-x
O. Dagdag, H. Kim, Advances in flame retardant technologies for epoxy resins: chemical grafting onto carbon fiber techniques, reactive agents, and applications in composite materials. Molecules 29(24), 5996 (2024). https://doi.org/10.3390/molecules29245996
L. Yang, H. Xia, Z. Xu, L. Zou, Q. Ni, Influence of surface modification of carbon fiber based on magnetron sputtering technology on mechanical properties of carbon fiber composites. Mater. Res. Express 7(10), 105602 (2020). https://doi.org/10.1088/2053-1591/abbc90
L. Yang, Y. Chen, Z. Xu, H. Xia, T. Natuski et al., Effect of surface modification of carbon fiber based on magnetron sputtering technology on tensile properties. Carbon 204, 377–386 (2023). https://doi.org/10.1016/j.carbon.2022.12.045
W. Wang, J. Li, J. Shi, Y. Jiao, X. Wang et al., Structure and physical properties of conductive bamboo fiber bundle fabricated by magnetron sputtering. Materials 16(8), 3154 (2023). https://doi.org/10.3390/ma16083154
S. Lu, X. Yang, L. Zhang, J. Ma, S. Wang et al., Real-time monitoring of resin infiltration process in vacuum assisted molding(VARI) of composites with carbon nanotube buckypaper sensor. Mater. Res. Express 6(11), 115628 (2019). https://doi.org/10.1088/2053-1591/ab507b
Z. Wang, L. Zhang, X. Liu, X. Dong, L. Yang et al., Basalt flake/epoxy resin nacre-inspired bulk composite fabricated by vacuum-assisted resin transfer molding technique. Mater. Lett. 384, 138122 (2025). https://doi.org/10.1016/j.matlet.2025.138122
D. Chen, C. Liu, Z. Kang, Thin copper hybrid structures by spray-assisted layer by layer chemical deposition on fabric surfaces for electromagnetic interference shielding. Colloid Interface Sci. Commun. 40, 100365 (2021). https://doi.org/10.1016/j.colcom.2021.100365
S. Hwang, C.C. Walker, D. Johnson, Y. Han, D.J. Gardner, Spray drying enzyme-treated cellulose nanofibrils. Polymers 15(20), 4086 (2023). https://doi.org/10.3390/polym15204086
J. Zhang, S. Liu, J. Liu, Y. Lu, Y. Liu et al., Electroless nickel plating and spontaneous infiltration behavior of woven carbon fibers. Mater. Des. 186, 108301 (2020). https://doi.org/10.1016/j.matdes.2019.108301
J.N. Balaraju, P. Radhakrishnan, V. Ezhilselvi, A.A. Kumar, Z. Chen et al., Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites. Surf. Coat. Technol. 302, 389–397 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.040
R.H. Guo, S.X. Jiang, C.W.M. Yuen, M.C.F. Ng, J.W. Lan et al., Influence of deposition parameters and kinetics of electroless Ni-P plating on polyester fiber. Fibers Polym. 13(8), 1037–1043 (2012). https://doi.org/10.1007/s12221-012-1037-4
J. Li, S. Bi, B. Mei, F. Shi, W. Cheng et al., Effects of three-dimensional reduced graphene oxide coupled with nickel nanops on the microwave absorption of carbon fiber-based composites. J. Alloys Compd. 717, 205–213 (2017). https://doi.org/10.1016/j.jallcom.2017.03.098
W. Wang, Z. Zhai, J. Liu, Y. Wang, Z. Yang, Influence of carbon fiber nickel electroplating on the electromagnetic interference shielding and mechanical properties of carbon fiber reinforced polyamide 6 composites. Polym. Compos. 44(12), 8838–8848 (2023). https://doi.org/10.1002/pc.27741
J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30(12), e1705380 (2018). https://doi.org/10.1002/adma.201705380
X. Luo, S. Wu, Y.-Q. Yang, N. Jin, S. Liu et al., Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I2 system. Appl. Surf. Sci. 406, 62–68 (2017). https://doi.org/10.1016/j.apsusc.2017.02.141
Z.-X. Chen, C. Chang, X. Yue, H. Li, C.-G. Liang et al., Experimental and theoretical study on the electromagnetic shielding performance of polymer nanocomposites consisting of basalt fiber and CNTs. Compos. Sci. Technol. 247, 110399 (2024). https://doi.org/10.1016/j.compscitech.2023.110399
Z. Wang, Y. Dong, J.-C. Yang, X.-J. Wang, M.-L. Zhang et al., Improved interfacial shear strength in carbon fiber enhanced semi-aromatic polyamide 6T composite via in situ polymerization on fiber surface. Compos. Sci. Technol. 223, 109401 (2022). https://doi.org/10.1016/j.compscitech.2022.109401
H. Li, Z. Sha, Y. Song, J. Fan, J. Wei et al., Developing wearable photothermal and antibacterial fabrics: In-situ polymerization of MoS2-hybridized PET fibers. Compos. Sci. Technol. 270, 111291 (2025). https://doi.org/10.1016/j.compscitech.2025.111291
E. Fedorenko, G.A. Luinstra, In situ polymerization and synthesis of UHMWPE/carbon fiber composites. Polymers 17(1), 90 (2025). https://doi.org/10.3390/polym17010090
K. Mosnáčková, M.M. Chehimi, P. Fedorko, M. Omastová, Polyamide grafted with polypyrrole: formation, properties, and stability. Chem. Pap. 67(8), 979–994 (2013). https://doi.org/10.2478/s11696-012-0305-5
H. Fang, L. Yuan, G. Liang, A. Gu, Aramid fibre-based wearable electrochemical capacitors with high energy density and mechanical properties through chemical synergistic combination of multi-coatings. Electrochim. Acta 284, 149–158 (2018). https://doi.org/10.1016/j.electacta.2018.07.155
S. Qiao, Z. Shi, A. Tong, Y. Luo, Y. Zhang et al., Atomic layer deposition paves the way for next-generation smart and functional textiles. Adv. Colloid Interface Sci. 341, 103500 (2025). https://doi.org/10.1016/j.cis.2025.103500
S. Qiao, Z. Shi, Y. Zhang, G. Zhang, Z. Huang et al., Colorful polyester with high-efficiency flame retardant and anti-dripping properties. Chem. Eng. J. 521, 166544 (2025). https://doi.org/10.1016/j.cej.2025.166544
F. Chen, H. Yang, K. Li, B. Deng, Q. Li et al., Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano 11(10), 10330–10336 (2017). https://doi.org/10.1021/acsnano.7b05139
P. Lorenz, M. Ehrhardt, K. Zimmer, Structuring of glass fibre surfaces by laser-induced front side etching. Appl. Surf. Sci. 302, 52–57 (2014). https://doi.org/10.1016/j.apsusc.2014.01.045
C. Vass, B. Kiss, J. Kopniczky, B. Hopp, Etching of fused silica fiber by metallic laser-induced backside wet etching technique. Appl. Surf. Sci. 278, 241–244 (2013). https://doi.org/10.1016/j.apsusc.2012.11.163
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14(1), 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
X. Hou, X.-R. Feng, K. Jiang, Y.-C. Zheng, J.-T. Liu et al., Recent progress in smart electromagnetic interference shielding materials. J. Mater. Sci. Technol. 186, 256–271 (2024). https://doi.org/10.1016/j.jmst.2024.01.008
J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
Y. Zhuo, Y. Yao, Y. Zhuge, Enhancing electromagnetic shielding performance of cement-based materials using industrial waste copper swarf. Constr. Build. Mater. 426, 136162 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136162
D. Ji, Y. Wang, C. He, K. Cui, P. Han et al., High-efficiency electromagnetic shielding based on multipolar effect in RGO/MXene aerogels decorated with ordered Fe3O4 cluster. Carbon 226, 119189 (2024). https://doi.org/10.1016/j.carbon.2024.119189
S.A. Schelkunoff, A mathematical theory of linear arrays. Bell Syst. Tech. J. 22(1), 80–107 (1943). https://doi.org/10.1002/j.1538-7305.1943.tb01306.x
J. Xue, X. Yin, F. Ye, L. Zhang, L. Cheng, Theoretical prediction and experimental verification on EMI shielding effectiveness of dielectric composites using complex permittivity. Ceram. Int. 43(18), 16736–16743 (2017). https://doi.org/10.1016/j.ceramint.2017.09.067
A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah et al., Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53(12), 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
R. Kumar, S. Sahoo, E. Joanni, J.-J. Shim, Cutting edge composite materials based on MXenes: synthesis and electromagnetic interference shielding applications. Compos. Part B Eng. 264, 110874 (2023). https://doi.org/10.1016/j.compositesb.2023.110874
D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites - a review. Polym. Rev. 59(2), 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
H.-J. Kim, S.-H. Kim, S. Park, Effects of the carbon fiber-carbon microcoil hybrid formation on the effectiveness of electromagnetic wave shielding on carbon fibers-based fabrics. Materials 11(12), 2344 (2018). https://doi.org/10.3390/ma11122344
H. Gao, Y. Wang, W. Xu, Research progress of fiber-based electromagnetic shielding materials. Fibres. Polym. 26(9), 3689–3713 (2025). https://doi.org/10.1007/s12221-025-01063-3
W. Zhang, L. Wei, Z. Ma, Q. Fan, J. Ma, Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 177, 412–426 (2021). https://doi.org/10.1016/j.carbon.2021.02.093
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der Waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
X.-X. Wang, Q. Zheng, Y.-J. Zheng, M.-S. Cao, Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
X. Jia, Y. Li, B. Shen, W. Zheng, Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos. B Eng. 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
P.P. Singh, A. De, B.B. Khatua, Bio-inspired smart composite architecture for thermally tunable green EMI shielding. Appl. Surf. Sci. 643, 158643 (2024). https://doi.org/10.1016/j.apsusc.2023.158643
D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, A. Long, Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos. B Eng. 173, 106906 (2019). https://doi.org/10.1016/j.compositesb.2019.106906
K. Zdeněk, K. Pavel, P. David, S. Jiří, On the shielding effectiveness calculation. Computing 95(1), 111–121 (2013). https://doi.org/10.1007/s00607-013-0312-6
J.-H. Lee, Y.-S. Kim, H.-J. Ru, S.-Y. Lee, S.-J. Park, Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 14(1), 188 (2022). https://doi.org/10.1007/s40820-022-00926-1
G. Mittal, K.Y. Rhee, Hierarchical structures of CNT@basalt fabric for tribological and electrical applications: impact of growth temperature and time during synthesis. Compos. Part A Appl. Sci. Manuf. 115, 8–21 (2018). https://doi.org/10.1016/j.compositesa.2018.09.006
B. Cheng, J. Wang, F. Zhang, S. Qi, Preparation of silver/carbon fiber/polyaniline microwave absorption composite and its application in epoxy resin. Polym. Bull. 75(1), 381–393 (2018). https://doi.org/10.1007/s00289-017-2035-x
J. Zhang, P. Liu, R. Chen, Y. Zhang, K. Jiang, CNT fibers based laminated composites resistant to extreme environments: synergistic design of electromagnetic shielding performance and high-temperature resistance. Mater Charact 227, 115310 (2025). https://doi.org/10.1016/j.matchar.2025.115310
C. Wan, Y. Jiao, X. Li, W. Tian, J. Li et al., A multi-dimensional and level-by-level assembly strategy for constructing flexible and sandwich-type nanoheterostructures for high-performance electromagnetic interference shielding. Nanoscale 12(5), 3308–3316 (2020). https://doi.org/10.1039/C9NR09087H
Q. Xiao, Z. Chen, J. Liao, Y. Li, L. Xue et al., Electromagnetic interference shielding performance and mechanism of Fe/Al modified SiC f/SiC composites. J. Alloys Compd. 887, 161359 (2021). https://doi.org/10.1016/j.jallcom.2021.161359
H. Liu, J. Dang, C. Lei, Z. Zhu, X. Li et al., Modulating interface of Ni-embedded hollow porous Ti3C2Tx MXene film toward efficient EMI shielding. Small (2025). https://doi.org/10.1002/smll.202410937
Q. Ding, J. Yang, H. Yang, S. Gu, Z. Cheng et al., Superior EMI shielding and thermal management of flexible, fire-resistant SiBCNZr nanofiber fabrics enhanced by defect engineering and graphitization. Adv. Funct. Mater. 35(9), 2416039 (2025). https://doi.org/10.1002/adfm.202416039
R. Verma, P. Thakur, A. Chauhan, R. Jasrotia, A. Thakur, A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon 208, 170–190 (2023). https://doi.org/10.1016/j.carbon.2023.03.050
G. Wang, J. Chen, W. Zheng, B. Shen, High-efficiency flexible liquid metal/elastomer composite film with designability for strain-invariant electromagnetic shielding and Joule-heating applications. Chem. Eng. J. 488, 151052 (2024). https://doi.org/10.1016/j.cej.2024.151052
X. Yang, L. Xuan, W. Men, X. Wu, D. Lan et al., Carbonyl iron/glass fiber cloth composites: achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 491, 151862 (2024). https://doi.org/10.1016/j.cej.2024.151862
W.C. Wang, B. Zhou, S.H. Xu, Z.M. Yang, Q.Y. Zhang, Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 101, 90–171 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.003
J. Li, Y. Wang, W. Zhao, P. Xu, T. Wang et al., High-performance quartz fiber/polysilazane and epoxy-modified cyanate ester microwave-transparent composites. Adv. Compos. Hybrid Mater. 5(3), 1830–1840 (2022). https://doi.org/10.1007/s42114-022-00456-9
H. Jamshaid, R. Mishra, A green material from rock: basalt fiber–a review. J. Text. Inst. 107(7), 923–937 (2016). https://doi.org/10.1080/00405000.2015.1071940
P. Jagadeesh, S.M. Rangappa, S. Siengchin, Basalt fibers: an environmentally acceptable and sustainable green material for polymer composites. Constr. Build. Mater. 436, 136834 (2024). https://doi.org/10.1016/j.conbuildmat.2024.136834
H. Jia, Y. Qiao, Y. Zhang, C. Liu, X. Jian, Excellent and effective interfacial transition layer with an organic/inorganic hybrid carbon nanotube network structure for basalt fiber reinforced high-performance thermoplastic composites. Chem. Eng. J. 465, 142995 (2023). https://doi.org/10.1016/j.cej.2023.142995
Y. Zhang, Y. Luo, Y. Huang, M. Wang, A. He et al., Desired color diversity of carbon fiber with excellent environmental super-durability and remarkable flame retardancy. ACS Appl. Mater. Interfaces 17(5), 8340–8348 (2025). https://doi.org/10.1021/acsami.4c19626
Y. Luo, Z. Shi, S. Qiao, A. Tong, X. Liao et al., Advances in nanomaterials as exceptional fillers to reinforce carbon fiber-reinforced polymers composites and their emerging applications. Polym. Compos. 46(1), 54–80 (2025). https://doi.org/10.1002/pc.29027
Y. Zhang, Y. Luo, M. Wang, T. Xing, A. He et al., Advances in colored carbon-based fiber materials and their emerging applications. SusMat 4(6), e243 (2024). https://doi.org/10.1002/sus2.243
K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff et al., High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007). https://doi.org/10.1126/science.1147635
B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), e1902664 (2020). https://doi.org/10.1002/adma.201902664
L. Li, X. Liu, G. Wang, Y. Liu, W. Kang et al., Research progress of ultrafine alumina fiber prepared by sol-gel method: a review. Chem. Eng. J. 421, 127744 (2021). https://doi.org/10.1016/j.cej.2020.127744
L. Oppenheimer, M. Ramkumar, I. Machado, C. Scott, S. Winroth et al., Development of an atomic-oxygen-erosion-resistant, alumina-fiber-reinforced, fluorinated polybenzoxazine composite for low-earth orbital applications. Polymers 15, 112 (2022). https://doi.org/10.3390/polym15010112
Y. Lei, Y. Wang, Y. Song, Y. Li, C. Deng et al., Nearly stoichiometric BN fiber with low dielectric constant derived from poly [(alkylamino)borazine. Mater. Lett. 65(2), 157–159 (2011). https://doi.org/10.1016/j.matlet.2010.09.089
S. Li, Y. Li, H. Xiao, X. Li, Q. Wang et al., Oxidation behavior of Si3N4 fibers derived from polycarbosilane. Corros. Sci. 136, 9–17 (2018). https://doi.org/10.1016/j.corsci.2018.02.032
F. Li, W. Cui, J. Zhang, S. Du, Z. Chen et al., Synthesis, characterization and growth mechanism of SiC fibers. Mater. Chem. Phys. 291, 126703 (2022). https://doi.org/10.1016/j.matchemphys.2022.126703
Y.K. Chih, J. Hwang, C.S. Kou, C.C. Chuang, J.L. Hu et al., Surface modification of hollow carbon fibres using plasma treatment. Surf. Eng. 27(8), 623–626 (2011). https://doi.org/10.1179/026708410x12786785573391
M. Bonitz, A. Filinov, J.-W. Abraham, K. Balzer, H. Kählert et al., Towards an integrated modeling of the plasma-solid interface. Front. Chem. Sci. Eng. 13(2), 201–237 (2019). https://doi.org/10.1007/s11705-019-1793-4
Z. Yang, X. Huang, J. Li, B. Tang, G. Huang et al., Improved amine functionalization of carbon fiber surfaces by O2 plasma activation treatment. Compos. Interfaces 30(12), 1411–1427 (2023). https://doi.org/10.1080/09276440.2023.2223407
A. Vesel, M. Mozetic, New developments in surface functionalization of polymers using controlled plasma treatments. J. Phys. D Appl. Phys. 50(29), 293001 (2017). https://doi.org/10.1088/1361-6463/aa748a
L. Xing, L. Liu, Y. Huang, D. Jiang, B. Jiang et al., Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation. Compos. Part B Eng. 69, 50–57 (2015). https://doi.org/10.1016/j.compositesb.2014.09.027
D. Bhattacharyya, V. Baheti, Ozone assisted modification and pulverization of plant fibres. Ind. Crops Prod. 199, 116711 (2023). https://doi.org/10.1016/j.indcrop.2023.116711
H.S. Maqsood, U. Bashir, J. Wiener, M. Puchalski, S. Sztajnowski et al., Ozone treatment of jute fibers. Cellulose 24(3), 1543–1553 (2017). https://doi.org/10.1007/s10570-016-1164-y
Y.V. Tertyshnaya, S.G. Karpova, M.V. Podzorova, Effect of ozone on nonwoven polylactide/natural rubber fibers. Polymers 17(15), 2102 (2025). https://doi.org/10.3390/polym17152102
J. Yu, X. Gao, W. Yang, Z. Zhang, T. Sheng et al., Preparation of nanocarbon-coated glass fibre/phenolic composites for EMI shielding. Bull. Mater. Sci. 45(3), 116 (2022). https://doi.org/10.1007/s12034-022-02702-8
Y. Cheng, K. Wang, Y. Qi, Z. Liu, Chemical vapor deposition method for graphene fiber materials. Acta Phys. Chim. Sin. 38, 2006046 (2020). https://doi.org/10.3866/pku.whxb202006046
X. Luo, S. Wu, Y.-Q. Yang, N. Jin, S. Liu et al., Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition. Mater. Chem. Phys. 184, 189–196 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.041
A. Saffar Shamshirgar, M.F. Álvarez, A. del Campo, J.F. Fernández, R.E. Rojas Hernández et al., Versatile graphene-alumina nanofibers for microwave absorption and EMI shielding. Carbon 210, 118057 (2023). https://doi.org/10.1016/j.carbon.2023.118057
M. Pitto, H. Fiedler, N.K. Kim, C.J.R. Verbeek, T.D. Allen et al., Carbon fibre surface modification by plasma for enhanced polymeric composite performance: a review. Compos. A Appl. Sci. Manuf. 180, 108087 (2024). https://doi.org/10.1016/j.compositesa.2024.108087
Z. Huang, H. Einaga, Effect of ozone treatment on microwave heating properties of carbon fiber. Catal. Today 458, 115386 (2025). https://doi.org/10.1016/j.cattod.2025.115386
G. Kim, H. Lee, K. Kim, D.U. Kim, Effects of heat treatment atmosphere and temperature on the properties of carbon fibers. Polymers 14(12), 2412 (2022). https://doi.org/10.3390/polym14122412
C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), e2003425 (2020). https://doi.org/10.1002/adma.202003425
H.P.L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque et al., Liquid phase oxidation chemistry in continuous-flow microreactors. Chem. Soc. Rev. 45(1), 83–117 (2016). https://doi.org/10.1039/c5cs00447k
W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin et al., Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 8(6), 5533–5541 (2018). https://doi.org/10.1021/acscatal.8b01017
J. Moosburger-Will, M. Bauer, E. Laukmanis, R. Horny, D. Wetjen et al., Interaction between carbon fibers and polymer sizing: influence of fiber surface chemistry and sizing reactivity. Appl. Surf. Sci. 439, 305–312 (2018). https://doi.org/10.1016/j.apsusc.2017.12.251
Z. Jia, T. Xu, S. Yang, Y. Luo, D. Jia, Interfacial mechano-chemical grafting in styrene-butadiene rubber/halloysite nanotubes composites. Polym. Test. 54, 29–39 (2016). https://doi.org/10.1016/j.polymertesting.2016.06.022
P. Purohit, A. Bhatt, R.K. Mittal, M.H. Abdellattif, T.A. Farghaly, Polymer grafting and its chemical reactions. Front. Bioeng. Biotechnol. 10, 1044927 (2023). https://doi.org/10.3389/fbioe.2022.1044927
B. Sudduth, J. Sun, Y. Wang, Chemical grafting of highly dispersed VOx/CeO2 for increased catalytic activity in methanol oxidative dehydrogenation. Catal. Lett. 152(10), 2980–2992 (2022). https://doi.org/10.1007/s10562-021-03862-8
G. Ni, Y. Yang, K. Chen, C. Liu, S. Wang, Optimization of pore structure and surface chemical properties of activated carbon fiber via liquid-phase stabilization for enhanced supercapacitor performance. Diam. Relat. Mater. 149, 111607 (2024). https://doi.org/10.1016/j.diamond.2024.111607
Y. Fu, H. Li, W. Cao, Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting. Compos. Part A Appl. Sci. Manuf. 130, 105719 (2020). https://doi.org/10.1016/j.compositesa.2019.105719
T. Li, Y. Jiang, L. Zeng, H. Zhang, Z. Yuan et al., Surface sizing introducing Fe3O4 nanops for magnetic properties strengthening of basalt fibers. Ceram. Int. 51(2), 2216–2225 (2025). https://doi.org/10.1016/j.ceramint.2024.11.199
H. Gupta, P.K. Agnihotri, S. Basu, N. Gupta, Carbon nanotube grafting for better electromagnetic shielding with carbon fiber/epoxy composites. Polym. Compos. 46(S3), S856–S866 (2025). https://doi.org/10.1002/pc.30003
F. Ji, C. Liu, Y. Hu, S. Xu, Y. He et al., Chemically grafting carbon nanotubes onto carbon fibers for enhancing interfacial properties of fiber metal laminate. Materials 13(17), 3813 (2020). https://doi.org/10.3390/ma13173813
H. Lee, M.K. Choi, S.-H. Kang, W. Han, B.-J. Kim et al., Heat-treated Ni-coated fibers for EMI shielding: balancing electrical performance and interfacial integrity. Polymers 17(12), 1610 (2025). https://doi.org/10.3390/polym17121610
X. Li, S. Zhou, Z. Ji, Q. Xu, J. Dong et al., Fabrication of conductive polyimide/metal composite fibers for high temperature EMI shielding. Appl. Surf. Sci. 680, 161293 (2025). https://doi.org/10.1016/j.apsusc.2024.161293
J.-H. Park, C. Cho, K.H. Kim, J.-H. Kang, M.-K. Seo et al., Effect of plating thickness on PA6/nickel-plated carbon fiber composites manufactured using LFT pellets. Polym. Compos. 46(10), 9576–9585 (2025). https://doi.org/10.1002/pc.29580
S. Zhou, J. Dong, X. Li, X. Zhao, Q. Zhang, Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 5(6), 1892–1904 (2023). https://doi.org/10.1007/s42765-023-00317-0
H. Zhao, L. Hou, Y. Lu, Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater. Des. 95, 97–106 (2016). https://doi.org/10.1016/j.matdes.2016.01.088
R. Zhang, G. Zhang, S. Zhuang, X. Lu, D. Zhang et al., Flexible Ni-Fe-P/PPy@PI fiber paper-based composites with three-layer structure for 5 G electromagnetic shielding applications. J. Alloys Compd. 897, 163232 (2022). https://doi.org/10.1016/j.jallcom.2021.163232
Y. Duan, X. Fang, Z. Zhang, R. Sun, J. Hong et al., Lightweight, flexible rCEF@PPy/MXene for ultra-efficient EMI shielding felt with Joule heating performance. Mater. Lett. 341, 134297 (2023). https://doi.org/10.1016/j.matlet.2023.134297
D. Zhang, H. Yang, J. Pan, B. Lewis, W. Zhou et al., Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes. Compos. Part B Eng. 182, 107646 (2020). https://doi.org/10.1016/j.compositesb.2019.107646
Y. Shao, L. Zou, Y. Chen, L. Wang, L. Song et al., Core-sheath structured CNT@Ni-CNT fiber-based multifunctional fabric with high-sensitivity, wide-range strain sensing, and enhanced electromagnetic shielding absorption. Chem. Eng. J. 512, 162358 (2025). https://doi.org/10.1016/j.cej.2025.162358
J. Hu, X. Xiong, Y. Chen, H. Long, Design and construction of interface engineering in short carbon fiber composites for excellent mechanical properties and efficient electromagnetic interference shielding. Appl. Surf. Sci. 685, 162098 (2025). https://doi.org/10.1016/j.apsusc.2024.162098
W. Feng, L. Zou, C. Lan, S. E, X. Pu, Core-sheath CNT@MXene fibers toward absorption-dominated electromagnetic interference shielding fabrics. Adv. Fiber Mater. 6(5), 1657–1668 (2024). https://doi.org/10.1007/s42765-024-00452-2
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15(1), 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
Q. Wang, Y. Wang, C. Sun, Y. Zhang, R. Qu et al., Multifunctional aramid nanofiber/MXene/aramid fiber composite fabric with outstanding EMI shielding performance. Coatings 15(3), 354 (2025). https://doi.org/10.3390/coatings15030354
J. Yu, Z. Cui, J. Lu, J. Zhao, Y. Zhang et al., Integrated hierarchical macrostructures of flexible basalt fiber composites with tunable electromagnetic interference (EMI) shielding and rapid electrothermal response. Compos. Part B Eng. 224, 109193 (2021). https://doi.org/10.1016/j.compositesb.2021.109193
X. Zhang, D. Miao, X. Ning, M. Cai, Y. Tian et al., The stability study of copper sputtered polyester fabrics in synthetic perspiration. Vacuum 164, 205–211 (2019). https://doi.org/10.1016/j.vacuum.2019.03.023
C.L. Xia, H. Ren, S.Q. Shi, H.L. Zhang, J.T. Cheng et al., Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering. Appl. Surf. Sci. 362, 335–340 (2016). https://doi.org/10.1016/j.apsusc.2015.11.202
Q. Wang, S. Xiao, S.Q. Shi, S. Xu, L. Cai, Self-bonded natural fiber product with high hydrophobic and EMI shielding performance via magnetron sputtering Cu film. Appl. Surf. Sci. 475, 947–952 (2019). https://doi.org/10.1016/j.apsusc.2019.01.059
A. Singh, G. den Van Mooter, Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 100, 27–50 (2016). https://doi.org/10.1016/j.addr.2015.12.010
S. Huang, M.-L. Vignolles, X.D. Chen, Y. Le Loir, G. Jan et al., Spray drying of probiotics and other food-grade bacteria: a review. Trends Food Sci. Technol. 63, 1–17 (2017). https://doi.org/10.1016/j.tifs.2017.02.007
H. Wang, X. Sun, Y. Wang, K. Li, J. Wang et al., Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14(1), 380 (2023). https://doi.org/10.1038/s41467-023-36082-2
T. Arunkumar, R. Karthikeyan, R. Ram Subramani, K. Viswanathan, M. Anish, Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). Int. J. Ambient Energy 41(4), 452–456 (2020). https://doi.org/10.1080/01430750.2018.1472657
B.-J. Kim, B.K. Deka, I.-J. Bae, D.-H. Choi, D.-I. Son et al., Unidirectional spread-tow carbon fiber/polypropylene composites reinforced with mechanically aligned multi-walled carbon nanotubes and exfoliated graphite nanoplatelets. Polym. Compos. 39(S2), E1251–E1261 (2018). https://doi.org/10.1002/pc.24835
M.-S. Kim, J. Yan, K.-M. Kang, K.-H. Joo, Y.-J. Kang et al., Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. Int. J. Precis. Eng. Manuf. 14(6), 1087–1092 (2013). https://doi.org/10.1007/s12541-013-0146-3
J.R.N. Gnidakouong, J.-H. Kim, H. Kim, Y.-B. Park, Electromagnetic interference shielding behavior of hybrid carbon nanotube/exfoliated graphite nanoplatelet coated glass fiber composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 248, 114403 (2019). https://doi.org/10.1016/j.mseb.2019.114403
P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong et al., Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 223, 1–23 (2017). https://doi.org/10.1016/j.mseb.2017.05.002
T. Hao, H. Ji, D. Xu, D. Liu, Z. Ren et al., Capillary force-induced graphene spontaneous transfer and encapsulation of silver nanowires for highly-stable transparent electrodes. ACS Appl. Mater. Interfaces 16(30), 40199–40209 (2024). https://doi.org/10.1021/acsami.4c06315
C. Liang, Q. Huo, J. Qi, Y. Zhang, C. Liu et al., Robust solid–solid phase change coating encapsulated glass fiber fabric with electromagnetic interference shielding for thermal management and message encryption. Adv. Funct. Mater. 34(49), 2409146 (2024). https://doi.org/10.1002/adfm.202409146
Y. Yang, W. Chen, Y. Xue, Interfacial bonding within Cu-based composites reinforced with TiC-or Ni-coated carbon fiber. Chin. J. Mater. Res. 35, 467–473 (2021). https://doi.org/10.11901/1005.3093.2020.357
B.-L. Sun, X.-L. Shi, Q. Hu, M. Du, H. Gong et al., Ultrahigh-strength textile fiber-supported schiff base copper complexes for photocatalytic degradation of methyl orange. ACS Appl. Polym. Mater. 6(21), 13077–13088 (2024). https://doi.org/10.1021/acsapm.4c02009
Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 29(24), 1809004 (2019). https://doi.org/10.1002/adfm.201809004
A. Agresti, F. Di Giacomo, S. Pescetelli, A. Di Carlo, Scalable deposition techniques for large-area perovskite photovoltaic technology: a multi-perspective review. Nano Energy 122, 109317 (2024). https://doi.org/10.1016/j.nanoen.2024.109317
J. Feng, Y. Jiao, H. Wang, X. Zhu, Y. Sun et al., High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14(5), 3035–3043 (2021). https://doi.org/10.1039/d1ee00634g
J.H. Koo, J. Kang, S. Lee, J.-K. Song, J. Choi et al., A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6(2), 137–145 (2023). https://doi.org/10.1038/s41928-023-00918-y
S. Song, L. Li, D. Ji, J. Zhao, Q. Wu et al., Flexible basalt fiber/aramid nanofiber/carbon nanotube electromagnetic shielding paper with outstanding environmental stability and joule heating performance. ACS Appl. Mater. Interfaces 15(29), 35495–35506 (2023). https://doi.org/10.1021/acsami.3c06138
N. De Greef, L. Zhang, A. Magrez, L. Forró, J.-P. Locquet et al., Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diamond Relat. Mater. 51, 39–48 (2015). https://doi.org/10.1016/j.diamond.2014.11.002
D. Luo, F. Wang, L. Li, Y. Cao, S. Yang et al., Recycling wind turbine blade to fabricate 3D framework for ultra-robust composite with enhanced electromagnetic interference shielding. Compos. Part B Eng. 305, 112734 (2025). https://doi.org/10.1016/j.compositesb.2025.112734
Z. Wang, D. Gong, W. Chen, C. Zhang, A high-sensitivity and fast-recovery strain sensor based on gradient polyurethane and electroless silver-plating on a high aspect ratio glass fibers. Chem. Eng. J. 507, 160439 (2025). https://doi.org/10.1016/j.cej.2025.160439
J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
L. Xu, R. Si, Q. Ni, J. Chen, J. Zhang et al., Synergistic magnetic/dielectric loss and layered structural design of Ni@carbon fiber/Ag@graphene fiber/polydimethylsiloxane composite for high-absorption EMI shielding. Carbon 225, 119155 (2024). https://doi.org/10.1016/j.carbon.2024.119155
Y. Liu, D. He, O. Dubrunfaut, A. Zhang, L. Pichon et al., In-situ growing carbon nanotubes on nickel modified glass fiber reinforced epoxy composites for EMI application. Appl. Compos. Mater. 28(3), 777–790 (2021). https://doi.org/10.1007/s10443-021-09894-y
A. Parkash, A. Kadier, P.-C. Ma, Enhanced EMI shielding performance of glass fiber fabric via optimized electroless copper deposition. Mater. Sci. Eng. B 318, 118333 (2025). https://doi.org/10.1016/j.mseb.2025.118333
W. Yang, Y. Fu, A. Xia, K. Zhang, Z. Wu, Microwave absorption property of Ni–Co–Fe–P-coated flake graphite prepared by electroless plating. J. Alloys Compd. 518, 6–10 (2012). https://doi.org/10.1016/j.jallcom.2011.12.014
W. Jang, S. Mallesh, L. Bok, K. Hyeon, Microwave absorption properties of core-shell structured FeCoNi@PMMA filled in composites. Curr. Appl. Phys. 20(4), 525–530 (2020). https://doi.org/10.1016/j.cap.2020.01.019
Q. Wang, Y. Xu, S. Bi, Y. Lu, Enhanced electromagnetic-interference shielding effectiveness and mechanical strength of Co-Ni coated aramid-carbon blended fabric. Chin. J. Aeronaut. 34(10), 103–114 (2021). https://doi.org/10.1016/j.cja.2021.03.011
Y. Wang, J. Wang, Z. Liu, S. Zheng, W. Lu et al., Nanocone-shaped Ni-electroplated carbon fiber composite films for electromagnetic shielding applications. J. Mater. Res. Technol. 27, 4625–4632 (2023). https://doi.org/10.1016/j.jmrt.2023.10.216
A. Bhattacharya, A. De, Conducting composites of polypyrrole and polyaniline a review. Prog. Solid State Chem. 24(3), 141–181 (1996). https://doi.org/10.1016/0079-6786(96)00002-7
M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, properties, and applications of polyaniline and polyaniline thin films-a review. Polymers 13(12), 2003 (2021). https://doi.org/10.3390/polym13122003
Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
X. He, C. Cui, Y. Chen, L. Zhang, X. Sheng et al., MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Mater. 34(51), 2409675 (2024). https://doi.org/10.1002/adfm.202409675
J. Luo, Y. Xue, C. Yang, Y. Liu, L. Zhang et al., Core-shell BN/SCF architecture with phonon-electronic dual conduction pathways for synergistic enhancement of thermal conductivity, EMI shielding and mechanical properties in CF/EP composites. Compos. Part B Eng. 305, 112747 (2025). https://doi.org/10.1016/j.compositesb.2025.112747
M. Ma, Z. Liao, X. Su, Q. Zheng, Y. Liu et al., Magnetic CoNi alloy ps embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 608(Pt 3), 2203–2212 (2022). https://doi.org/10.1016/j.jcis.2021.10.006
Y. Gou, H. Wen, W. Zhang, A promising CF@PANI multifunctional absorbents: preparation and microwave absorption performance investigation. Mater. Res. Bull. 192, 113610 (2025). https://doi.org/10.1016/j.materresbull.2025.113610
C. Chang, X. Yue, B. Hao, D. Xing, P.-C. Ma, Direct growth of carbon nanotubes on basalt fiber for the application of electromagnetic interference shielding. Carbon 167, 31–39 (2020). https://doi.org/10.1016/j.carbon.2020.05.074
Q. Men, S. Wang, Z. Yan, B. Zhao, L. Guan et al., Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Adv. Compos. Hybrid Mater. 5(3), 2429–2439 (2022). https://doi.org/10.1007/s42114-022-00457-8
N. Yamamoto, R. de Guzman Villoria, B.L. Wardle, Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72(16), 2009–2015 (2012). https://doi.org/10.1016/j.compscitech.2012.09.006
W. Li, F. Liang, X. Sun, K. Zheng, R. Liu et al., Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat. Commun. 15(1), 6825 (2024). https://doi.org/10.1038/s41467-024-51118-x
F. Liang, W. Li, K. Zheng, K. Huang, S. Cheng et al., Graphene-skinned alumina fiber fabric for diverse electrothermal and electromagnetic compatibility and its mass production. Adv. Mater. 37(28), 2501226 (2025). https://doi.org/10.1002/adma.202501226
X. Gao, Q. Zhou, J. Wang, L. Xu, W. Zeng, Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: a DFT study. Nanomaterials 10(2), 299 (2020). https://doi.org/10.3390/nano10020299
K. Pirabul, Q. Zhao, Z.-Z. Pan, H. Liu, M. Itoh et al., Silicon radical-induced CH4 dissociation for uniform graphene coating on silica surface. Small 20(16), e2306325 (2024). https://doi.org/10.1002/smll.202306325
K. Zheng, C. Yu, W. Li, F. liang, L. Liu et al., Rapid preparation of graphene-skinned alumina fiber fabric and its electromagnetic interference shielding application. Nano Res. 18(5), 94907330 (2025). https://doi.org/10.26599/nr.2025.94907330
G. Zhang, J. Yu, C. Su, C. Di, S. Ci et al., The effect of annealing on the properties of copper-coated carbon fiber. Surf. Interface. 37, 102630 (2023). https://doi.org/10.1016/j.surfin.2023.102630
Z. Wang, G. Cai, Y. Xia, P. Li, S. Shi et al., Highly conductive graphene fiber textile for electromagnetic interference shielding. Carbon 222, 118996 (2024). https://doi.org/10.1016/j.carbon.2024.118996
X. Gao, X. Wang, J. Cai, Y. Zhang, J. Zhang et al., CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing. Carbon 211, 118083 (2023). https://doi.org/10.1016/j.carbon.2023.118083
B. Wu, G. Qian, Y. Yan, M.M. Alam, R. Xia et al., Design of interconnected carbon fiber thermal management composites with effective EMI shielding activity. ACS Appl. Mater. Interfaces 14(43), 49082–49093 (2022). https://doi.org/10.1021/acsami.2c13433
Y. Xing, Y. Wan, Z. Wu, J. Wang, S. Jiao et al., Multilayer ultrathin MXene@AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl. Mater. Interfaces 15(4), 5787–5797 (2023). https://doi.org/10.1021/acsami.2c18759
L. Li, Q. Cheng, MXene based nanocomposite films. Exploration 2(4), 20220049 (2022). https://doi.org/10.1002/exp.20220049
Y.-J. Choi, S.C. Gong, D.C. Johnson, S. Golledge, G.Y. Yeom et al., Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition. Appl. Surf. Sci. 269, 92–97 (2013). https://doi.org/10.1016/j.apsusc.2012.09.159
X. Wan, Y. Zhao, Z. Li, L. Li, Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2(1), 20210029 (2022). https://doi.org/10.1002/EXP.20210029
A. He, Y. Luo, M. Wang, Y. Zhang, Z. Huang et al., Pearl-inspired colored carbon fibers with electromagnetic interference and optical camouflage properties. Energy Environ. Mater. 8(2), e12840 (2025). https://doi.org/10.1002/eem2.12840
P.G. Gordon, G. Bačić, G.P. Lopinski, S.T. Barry, Work function of doped zinc oxide films deposited by ALD. J. Mater. Res. 35(7), 756–761 (2020). https://doi.org/10.1557/jmr.2019.334
G. Lin, T. Zhou, Z. Zhou, W. Sun, Laser induced graphene for EMI shielding and ballistic impact damage detection in basalt fiber reinforced composites. Compos. Sci. Technol. 242, 110182 (2023). https://doi.org/10.1016/j.compscitech.2023.110182
X. Tang, X. Yan, Dip-coating for fibrous materials: mechanism, methods and applications. J. Sol-Gel Sci. Technol. 81(2), 378–404 (2017). https://doi.org/10.1007/s10971-016-4197-7
J. Wu, X. Zhao, C. Tang, J. Lei, L. Li, One-step dipping method to prepare inorganic-organic composite superhydrophobic coating for durable protection of magnesium alloys. J. Taiwan Inst. Chem. Eng. 135, 104364 (2022). https://doi.org/10.1016/j.jtice.2022.104364
S.J. Pothupitiya Gamage, K. Yang, R. Braveenth, K. Raagulan, H.S. Kim et al., MWCNT coated free-standing carbon fiber fabric for enhanced performance in EMI shielding with a higher absolute EMI SE. Materials 10(12), 1350 (2017). https://doi.org/10.3390/ma10121350
X. Mei, L. Lu, Y. Xie, Y.-X. Yu, Y. Tang et al., Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(43), 49030–49041 (2020). https://doi.org/10.1021/acsami.0c08868
Y. Zhang, G. Shen, S.S. Lam, S. Ansar, S.-C. Jung et al., A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 471, 144679 (2023). https://doi.org/10.1016/j.cej.2023.144679
M. Qi, G. Xiao, S. Chen, X. Wang, A. Duan et al., Modification of a chromogenic inorganic basalt fabric via a functionalized anthraquinone polyurethane mixed coating: exceptional wear resistance and EMI shielding. ACS Appl. Polym. Mater. 7(19), 13415–13427 (2025). https://doi.org/10.1021/acsapm.5c03050
G. Yu, G. Shao, Z. Xu, Y. Chen, X. Huang, Hierarchical interface-engineered magnetic graphene-sicn aerogels via stepwise confinement strategy for low-frequency and broadband microwave absorption. J. Adv. Ceram. (2025). https://doi.org/10.26599/jac.2025.9221187
G. Yu, G. Shao, R. Xu, Y. Chen, X. Zhu et al., Metal-organic framework-manipulated dielectric genes inside silicon carbonitride toward tunable electromagnetic wave absorption. Small 19(46), e2304694 (2023). https://doi.org/10.1002/smll.202304694
G. Yu, G. Shao, Y. Chen, Z. Xu, B. Quan et al., Intelligent hygroscopic aerogels: moisture-activated dual-mode switchable electromagnetic response. Adv. Funct. Mater. 35(42), 2506857 (2025). https://doi.org/10.1002/adfm.202506857
X. Huang, G. Yu, B. Quan, J. Xu, G. Sun et al., Harnessing pseudo-jahn-teller disordering of monoclinic birnessite for excited interfacial polarization and local magnetic domains. Small Methods 7(9), e2300045 (2023). https://doi.org/10.1002/smtd.202300045
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14(1), 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
J. Liang, S. Zhu, D. Chen, Y. Li, D. Zhou et al., Dual built-in electric field engineering in heterostructure nickel-cobalt bimetallic composites for boosted electromagnetic energy dissipation. Adv. Powder Mater. 4(6), 100344 (2025). https://doi.org/10.1016/j.apmate.2025.100344
X. Huang, J. Guan, Y. Feng, Q. Zhang, B. Quan et al., Mn and O defect modulation in birnessite creates multiplicate polyhedra to improve dielectric and magnetic losses. Cell Rep. Phys. Sci. 6(1), 102350 (2025). https://doi.org/10.1016/j.xcrp.2024.102350
Z. Liu, J. Liu, H. bian, X. Zhou, H. Liang et al., Lattice expansion/contraction triggered by etching-assisted strain engineering of cobalt sulfide heterostructures to boost electromagnetic wave absorption. Adv. Powder Mater. 5(2), 100367 (2026). https://doi.org/10.1016/j.apmate.2025.100367
Y. Wan, J. Xiao, C. Li, G. Xiong, R. Guo et al., Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J. Magn. Magn. Mater. 399, 252–259 (2016). https://doi.org/10.1016/j.jmmm.2015.10.006
S. Liu, J. Wang, B. Zhang, X. Su, X. Chen et al., Transformation of traditional carbon fibers from microwaves reflection to efficient absorption via carbon fiber microstructure modulation. Carbon 219, 118802 (2024). https://doi.org/10.1016/j.carbon.2024.118802