Enabling Highly Efficient and Stable Perovskite Photovoltaics via A Multidentate Molecular Anchor Additive
Corresponding Author: Yong Hua
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 250
Abstract
Suppressing formamidinium (FA) loss and perovskite phase degradation is very crucial for achieving highly efficient and long-term stable perovskite solar cells (PSCs). Herein, we designed and synthesized a novel multifunctional additive (ZL1) to stabilize α-FAPbI3 perovskite phase through synergistic multisite interactions: i its F atoms form F···H–N hydrogen bonds with FA+, (ii) its phenyl rings participate in cation–π interactions with FA+, (iii) the C=O and S groups coordinate Pb2+ through Lewis acid–base interactions, and (iv) the NH groups engage I− anions through N–H···I hydrogen bonding. Consequently, ZL1 molecule can effectively suppress FA loss and optimizes perovskite crystallization kinetics, yielding high-quality and stable α-FAPbI3 perovskite films with enlarged grain sizes and reduced defect density. Meanwhile, ZL1 treatment promotes exciton dissociation, facilitates hole extraction from the perovskite layer into the hole transport layer, and reduces charge carrier recombination in device. The ZL1-modified device achieves a power conversion efficiency of 26.13%, significantly outperforming the control device (24.20%). A similar improvement is observed in wide-bandgap PSCs, with efficiency increasing from 18.44% to 20.53% after ZL1 treatment. Notably, the unencapsulated ZL1-based devices exhibit exceptional operational stability under both illumination and thermal conditions.
Highlights:
1 A novel multifunctional additive (ZL1) enables formamidinium loss suppression and perovskite stabilization via synergistic multisite interactions.
2 ZL1 demonstrates defect passivation, enhanced charge carrier extraction, and reduced charge recombination.
3 The optimized devices exhibit a high champion efficiency of 26.13%, combined with robust photothermal stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
- J. Zhou, L. Tan, Y. Liu, H. Li, X. Liu et al., Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8(6), 1691–1706 (2024). https://doi.org/10.1016/j.joule.2024.02.019
- J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian et al., Face-on oriented self-assembled molecules with enhanced π–π stacking for highly efficient inverted perovskite solar cells on rough FTO substrates. Energy Environ. Sci. 18(7), 3196–3210 (2025). https://doi.org/10.1039/d4ee05849f
- T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic: inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
- J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
- D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2020). https://doi.org/10.1038/s41578-019-0151-y
- J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136
- G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
- S. Fu, N. Sun, H. Chen, C. Liu, X. Wang et al., On-demand formation of Lewis bases for efficient and stable perovskite solar cells. Nat. Nanotechnol. 20(6), 772–778 (2025). https://doi.org/10.1038/s41565-025-01900-9
- C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016). https://doi.org/10.1039/C5EE03255E
- T. Chen, B.J. Foley, C. Park, C.M. Brown, L.W. Harriger et al., Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2(10), e1601650 (2016). https://doi.org/10.1126/sciadv.1601650
- X. Shi, K. Xu, Y. He, Z. Peng, X. Meng et al., Strategies for enhancing energy-level matching in perovskite solar cells: an energy flow perspective. Nano-Micro Lett. 17(1), 313 (2025). https://doi.org/10.1007/s40820-025-01815-z
- X. Tong, L. Xie, J. Li, Z. Pu, S. Du et al., Large orientation angle buried substrate enables efficient flexible perovskite solar cells and modules. Adv. Mater. 36(38), e2407032 (2024). https://doi.org/10.1002/adma.202407032
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
- J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
- A. Alanazi, D.J. Kubicki, D. Prochowicz, E.A. Alharbi, M.E.F. Bouduban et al., Atomic-level microstructure of efficient formamidinium-based perovskite solar cells stabilized by 5-ammonium valeric acid iodide revealed by multinuclear and two-dimensional solid-state NMR. J. Am. Chem. Soc. 141(44), 17659–17669 (2019). https://doi.org/10.1021/jacs.9b07381
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- W. Zhou, Y. Cai, S. Wan, Y. Li, X. Xiong et al., A universal strategy for defects and interface management enables highly efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 18(8), 3828–3838 (2025). https://doi.org/10.1039/d5ee00073d
- D. Wei, F. Ma, R. Wang, S. Dou, P. Cui et al., Ion-migration inhibition by the cation–π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv. Mater. 30(31), 1707583 (2018). https://doi.org/10.1002/adma.201707583
- J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang et al., Perovskite solar cells: high-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 9(18), 1970064 (2019). https://doi.org/10.1002/aenm.201970064
- Q. Zhou, Y. Gao, C. Cai, Z. Zhang, J. Xu et al., Dually-passivated perovskite solar cells with reduced voltage loss and increased super oxide resistance. Angew. Chem. Int. Ed. 60(15), 8303–8312 (2021). https://doi.org/10.1002/anie.202017148
- B. Jiao, L. Tan, Y. Ye, N. Ren, M. Li et al., One-stone-two-birds: over 26% efficiency in perovskite solar cells via synergistic crystallization & interface regulation. Energy Environ. Sci. 18(11), 5437–5447 (2025). https://doi.org/10.1039/d5ee00189g
- B. Zhang, C. Chen, X. Wang, X. Du, D. Liu et al., A multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem. 135(2), e202213478 (2023). https://doi.org/10.1002/ange.202213478
- H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan et al., Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9(5), 536–547 (2024). https://doi.org/10.1038/s41560-024-01471-4
- Z. Song, K. Sun, Y. Meng, Z. Zhu, Y. Wang et al., Universal approach for managing iodine migration in inverted single-junction and tandem perovskite solar cells. Adv. Mater. 37(3), 2410779 (2025). https://doi.org/10.1002/adma.202410779
- S. Li, Y. Jiang, J. Xu, D. Wang, Z. Ding et al., High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics. Nature 635(8037), 82–88 (2024). https://doi.org/10.1038/s41586-024-08103-7
- H. Liu, Q. Lu, Y. Zhang, M. Li, J. Wang et al., Energetics modulation for efficient and stable n–i–p perovskite solar cells. Angew. Chem. Int. Ed. 64(32), e202502117 (2025). https://doi.org/10.1002/anie.202502117
- D. He, D. Ma, J. Zhang, Y. Yang, J. Ding et al., Universal ion migration suppression strategy based on supramolecular host–guest interaction for high-performance perovskite solar cells. Adv. Mater. 37(33), 2505115 (2025). https://doi.org/10.1002/adma.202505115
- R. Zhuang, P. Wang, L. Wang, Q. Lai, J. Qiu et al., Highly efficient and stable perovskite solar cells by introducing a multifunctional surface modulator. Angew. Chem. Int. Ed. 64(7), e202413660 (2025). https://doi.org/10.1002/anie.202413660
- M. Chen, X. Dong, Y. Xin, Y. Gao, Q. Fu et al., Crystal growth regulation of ruddlesden–popper perovskites via self-assembly of semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 63(3), e202315943 (2024). https://doi.org/10.1002/anie.202315943
- L. Xie, J. Liu, J. Li, C. Liu, Z. Pu et al., A deformable additive on defects passivation and phase segregation inhibition enables the efficiency of inverted perovskite solar cells over 24%. Adv. Mater. 35(38), 2302752 (2023). https://doi.org/10.1002/adma.202302752
- C. Shao, J. He, J. Ma, Y. Wang, G. Niu et al., Multifunctional graphdiyne enables efficient perovskite solar cells via anti-solvent additive engineering. Nano-Micro Lett. 17(1), 121 (2025). https://doi.org/10.1007/s40820-024-01630-y
- M. Li, J. Fu, Q. Xu, T.C. Sum, Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31(47), 1802486 (2019). https://doi.org/10.1002/adma.201802486
- K. Ishioka, B.G. Barker Jr., M. Yanagida, Y. Shirai, K. Miyano, Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J. Phys. Chem. Lett. 8(16), 3902–3907 (2017). https://doi.org/10.1021/acs.jpclett.7b01663
- J. Warby, S. Shah, J. Thiesbrummel, E. Gutierrez-Partida, H. Lai et al., Mismatch of quasi–Fermi level splitting and voc in perovskite solar cells. Adv. Energy Mater. 13(48), 2303135 (2023). https://doi.org/10.1002/aenm.202303135
- C. Li, P. Ganesan, Y. Li, S. Tang, Y. Wang et al., Synergistic electron-deficient surface engineering: a key factor in dictating electron carrier extraction for perovskite photovoltaics. J. Am. Chem. Soc. 147(29), 25738–25749 (2025). https://doi.org/10.1021/jacs.5c07357
- X. Chen, Q. Wang, H. Wei, J. Yang, Y. Yao et al., Minimizing the buried interfacial energy loss using a fluorine-substituted small molecule for 25.92%-efficiency and stable inverted perovskite solar cells. Energy Environ. Sci. 17(19), 7342–7354 (2024). https://doi.org/10.1039/d4ee02964j
- S. Yuan, C. Ge, T. Zhang, G. Su, Q. Qiu et al., Conjugated bisphosphonic acid self-assembled monolayers for efficient and stable inverted perovskite solar cells. J. Am. Chem. Soc. 147(28), 24662–24671 (2025). https://doi.org/10.1021/jacs.5c05801
References
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
J. Zhou, L. Tan, Y. Liu, H. Li, X. Liu et al., Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8(6), 1691–1706 (2024). https://doi.org/10.1016/j.joule.2024.02.019
J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian et al., Face-on oriented self-assembled molecules with enhanced π–π stacking for highly efficient inverted perovskite solar cells on rough FTO substrates. Energy Environ. Sci. 18(7), 3196–3210 (2025). https://doi.org/10.1039/d4ee05849f
T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic: inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2020). https://doi.org/10.1038/s41578-019-0151-y
J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136
G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
S. Fu, N. Sun, H. Chen, C. Liu, X. Wang et al., On-demand formation of Lewis bases for efficient and stable perovskite solar cells. Nat. Nanotechnol. 20(6), 772–778 (2025). https://doi.org/10.1038/s41565-025-01900-9
C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016). https://doi.org/10.1039/C5EE03255E
T. Chen, B.J. Foley, C. Park, C.M. Brown, L.W. Harriger et al., Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2(10), e1601650 (2016). https://doi.org/10.1126/sciadv.1601650
X. Shi, K. Xu, Y. He, Z. Peng, X. Meng et al., Strategies for enhancing energy-level matching in perovskite solar cells: an energy flow perspective. Nano-Micro Lett. 17(1), 313 (2025). https://doi.org/10.1007/s40820-025-01815-z
X. Tong, L. Xie, J. Li, Z. Pu, S. Du et al., Large orientation angle buried substrate enables efficient flexible perovskite solar cells and modules. Adv. Mater. 36(38), e2407032 (2024). https://doi.org/10.1002/adma.202407032
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
A. Alanazi, D.J. Kubicki, D. Prochowicz, E.A. Alharbi, M.E.F. Bouduban et al., Atomic-level microstructure of efficient formamidinium-based perovskite solar cells stabilized by 5-ammonium valeric acid iodide revealed by multinuclear and two-dimensional solid-state NMR. J. Am. Chem. Soc. 141(44), 17659–17669 (2019). https://doi.org/10.1021/jacs.9b07381
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
W. Zhou, Y. Cai, S. Wan, Y. Li, X. Xiong et al., A universal strategy for defects and interface management enables highly efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 18(8), 3828–3838 (2025). https://doi.org/10.1039/d5ee00073d
D. Wei, F. Ma, R. Wang, S. Dou, P. Cui et al., Ion-migration inhibition by the cation–π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv. Mater. 30(31), 1707583 (2018). https://doi.org/10.1002/adma.201707583
J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang et al., Perovskite solar cells: high-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater. 9(18), 1970064 (2019). https://doi.org/10.1002/aenm.201970064
Q. Zhou, Y. Gao, C. Cai, Z. Zhang, J. Xu et al., Dually-passivated perovskite solar cells with reduced voltage loss and increased super oxide resistance. Angew. Chem. Int. Ed. 60(15), 8303–8312 (2021). https://doi.org/10.1002/anie.202017148
B. Jiao, L. Tan, Y. Ye, N. Ren, M. Li et al., One-stone-two-birds: over 26% efficiency in perovskite solar cells via synergistic crystallization & interface regulation. Energy Environ. Sci. 18(11), 5437–5447 (2025). https://doi.org/10.1039/d5ee00189g
B. Zhang, C. Chen, X. Wang, X. Du, D. Liu et al., A multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem. 135(2), e202213478 (2023). https://doi.org/10.1002/ange.202213478
H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan et al., Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9(5), 536–547 (2024). https://doi.org/10.1038/s41560-024-01471-4
Z. Song, K. Sun, Y. Meng, Z. Zhu, Y. Wang et al., Universal approach for managing iodine migration in inverted single-junction and tandem perovskite solar cells. Adv. Mater. 37(3), 2410779 (2025). https://doi.org/10.1002/adma.202410779
S. Li, Y. Jiang, J. Xu, D. Wang, Z. Ding et al., High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics. Nature 635(8037), 82–88 (2024). https://doi.org/10.1038/s41586-024-08103-7
H. Liu, Q. Lu, Y. Zhang, M. Li, J. Wang et al., Energetics modulation for efficient and stable n–i–p perovskite solar cells. Angew. Chem. Int. Ed. 64(32), e202502117 (2025). https://doi.org/10.1002/anie.202502117
D. He, D. Ma, J. Zhang, Y. Yang, J. Ding et al., Universal ion migration suppression strategy based on supramolecular host–guest interaction for high-performance perovskite solar cells. Adv. Mater. 37(33), 2505115 (2025). https://doi.org/10.1002/adma.202505115
R. Zhuang, P. Wang, L. Wang, Q. Lai, J. Qiu et al., Highly efficient and stable perovskite solar cells by introducing a multifunctional surface modulator. Angew. Chem. Int. Ed. 64(7), e202413660 (2025). https://doi.org/10.1002/anie.202413660
M. Chen, X. Dong, Y. Xin, Y. Gao, Q. Fu et al., Crystal growth regulation of ruddlesden–popper perovskites via self-assembly of semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 63(3), e202315943 (2024). https://doi.org/10.1002/anie.202315943
L. Xie, J. Liu, J. Li, C. Liu, Z. Pu et al., A deformable additive on defects passivation and phase segregation inhibition enables the efficiency of inverted perovskite solar cells over 24%. Adv. Mater. 35(38), 2302752 (2023). https://doi.org/10.1002/adma.202302752
C. Shao, J. He, J. Ma, Y. Wang, G. Niu et al., Multifunctional graphdiyne enables efficient perovskite solar cells via anti-solvent additive engineering. Nano-Micro Lett. 17(1), 121 (2025). https://doi.org/10.1007/s40820-024-01630-y
M. Li, J. Fu, Q. Xu, T.C. Sum, Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31(47), 1802486 (2019). https://doi.org/10.1002/adma.201802486
K. Ishioka, B.G. Barker Jr., M. Yanagida, Y. Shirai, K. Miyano, Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J. Phys. Chem. Lett. 8(16), 3902–3907 (2017). https://doi.org/10.1021/acs.jpclett.7b01663
J. Warby, S. Shah, J. Thiesbrummel, E. Gutierrez-Partida, H. Lai et al., Mismatch of quasi–Fermi level splitting and voc in perovskite solar cells. Adv. Energy Mater. 13(48), 2303135 (2023). https://doi.org/10.1002/aenm.202303135
C. Li, P. Ganesan, Y. Li, S. Tang, Y. Wang et al., Synergistic electron-deficient surface engineering: a key factor in dictating electron carrier extraction for perovskite photovoltaics. J. Am. Chem. Soc. 147(29), 25738–25749 (2025). https://doi.org/10.1021/jacs.5c07357
X. Chen, Q. Wang, H. Wei, J. Yang, Y. Yao et al., Minimizing the buried interfacial energy loss using a fluorine-substituted small molecule for 25.92%-efficiency and stable inverted perovskite solar cells. Energy Environ. Sci. 17(19), 7342–7354 (2024). https://doi.org/10.1039/d4ee02964j
S. Yuan, C. Ge, T. Zhang, G. Su, Q. Qiu et al., Conjugated bisphosphonic acid self-assembled monolayers for efficient and stable inverted perovskite solar cells. J. Am. Chem. Soc. 147(28), 24662–24671 (2025). https://doi.org/10.1021/jacs.5c05801