Developing High-Energy, Stable All-Solid-State Lithium Batteries Using Aluminum-Based Anodes and High-Nickel Cathodes
Corresponding Author: Ping He
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 239
Abstract
Aluminum (Al) exhibits excellent electrical conductivity, mechanical ductility, and good chemical compatibility with high-ionic-conductivity electrolytes. This makes it more suitable as an anode material for all-solid-state lithium batteries (ASSLBs) compared to the overly reactive metallic lithium anode and the mechanically weak silicon anode. This study finds that the pre-lithiated Al anode demonstrates outstanding interfacial stability with the Li6PS5Cl (LPSCl) electrolyte, maintaining stable cycling for over 1200 h under conditions of deep charge–discharge. This paper combines the pre-lithiated Al anode with a high-nickel cathode, LiNi0.8Co0.1Mn0.1O2, paired with the highly ionic conductive LPSCl electrolyte, to design an ASSLB with high energy density and stability. Using anode pre-lithiation techniques, along with dual-reinforcement technology between the electrolyte and the cathode active material, the ASSLB achieves stable cycling for 1000 cycles at a 0.2C rate, with a capacity retention rate of up to 82.2%. At a critical negative-to-positive ratio of 1.1, the battery’s specific energy reaches up to 375 Wh kg−1, and it maintains over 85.9% of its capacity after 100 charge–discharge cycles. This work provides a new approach and an excellent solution for developing low-cost, high-stability all-solid-state batteries.
Highlights:
1 Anode pre-lithiation technique was employed to promote the reversibility of Al.
2 Dual-reinforcement technology was developed to address the interfacial incompatibility between the Ni-rich cathode active material and sulfide solid-state electrolyte.
3 The fabricated all-solid-state lithium battery comprising the pre-lithiated Al anode and dual-reinforced Ni-rich cathode achieves stable cycling for 1000 cycles with a capacity retention of 82.2%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
- S. Jeong, Y. Li, W.H. Sim, J. Mun, J.K. Kim et al., Advances of sulfide-type solid-state batteries with negative electrodes: progress and perspectives. EcoMat 5(6), e12338 (2023). https://doi.org/10.1002/eom2.12338
- X. Xu, Y. Wang, Q. Yi, X. Wang, R.A.P. Camacho et al., Ion conduction in composite polymer electrolytes: potential electrolytes for sodium-ion batteries. ChemSusChem 16(8), e202202152 (2023). https://doi.org/10.1002/cssc.202202152
- H.H. Jia, C.J. Hu, Y.X. Zhang, L.W. Chen, A review on solid-state Li-S battery: from the conversion mechanism of sulfur to engineering design. J. Electrochem. 29, 2217008 (2023). https://doi.org/10.13208/j.electrochem.2217008
- B. Du, H. Zhou, P. He, Halide lithium conductors: from design and synthesis to application for all-solid-state batteries. ACS Appl. Energy Mater. 8(2), 723–745 (2025). https://doi.org/10.1021/acsaem.4c02948
- J.A. Lewis, F.J.Q. Cortes, Y. Liu, J.C. Miers, A. Verma et al., Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20(4), 503–510 (2021). https://doi.org/10.1038/s41563-020-00903-2
- J. Li, J. Luo, X. Li, Y. Fu, J. Zhu et al., Li metal anode interface in sulfide-based all-solid-state Li batteries. EcoMat 5(8), e12383 (2023). https://doi.org/10.1002/eom2.12383
- S. Liu, L. Zhou, J. Han, K. Wen, S. Guan et al., Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv. Energy Mater. 12(25), 2200660 (2022). https://doi.org/10.1002/aenm.202200660
- X.L. Wang, R.J. Xiao, Y. Xiang, H. Li, L.Q. Chen, Density functional investigation on cathode/electrolyte interface in solid-state lithium batteries. J. Electrochem. 23, 381–390 (2017). https://doi.org/10.13208/j.electrochem.170142
- X. Li, F.E. Kersey-Bronec, J. Ke, J.E. Cloud, Y. Wang et al., Study of lithium silicide nanops as anode materials for advanced lithium ion batteries. ACS Appl. Mater. Interfaces 9(19), 16071–16080 (2017). https://doi.org/10.1021/acsami.6b16773
- D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373(6562), 1494–1499 (2021). https://doi.org/10.1126/science.abg7217
- Y. Liu, C. Wang, S.G. Yoon, S.Y. Han, J.A. Lewis et al., Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries. Nat. Commun. 14(1), 3975 (2023). https://doi.org/10.1038/s41467-023-39685-x
- H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang et al., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8(15), eabn4372 (2022). https://doi.org/10.1126/sciadv.abn4372
- Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- Y. Jung, Y.Y. Song, Y.S. Kim, Y. Chung, D.H. Lee et al., Impact of conducting agents on sulfide and halide electrolytes in disordered rocksalt cathode-based all-solid-state batteries. EcoMat 6, e12502 (2024). https://doi.org/10.1002/eom2.12502
- X. Li, Z. Ren, M. Norouzi Banis, S. Deng, Y. Zhao et al., Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 4(10), 2480–24 (2019). https://doi.org/10.1021/acsenergylett.9b01676
- X. Li, L. Jin, D. Song, H. Zhang, X. Shi et al., LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40, 39–45 (2020). https://doi.org/10.1016/j.jechem.2019.02.006
- J.Y. Lee, S. Noh, J.Y. Seong, S. Lee, Y.J. Park, Suppressing unfavorable interfacial reactions using polyanionic oxides as efficient buffer layers: low-cost Li3PO4 coatings for sulfide-electrolyte-based all-solid-state batteries. ACS Appl. Mater. Interfaces 15(10), 12998–13011 (2023). https://doi.org/10.1021/acsami.2c21511
- Q. Zhang, A.M. Bruck, A.M. Stavola, W. Liang, P. Aurora et al., Enhanced electrochemical stability of sulfide-based LiNi0.8Mn0.1Co0.1O2 all-solid-state batteries by Ti surface doping. Batter. Supercaps 4(3), 529–535 (2021). https://doi.org/10.1002/batt.202000213
- T.-T. Zuo, F. Walther, S. Ahmed, R. Rueß, J. Hertle et al., Formation of an artificial cathode–electrolyte interphase to suppress interfacial degradation of Ni-rich cathode active material with sulfide electrolytes for solid-state batteries. ACS Energy Lett. 8(3), 1322–1329 (2023). https://doi.org/10.1021/acsenergylett.2c02835
- S. Deng, X. Li, Z. Ren, W. Li, J. Luo et al., Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Mater. 27, 117–123 (2020). https://doi.org/10.1016/j.ensm.2020.01.009
- X. Li, Q. Sun, Z. Wang, D. Song, H. Zhang et al., Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte. J. Power Sources 456, 227997 (2020). https://doi.org/10.1016/j.jpowsour.2020.227997
- X. Liu, J. Shi, B. Zheng, Z. Chen, Y. Su et al., Constructing a high-energy and durable single-crystal NCM811 cathode for all-solid-state batteries by a surface engineering strategy. ACS Appl. Mater. Interfaces 13(35), 41669–41679 (2021). https://doi.org/10.1021/acsami.1c11419
- Y. Wang, Z. Wang, D. Wu, Q. Niu, P. Lu et al., Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2(5), 537–545 (2022). https://doi.org/10.1016/j.esci.2022.06.001
- J. Wang, S. Zhao, A. Zhang, H. Zhuo, G. Zhang et al., High lithium-ion conductivity, halide-coated, Ni-rich NCM improves cycling stability in sulfide all-solid-state batteries. ACS Appl. Energy Mater. 6, 3671–3681 (2023). https://doi.org/10.1021/acsaem.2c02774
- Y. Huang, L. Zhou, C. Li, Z. Yu, L.F. Nazar, Waxing bare high-voltage cathode surfaces to enable sulfide solid-state batteries. ACS Energy Lett. 8(11), 4949–4956 (2023). https://doi.org/10.1021/acsenergylett.3c01717
- J. Liang, Y. Zhu, X. Li, J. Luo, S. Deng et al., A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Nat. Commun. 14(1), 146 (2023). https://doi.org/10.1038/s41467-022-35667-7
- J. Kim, M.J. Kim, J. Kim, J.W. Lee, J. Park et al., High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes. Adv. Funct. Mater. 33(12), 2211355 (2023). https://doi.org/10.1002/adfm.202211355
- Y. Su, X. Liu, H. Yan, J. Zhao, Y. Cheng et al., Assembly of an elastic & sticky interfacial layer for sulfide-based all-solid-state batteries. Nano Energy 113, 108572 (2023). https://doi.org/10.1016/j.nanoen.2023.108572
- H. Kim, J.Y. Jung, K. Kim, C. Hwang, J. Yu et al., Functionalized electrode additive for simultaneously reinforcing chemo-mechanical properties of millimeter-thick dry-electrode for high-energy all-solid-state batteries. Adv. Energy Mater. 14(14), 2303965 (2024). https://doi.org/10.1002/aenm.202303965
References
X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
S. Jeong, Y. Li, W.H. Sim, J. Mun, J.K. Kim et al., Advances of sulfide-type solid-state batteries with negative electrodes: progress and perspectives. EcoMat 5(6), e12338 (2023). https://doi.org/10.1002/eom2.12338
X. Xu, Y. Wang, Q. Yi, X. Wang, R.A.P. Camacho et al., Ion conduction in composite polymer electrolytes: potential electrolytes for sodium-ion batteries. ChemSusChem 16(8), e202202152 (2023). https://doi.org/10.1002/cssc.202202152
H.H. Jia, C.J. Hu, Y.X. Zhang, L.W. Chen, A review on solid-state Li-S battery: from the conversion mechanism of sulfur to engineering design. J. Electrochem. 29, 2217008 (2023). https://doi.org/10.13208/j.electrochem.2217008
B. Du, H. Zhou, P. He, Halide lithium conductors: from design and synthesis to application for all-solid-state batteries. ACS Appl. Energy Mater. 8(2), 723–745 (2025). https://doi.org/10.1021/acsaem.4c02948
J.A. Lewis, F.J.Q. Cortes, Y. Liu, J.C. Miers, A. Verma et al., Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20(4), 503–510 (2021). https://doi.org/10.1038/s41563-020-00903-2
J. Li, J. Luo, X. Li, Y. Fu, J. Zhu et al., Li metal anode interface in sulfide-based all-solid-state Li batteries. EcoMat 5(8), e12383 (2023). https://doi.org/10.1002/eom2.12383
S. Liu, L. Zhou, J. Han, K. Wen, S. Guan et al., Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv. Energy Mater. 12(25), 2200660 (2022). https://doi.org/10.1002/aenm.202200660
X.L. Wang, R.J. Xiao, Y. Xiang, H. Li, L.Q. Chen, Density functional investigation on cathode/electrolyte interface in solid-state lithium batteries. J. Electrochem. 23, 381–390 (2017). https://doi.org/10.13208/j.electrochem.170142
X. Li, F.E. Kersey-Bronec, J. Ke, J.E. Cloud, Y. Wang et al., Study of lithium silicide nanops as anode materials for advanced lithium ion batteries. ACS Appl. Mater. Interfaces 9(19), 16071–16080 (2017). https://doi.org/10.1021/acsami.6b16773
D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373(6562), 1494–1499 (2021). https://doi.org/10.1126/science.abg7217
Y. Liu, C. Wang, S.G. Yoon, S.Y. Han, J.A. Lewis et al., Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries. Nat. Commun. 14(1), 3975 (2023). https://doi.org/10.1038/s41467-023-39685-x
H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang et al., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8(15), eabn4372 (2022). https://doi.org/10.1126/sciadv.abn4372
Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
Y. Jung, Y.Y. Song, Y.S. Kim, Y. Chung, D.H. Lee et al., Impact of conducting agents on sulfide and halide electrolytes in disordered rocksalt cathode-based all-solid-state batteries. EcoMat 6, e12502 (2024). https://doi.org/10.1002/eom2.12502
X. Li, Z. Ren, M. Norouzi Banis, S. Deng, Y. Zhao et al., Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 4(10), 2480–24 (2019). https://doi.org/10.1021/acsenergylett.9b01676
X. Li, L. Jin, D. Song, H. Zhang, X. Shi et al., LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40, 39–45 (2020). https://doi.org/10.1016/j.jechem.2019.02.006
J.Y. Lee, S. Noh, J.Y. Seong, S. Lee, Y.J. Park, Suppressing unfavorable interfacial reactions using polyanionic oxides as efficient buffer layers: low-cost Li3PO4 coatings for sulfide-electrolyte-based all-solid-state batteries. ACS Appl. Mater. Interfaces 15(10), 12998–13011 (2023). https://doi.org/10.1021/acsami.2c21511
Q. Zhang, A.M. Bruck, A.M. Stavola, W. Liang, P. Aurora et al., Enhanced electrochemical stability of sulfide-based LiNi0.8Mn0.1Co0.1O2 all-solid-state batteries by Ti surface doping. Batter. Supercaps 4(3), 529–535 (2021). https://doi.org/10.1002/batt.202000213
T.-T. Zuo, F. Walther, S. Ahmed, R. Rueß, J. Hertle et al., Formation of an artificial cathode–electrolyte interphase to suppress interfacial degradation of Ni-rich cathode active material with sulfide electrolytes for solid-state batteries. ACS Energy Lett. 8(3), 1322–1329 (2023). https://doi.org/10.1021/acsenergylett.2c02835
S. Deng, X. Li, Z. Ren, W. Li, J. Luo et al., Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Mater. 27, 117–123 (2020). https://doi.org/10.1016/j.ensm.2020.01.009
X. Li, Q. Sun, Z. Wang, D. Song, H. Zhang et al., Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte. J. Power Sources 456, 227997 (2020). https://doi.org/10.1016/j.jpowsour.2020.227997
X. Liu, J. Shi, B. Zheng, Z. Chen, Y. Su et al., Constructing a high-energy and durable single-crystal NCM811 cathode for all-solid-state batteries by a surface engineering strategy. ACS Appl. Mater. Interfaces 13(35), 41669–41679 (2021). https://doi.org/10.1021/acsami.1c11419
Y. Wang, Z. Wang, D. Wu, Q. Niu, P. Lu et al., Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2(5), 537–545 (2022). https://doi.org/10.1016/j.esci.2022.06.001
J. Wang, S. Zhao, A. Zhang, H. Zhuo, G. Zhang et al., High lithium-ion conductivity, halide-coated, Ni-rich NCM improves cycling stability in sulfide all-solid-state batteries. ACS Appl. Energy Mater. 6, 3671–3681 (2023). https://doi.org/10.1021/acsaem.2c02774
Y. Huang, L. Zhou, C. Li, Z. Yu, L.F. Nazar, Waxing bare high-voltage cathode surfaces to enable sulfide solid-state batteries. ACS Energy Lett. 8(11), 4949–4956 (2023). https://doi.org/10.1021/acsenergylett.3c01717
J. Liang, Y. Zhu, X. Li, J. Luo, S. Deng et al., A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Nat. Commun. 14(1), 146 (2023). https://doi.org/10.1038/s41467-022-35667-7
J. Kim, M.J. Kim, J. Kim, J.W. Lee, J. Park et al., High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes. Adv. Funct. Mater. 33(12), 2211355 (2023). https://doi.org/10.1002/adfm.202211355
Y. Su, X. Liu, H. Yan, J. Zhao, Y. Cheng et al., Assembly of an elastic & sticky interfacial layer for sulfide-based all-solid-state batteries. Nano Energy 113, 108572 (2023). https://doi.org/10.1016/j.nanoen.2023.108572
H. Kim, J.Y. Jung, K. Kim, C. Hwang, J. Yu et al., Functionalized electrode additive for simultaneously reinforcing chemo-mechanical properties of millimeter-thick dry-electrode for high-energy all-solid-state batteries. Adv. Energy Mater. 14(14), 2303965 (2024). https://doi.org/10.1002/aenm.202303965