Modified Near-Infrared Annealing Enabled Rapid and Homogeneous Crystallization of Perovskite Films for Efficient Solar Modules
Corresponding Author: Jing Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 272
Abstract
Currently, perovskite solar cells have achieved commendable progresses in power conversion efficiency (PCE) and operational stability. However, some conventional laboratory-scale fabrication methods become challenging when scaling up material syntheses or device production. Particularly, the prolonged high-temperature annealing process for the crystallization of perovskites requires a substantial amount of energy consumption and impact the modules’ throughput. Here, we report a modified near-infrared annealing (NIRA) process, which involves the excess PbI2 engineered crystallization, efficiently reduces the preparation time for perovskite active layer to within 20 s compared to dozens of min in conventional hot plate annealing (HPA) process. The study showed that the incorporated PbI2 promoted the consistent nucleation of the perovskite film, leading to the subsequent rapid and homogeneous crystallization at the NIRA stage. Thus, highly crystalized perovskite film was realized with even better crystallization performance than conventional HPA-based film. Ultimately, efficient perovskite solar modules of 36 and 100 cm2 were readily fabricated with the optimal PCEs of 22.03% and 20.18%, respectively. This study demonstrates, for the first time, the successful achievement of homogeneous and high-quality crystallization in large-area perovskite films through rapid NIRA processing. This approach not only significantly reduces energy consumption during production, but also substantially shortens the manufacturing cycle, paving a new path toward the commercial-scale application of perovskite solar modules.
Highlights:
1 Developing an infrared annealing system to achieve efficient annealing of perovskite films within 20 s.
2 Fully blade-coated perovskite modules achieved remarkable efficiencies of 22.03% (6 × 6 cm2, active area: 18 cm2) and 20.18% (10 × 10 cm2, active area: 56 cm2)
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Aydin, T.G. Allen, M. De Bastiani, A. Razzaq, L. Xu et al., Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383(6679), eadh3849 (2024). https://doi.org/10.1126/science.adh3849
- D. Lan, M.A. Green, Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule 6(8), 1782–1797 (2022). https://doi.org/10.1016/j.joule.2022.06.014
- F. Xu, E. Aydin, J. Liu, E. Ugur, G.T. Harrison et al., Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8(1), 224–240 (2024). https://doi.org/10.1016/j.joule.2023.11.018
- L. Wang, G. Liu, X. Xi, G. Yang, L. Hu et al., Annealing engineering in the growth of perovskite grains. Crystals 12(7), 894 (2022). https://doi.org/10.3390/cryst12070894
- X. Chang, J.-X. Zhong, S. Li, Q. Yao, Y. Fang et al., Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 62(38), e202309292 (2023). https://doi.org/10.1002/anie.202309292
- B. Ding, Y. Ding, J. Peng, J. Romano-deGea, L.E.K. Frederiksen et al., Dopant-additive synergism enhances perovskite solar modules. Nature 628(8007), 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z
- X. Zhang, X. Wu, X. Liu, G. Chen, Y. Wang et al., Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J. Am. Chem. Soc. 142(9), 4464–4471 (2020). https://doi.org/10.1021/jacs.9b13681
- H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao et al., CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 11(2), 2239–2247 (2017). https://doi.org/10.1021/acsnano.6b08747
- Q. Chen, T. Ma, F. Wang, Y. Liu, S. Liu et al., Rapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaics. Adv. Sci. 7(12), 2000480 (2020). https://doi.org/10.1002/advs.202000480
- K. Ankireddy, A.H. Ghahremani, B. Martin, G. Gupta, T. Druffel, Rapid thermal annealing of CH3NH3PbI3 perovskite thin films by intense pulsed light with aid of diiodomethane additive. J. Mater. Chem. A 6(20), 9378–9383 (2018). https://doi.org/10.1039/C8TA01237G
- J. Troughton, C. Charbonneau, M.J. Carnie, M.L. Davies, D.A. Worsley et al., Rapid processing of perovskite solar cells in under 2.5 seconds. J. Mater. Chem. A 3(17), 9123–9127 (2015). https://doi.org/10.1039/C5TA00568J
- S. Sánchez, M. Vallés-Pelarda, J.-A. Alberola-Borràs, R. Vidal, J.J. Jerónimo-Rendón et al., Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Mater. Today 31, 39–46 (2019). https://doi.org/10.1016/j.mattod.2019.04.021
- B. Sharma, S. Singh, S. Pareek, A. Agasti, S. Mallick et al., Radiative and conductive thermal annealing of hybrid organic-inorganic perovskite layer. Sol. Energy Mater. Sol. Cells 195, 353–357 (2019). https://doi.org/10.1016/j.solmat.2019.03.022
- L. Chao, T. Niu, W. Gao, C. Ran, L. Song et al., Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater. 33(14), 2005410 (2021). https://doi.org/10.1002/adma.202005410
- Z. Wu, S. Sang, J. Zheng, Q. Gao, B. Huang et al., Crystallization kinetics of hybrid perovskite solar cells. Angew. Chem. Int. Ed. 63(17), e202319170 (2024). https://doi.org/10.1002/anie.202319170
- X. Cao, L. Zhi, Y. Li, F. Fang, X. Cui et al., Fabrication of perovskite films with large columnar grains via solvent-mediated Ostwald ripening for efficient inverted perovskite solar cells. ACS Appl. Energy Mater. 1(2), 868–875 (2018). https://doi.org/10.1021/acsaem.7b00300
- W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
- Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo et al., Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6(4), 1502104 (2016). https://doi.org/10.1002/aenm.201502104
- T.J. Jacobsson, J.P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
- J.A. Venables, G.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47(4), 399–459 (1984). https://doi.org/10.1088/0034-4885/47/4/002
- R. He, S. Nie, X. Huang, Y. Wu, R. Chen et al., Scalable preparation of high-performance ZnO–SnO2 cascaded electron transport layer for efficient perovskite solar modules. Sol. RRL 6(3), 2100639 (2022). https://doi.org/10.1002/solr.202100639
- N. Li, X. Niu, L. Li, H. Wang, Z. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373(6554), 561–567 (2021). https://doi.org/10.1126/science.abh3884
- F. Cheng, X. Jing, R. Chen, J. Cao, J. Yan et al., N-Methyl-2-pyrrolidone as an excellent coordinative additive with a wide operating range for fabricating high-quality perovskite films. Inorg. Chem. Front. 6(9), 2458–2463 (2019). https://doi.org/10.1039/C9QI00547A
- Q. Chang, F. Wang, W. Xu, A. Wang, Y. Liu et al., Ferrocene-induced perpetual recovery on all elemental defects in perovskite solar cells. Angew. Chem. Int. Ed. 60(48), 25567–25574 (2021). https://doi.org/10.1002/anie.202112074
- B. Jiao, Y. Ye, L. Tan, Y. liu, N. Ren et al., Realizing stable perovskite solar cells with efficiency exceeding 25.6% through crystallization kinetics and spatial orientation regulation. Adv. Mater. 36(25), 2313673 (2024). https://doi.org/10.1002/adma.202313673
- D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
- Z. Xu, R. Chen, Y. Wu, R. He, J. Yin et al., Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. J. Mater. Chem. A 7(47), 26849–26857 (2019). https://doi.org/10.1039/C9TA09101G
- D. Ma, J.-X. Zhong, X. Zhuang, C. Xu, W. Wang et al., Perovskite grain fusion strategy via controlled methylamine gas release for efficient and stable formamide-based perovskite solar cells. Chem. Eng. J. 475, 146267 (2023). https://doi.org/10.1016/j.cej.2023.146267
- T. Xiao, M. Hao, T. Duan, Y. Li, Y. Zhang et al., Elimination of grain surface concavities for improved perovskite thin-film interfaces. Nat. Energy 9(8), 999–1010 (2024). https://doi.org/10.1038/s41560-024-01567-x
- Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). https://doi.org/10.1021/nl501838y
- B.W. Park, N. Kedem, M. Kulbak, D.Y. Lee, W.S. Yang et al., Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9(1), 3301 (2018). https://doi.org/10.1038/s41467-018-05583-w
- C. Liu, Y.-B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/C9CS00711C
- J. Tong, J. Gong, M. Hu, S.K. Yadavalli, Z. Dai et al., High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter 4(4), 1365–1376 (2021). https://doi.org/10.1016/j.matt.2021.01.003
- Q. Chang, Y. Yun, K. Cao, W. Yao, X. Huang et al., Highly efficient and stable perovskite solar modules based on FcPF6 engineered spiro-OMeTAD hole transporting layer. Adv. Mater. 36(47), e2406296 (2024). https://doi.org/10.1002/adma.202406296
- A.R. Pininti, A.S. Subbiah, C. Deger, I. Yavuz, A. Prasetio et al., Resolving scaling issues in self-assembled monolayer-based perovskite solar modules via additive engineering. Adv. Energy Mater. 15(7), 2403530 (2025). https://doi.org/10.1002/aenm.202403530
- J. Hong, Y. Wang, Y. Chen, X. Hu, G. Weng et al., Absolute electroluminescence imaging with distributed circuit modeling: Excellent for solar-cell defect diagnosis. Prog. Photovolt. Res. Appl. 28(4), 295–306 (2020). https://doi.org/10.1002/pip.3236
- B. Chen, J. Peng, H. Shen, T. Duong, D. Walter et al., Imaging spatial variations of optical bandgaps in perovskite solar cells. Adv. Energy Mater. 9(7), 1802790 (2019). https://doi.org/10.1002/aenm.201802790
- C. Huang, S. Tan, B. Yu, Y. Li, J. Shi et al., Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules. Joule 8(9), 2539–2553 (2024). https://doi.org/10.1016/j.joule.2024.06.008
- W. Feng, X. Liu, G. Liu, G. Yang, Y. Fang et al., Blade-coating (100)-oriented α-FAPbI3 perovskite films via crystal surface energy regulation for efficient and stable inverted perovskite photovoltaics. Angew. Chem. Int. Ed. 63(39), e202403196 (2024). https://doi.org/10.1002/anie.202403196
References
E. Aydin, T.G. Allen, M. De Bastiani, A. Razzaq, L. Xu et al., Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383(6679), eadh3849 (2024). https://doi.org/10.1126/science.adh3849
D. Lan, M.A. Green, Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule 6(8), 1782–1797 (2022). https://doi.org/10.1016/j.joule.2022.06.014
F. Xu, E. Aydin, J. Liu, E. Ugur, G.T. Harrison et al., Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8(1), 224–240 (2024). https://doi.org/10.1016/j.joule.2023.11.018
L. Wang, G. Liu, X. Xi, G. Yang, L. Hu et al., Annealing engineering in the growth of perovskite grains. Crystals 12(7), 894 (2022). https://doi.org/10.3390/cryst12070894
X. Chang, J.-X. Zhong, S. Li, Q. Yao, Y. Fang et al., Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 62(38), e202309292 (2023). https://doi.org/10.1002/anie.202309292
B. Ding, Y. Ding, J. Peng, J. Romano-deGea, L.E.K. Frederiksen et al., Dopant-additive synergism enhances perovskite solar modules. Nature 628(8007), 299–305 (2024). https://doi.org/10.1038/s41586-024-07228-z
X. Zhang, X. Wu, X. Liu, G. Chen, Y. Wang et al., Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J. Am. Chem. Soc. 142(9), 4464–4471 (2020). https://doi.org/10.1021/jacs.9b13681
H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao et al., CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 11(2), 2239–2247 (2017). https://doi.org/10.1021/acsnano.6b08747
Q. Chen, T. Ma, F. Wang, Y. Liu, S. Liu et al., Rapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaics. Adv. Sci. 7(12), 2000480 (2020). https://doi.org/10.1002/advs.202000480
K. Ankireddy, A.H. Ghahremani, B. Martin, G. Gupta, T. Druffel, Rapid thermal annealing of CH3NH3PbI3 perovskite thin films by intense pulsed light with aid of diiodomethane additive. J. Mater. Chem. A 6(20), 9378–9383 (2018). https://doi.org/10.1039/C8TA01237G
J. Troughton, C. Charbonneau, M.J. Carnie, M.L. Davies, D.A. Worsley et al., Rapid processing of perovskite solar cells in under 2.5 seconds. J. Mater. Chem. A 3(17), 9123–9127 (2015). https://doi.org/10.1039/C5TA00568J
S. Sánchez, M. Vallés-Pelarda, J.-A. Alberola-Borràs, R. Vidal, J.J. Jerónimo-Rendón et al., Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Mater. Today 31, 39–46 (2019). https://doi.org/10.1016/j.mattod.2019.04.021
B. Sharma, S. Singh, S. Pareek, A. Agasti, S. Mallick et al., Radiative and conductive thermal annealing of hybrid organic-inorganic perovskite layer. Sol. Energy Mater. Sol. Cells 195, 353–357 (2019). https://doi.org/10.1016/j.solmat.2019.03.022
L. Chao, T. Niu, W. Gao, C. Ran, L. Song et al., Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater. 33(14), 2005410 (2021). https://doi.org/10.1002/adma.202005410
Z. Wu, S. Sang, J. Zheng, Q. Gao, B. Huang et al., Crystallization kinetics of hybrid perovskite solar cells. Angew. Chem. Int. Ed. 63(17), e202319170 (2024). https://doi.org/10.1002/anie.202319170
X. Cao, L. Zhi, Y. Li, F. Fang, X. Cui et al., Fabrication of perovskite films with large columnar grains via solvent-mediated Ostwald ripening for efficient inverted perovskite solar cells. ACS Appl. Energy Mater. 1(2), 868–875 (2018). https://doi.org/10.1021/acsaem.7b00300
W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo et al., Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6(4), 1502104 (2016). https://doi.org/10.1002/aenm.201502104
T.J. Jacobsson, J.P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
J.A. Venables, G.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47(4), 399–459 (1984). https://doi.org/10.1088/0034-4885/47/4/002
R. He, S. Nie, X. Huang, Y. Wu, R. Chen et al., Scalable preparation of high-performance ZnO–SnO2 cascaded electron transport layer for efficient perovskite solar modules. Sol. RRL 6(3), 2100639 (2022). https://doi.org/10.1002/solr.202100639
N. Li, X. Niu, L. Li, H. Wang, Z. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373(6554), 561–567 (2021). https://doi.org/10.1126/science.abh3884
F. Cheng, X. Jing, R. Chen, J. Cao, J. Yan et al., N-Methyl-2-pyrrolidone as an excellent coordinative additive with a wide operating range for fabricating high-quality perovskite films. Inorg. Chem. Front. 6(9), 2458–2463 (2019). https://doi.org/10.1039/C9QI00547A
Q. Chang, F. Wang, W. Xu, A. Wang, Y. Liu et al., Ferrocene-induced perpetual recovery on all elemental defects in perovskite solar cells. Angew. Chem. Int. Ed. 60(48), 25567–25574 (2021). https://doi.org/10.1002/anie.202112074
B. Jiao, Y. Ye, L. Tan, Y. liu, N. Ren et al., Realizing stable perovskite solar cells with efficiency exceeding 25.6% through crystallization kinetics and spatial orientation regulation. Adv. Mater. 36(25), 2313673 (2024). https://doi.org/10.1002/adma.202313673
D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
Z. Xu, R. Chen, Y. Wu, R. He, J. Yin et al., Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. J. Mater. Chem. A 7(47), 26849–26857 (2019). https://doi.org/10.1039/C9TA09101G
D. Ma, J.-X. Zhong, X. Zhuang, C. Xu, W. Wang et al., Perovskite grain fusion strategy via controlled methylamine gas release for efficient and stable formamide-based perovskite solar cells. Chem. Eng. J. 475, 146267 (2023). https://doi.org/10.1016/j.cej.2023.146267
T. Xiao, M. Hao, T. Duan, Y. Li, Y. Zhang et al., Elimination of grain surface concavities for improved perovskite thin-film interfaces. Nat. Energy 9(8), 999–1010 (2024). https://doi.org/10.1038/s41560-024-01567-x
Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). https://doi.org/10.1021/nl501838y
B.W. Park, N. Kedem, M. Kulbak, D.Y. Lee, W.S. Yang et al., Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9(1), 3301 (2018). https://doi.org/10.1038/s41467-018-05583-w
C. Liu, Y.-B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/C9CS00711C
J. Tong, J. Gong, M. Hu, S.K. Yadavalli, Z. Dai et al., High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter 4(4), 1365–1376 (2021). https://doi.org/10.1016/j.matt.2021.01.003
Q. Chang, Y. Yun, K. Cao, W. Yao, X. Huang et al., Highly efficient and stable perovskite solar modules based on FcPF6 engineered spiro-OMeTAD hole transporting layer. Adv. Mater. 36(47), e2406296 (2024). https://doi.org/10.1002/adma.202406296
A.R. Pininti, A.S. Subbiah, C. Deger, I. Yavuz, A. Prasetio et al., Resolving scaling issues in self-assembled monolayer-based perovskite solar modules via additive engineering. Adv. Energy Mater. 15(7), 2403530 (2025). https://doi.org/10.1002/aenm.202403530
J. Hong, Y. Wang, Y. Chen, X. Hu, G. Weng et al., Absolute electroluminescence imaging with distributed circuit modeling: Excellent for solar-cell defect diagnosis. Prog. Photovolt. Res. Appl. 28(4), 295–306 (2020). https://doi.org/10.1002/pip.3236
B. Chen, J. Peng, H. Shen, T. Duong, D. Walter et al., Imaging spatial variations of optical bandgaps in perovskite solar cells. Adv. Energy Mater. 9(7), 1802790 (2019). https://doi.org/10.1002/aenm.201802790
C. Huang, S. Tan, B. Yu, Y. Li, J. Shi et al., Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules. Joule 8(9), 2539–2553 (2024). https://doi.org/10.1016/j.joule.2024.06.008
W. Feng, X. Liu, G. Liu, G. Yang, Y. Fang et al., Blade-coating (100)-oriented α-FAPbI3 perovskite films via crystal surface energy regulation for efficient and stable inverted perovskite photovoltaics. Angew. Chem. Int. Ed. 63(39), e202403196 (2024). https://doi.org/10.1002/anie.202403196