Understanding Electrolytes and Interface Chemistry for Sustainable Nonaqueous Metal–CO2 Batteries
Corresponding Author: Yang Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 299
Abstract
Metal–carbon dioxide (CO2) batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO2 recovery and conversion. Moreover, rechargeable nonaqueous metal–CO2 batteries have attracted much attention due to their high theoretical energy density. However, the stability issues of the electrode–electrolyte interfaces of nonaqueous metal–CO2 (lithium (Li)/sodium (Na)/potassium (K)–CO2) batteries have been troubling its development, and a large number of related research in the field of electrolytes have conducted in recent years. This review retraces the short but rapid research history of nonaqueous metal–CO2 batteries with a detailed electrochemical mechanism analysis. Then it focuses on the basic characteristics and design principles of electrolytes, summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode–electrolyte interfaces for metal–CO2 batteries. Finally, the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed. This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal–CO2 batteries.
Highlights:
1 This review focuses on the design principles and basic characteristics of electrolytes, as well as how to construct a stable electrode–electrolyte interface. Perspectives on how electrolytes influence CO2 redox pathways are consolidated and proposed.
2 The electrochemical reaction mechanism and interfacial evolution of nonaqueous metal–CO2 batteries in different electrolyte systems are highlighted.
3 The electrode/electrolyte interface challenges encountered by nonaqueous metal–CO2 batteries are thoroughly discussed, along with corresponding optimization strategies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Hu, Z. Li, J. Chen, Flexible Li–CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 56(21), 5785–5789 (2017). https://doi.org/10.1002/anie.201701928
- X. Wang, H. Liu, Q. Wang, J. Huo, W. Ge et al., Microbial-derived functional carbon decorated hollow NiCo-LDHs nanoflowers as a highly efficient catalyst for Li–CO2 battery. Appl. Surf. Sci. 540, 148351 (2021). https://doi.org/10.1016/j.apsusc.2020.148351
- M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
- S. Li, A.V. Nagarajan, D.R. Alfonso, M. Sun, D.R. Kauffman et al., Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem. Int. Ed. 60(12), 6351–6356 (2021). https://doi.org/10.1002/anie.202016129
- J.D. Shakun, P.U. Clark, F. He, S.A. Marcott, A.C. Mix et al., Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392), 49–54 (2012). https://doi.org/10.1038/nature10915
- G.P. Peters, G. Marland, C. Le Quéré, T. Boden, J.G. Canadell et al., Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Change 2(1), 2–4 (2012). https://doi.org/10.1038/nclimate1332
- D.P. Schrag, Preparing to capture carbon. Science 315(5813), 812–813 (2007). https://doi.org/10.1126/science.1137632
- S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584), 68–71 (2016). https://doi.org/10.1038/nature16455
- B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple et al., Ionic liquid-mediated selective conversion of CO₂ to CO at low overpotentials. Science 334(6056), 643–644 (2011). https://doi.org/10.1126/science.1209786
- S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song et al., Polyethylenimine-enhanced electrocatalytic reduction of CO₂ to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014). https://doi.org/10.1021/ja5031529
- F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41(6), 2172–2192 (2012). https://doi.org/10.1039/c1cs15228a
- X. Li, S. Yang, N. Feng, P. He, H. Zhou, Progress in research on Li–CO2 batteries: mechanism, catalyst and performance. Chin. J. Catal. 37(7), 1016–1024 (2016). https://doi.org/10.1016/S1872-2067(15)61125-1
- C.J. Fetrow, C. Carugati, X.-D. Zhou, S. Wei, Electrochemistry of metal–CO2 batteries: opportunities and challenges. Energy Storage Mater. 45, 911–933 (2022). https://doi.org/10.1016/j.ensm.2021.12.035
- F. Wang, Y. Li, X. Xia, W. Cai, Q. Chen et al., Metal–CO2 electrochemistry: from CO2 recycling to energy storage. Adv. Energy Mater. 11(25), 2100667 (2021). https://doi.org/10.1002/aenm.202100667
- Y. Cheng, Y. Wang, B. Chen, X. Han, F. He et al., Routes to bidirectional cathodes for reversible aprotic alkali metal–CO2 batteries. Adv. Mater. 36(46), e2410704 (2024). https://doi.org/10.1002/adma.202410704
- M.K. Aslam, H. Wang, S. Chen, Q. Li, J. Duan, Progress and perspectives of metal (Li, Na, Al, Zn and K)–CO2 batteries. Mater. Today Energy 31, 101196 (2023). https://doi.org/10.1016/j.mtener.2022.101196
- C. Xu, Y. Dong, Y. Shen, H. Zhao, L. Li et al., Fundamental understanding of nonaqueous and hybrid Na–CO2 batteries: challenges and perspectives. Small 19(15), 2206445 (2023). https://doi.org/10.1002/smll.202206445
- J. Wang, Y. Zhang, Y. Ma, J. Yin, Y. Wang et al., Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal–organic frameworks and their derived materials. ACS Mater. Lett. 4(11), 2058–2079 (2022). https://doi.org/10.1021/acsmaterialslett.2c00751
- X. Sun, X. Mu, W. Zheng, L. Wang, S. Yang et al., Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14(1), 536 (2023). https://doi.org/10.1038/s41467-023-36276-8
- X. Zhang, N. Zhao, H. Zhang, Y. Fan, F. Jin et al., Recent advances in wide-range temperature metal–CO2 batteries: a mini review. Nano-Micro Lett. 17(1), 99 (2024). https://doi.org/10.1007/s40820-024-01607-x
- X. Yu, A. Manthiram, Recent advances in lithium–carbon dioxide batteries. Small Struct. 1(2), 2000027 (2020). https://doi.org/10.1002/sstr.202000027
- X. Mu, H. Pan, P. He, H. Zhou, Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32(27), e1903790 (2020). https://doi.org/10.1002/adma.201903790
- G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew. Chem. Int. Ed. 59(9), 3400–3415 (2020). https://doi.org/10.1002/anie.201906494
- J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3(4), 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135
- Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), 2201207 (2022). https://doi.org/10.1002/advs.202201207
- K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). https://doi.org/10.1021/cr500003w
- A. Yang, K. Yao, M. Schaller, E. Dashjav, H. Li et al., Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12. eScience 3(6), 100175 (2023). https://doi.org/10.1016/j.esci.2023.100175
- E.L. Littauer, K.C. Tsai, Anodic behavior of lithium in aqueous electrolytes: I. transient passivation. J. Electrochem. Soc. 123(6), 771–776 (1976). https://doi.org/10.1149/1.2132931
- X. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Recent progress in rechargeable alkali metal–air batteries. Green Energy Environ. 1(1), 4–17 (2016). https://doi.org/10.1016/j.gee.2016.04.004
- X. Zhang, Q. Zhang, Z. Zhang, Y. Chen, Z. Xie et al., Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes. Chem. Commun. 51(78), 14636–14639 (2015). https://doi.org/10.1039/c5cc05767a
- S. Xu, S.K. Das, L.A. Archer, The Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 3(18), 6656–6660 (2013). https://doi.org/10.1039/C3RA40394G
- X. Hu, J. Sun, Z. Li, Q. Zhao, C. Chen et al., Rechargeable room-temperature Na–CO2 batteries. Angew. Chem. Int. Ed. 55(22), 6482–6486 (2016). https://doi.org/10.1002/anie.201602504
- L. Zhang, Y. Tang, Q. Liu, T. Yang, C. Du et al., Probing the charging and discharging behavior of K–CO2 nanobatteries in an aberration corrected environmental transmission electron microscope. Nano Energy 53, 544–549 (2018). https://doi.org/10.1016/j.nanoen.2018.09.011
- C. Li, Z. Guo, B. Yang, Y. Liu, Y. Wang et al., A rechargeable Li–CO2 battery with a gel polymer electrolyte. Angew. Chem. Int. Ed. 56(31), 9126–9130 (2017). https://doi.org/10.1002/anie.201705017
- X. Wang, X. Zhang, Y. Lu, Z. Yan, Z. Tao et al., Flexible and tailorable Na−CO2 batteries based on an all-solid-state polymer electrolyte. ChemElectroChem 5(23), 3628–3632 (2018). https://doi.org/10.1002/celc.201801018
- Z. Tong, S.-B. Wang, M.-H. Fang, Y.-T. Lin, K.-T. Tsai et al., Na–CO2 battery with NASICON-structured solid-state electrolyte. Nano Energy 85, 105972 (2021). https://doi.org/10.1016/j.nanoen.2021.105972
- S. Wang, K. Xu, H. Song, T. Zhu, Z. Yu et al., A high-energy long-cycling solid-state lithium-metal battery operating at high temperatures. Adv. Energy Mater. 12(38), 2201866 (2022). https://doi.org/10.1002/aenm.202201866
- D.-H. Guan, X.-X. Wang, C.-L. Miao, J.-X. Li, J.-Y. Li et al., Host-guest interactions of metal-organic framework enable highly conductive quasi-solid-state electrolytes for Li–CO2 batteries. ACS Nano 18(50), 34299–34311 (2024). https://doi.org/10.1021/acsnano.4c12712
- C. Xu, X. Fang, J. Zhan, J. Chen, F. Liang, Progress for metal–CO2 batteries: mechanism and advanced materials. Prog. Chem. 32, 836–850 (2020). https://doi.org/10.7536/PC190924
- S. Yang, Y. Qiao, P. He, Y. Liu, Z. Cheng et al., A reversible lithium–CO2 battery with Ru nanops as a cathode catalyst. Energy Environ. Sci. 10(4), 972–978 (2017). https://doi.org/10.1039/C6EE03770D
- J. Xie, Y. Wang, Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Acc. Chem. Res. 52(6), 1721–1729 (2019). https://doi.org/10.1021/acs.accounts.9b00179
- Z. Zhou, M. Han, Y. Sun, Y. Cui, S.A. El-khodary et al., Zinc-ion and proton as joint charge carriers of S-MoO2 for high-capacity aqueous zinc-ion batteries. Adv. Funct. Mater. 34(7), 2308834 (2024). https://doi.org/10.1002/adfm.202308834
- R. Attias, M. Salama, B. Hirsch, R. Pant, Y. Gofer et al., Anion effects on cathode electrochemical activity in rechargeable magnesium batteries: a case study of V2O5. ACS Energy Lett. 4(1), 209–214 (2019). https://doi.org/10.1021/acsenergylett.8b02140
- G. Liu, Y. Tang, H. Li, J. He, M. Ye et al., Hydrated eutectic electrolytes stabilizing quasi-underpotential Mg plating/stripping for high-voltage Mg batteries. Angew. Chem. Int. Ed. 62(16), e202217945 (2023). https://doi.org/10.1002/anie.202217945
- D. Yuan, J. Zhao, W. Manalastas, S. Kumar, M. Srinivasan, Emerging rechargeable aqueous aluminum ion battery: status, challenges, and outlooks. Nano Mater. Sci. 2(3), 248–263 (2020). https://doi.org/10.1016/j.nanoms.2019.11.001
- Y. Sun, Y. Wang, L. Jiang, D. Dong, W. Wang et al., Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries. Energy Environ. Sci. 16(1), 265–274 (2023). https://doi.org/10.1039/D2EE03235J
- P. Meng, Z. Yang, J. Zhang, M. Jiang, Y. Wang et al., Electrolyte design for rechargeable aluminum-ion batteries: recent advances and challenges. Energy Storage Mater. 63, 102953 (2023). https://doi.org/10.1016/j.ensm.2023.102953
- W. Ma, X. Liu, C. Li, H. Yin, W. Xi et al., Rechargeable Al–CO2 batteries for reversible utilization of CO2. Adv. Mater. 30(28), e1801152 (2018). https://doi.org/10.1002/adma.201801152
- C. Zhang, A. Wang, L. Guo, J. Yi, J. Luo, A moisture−assisted rechargeable Mg−CO2 battery. Angew. Chem. Int. Ed. 61(17), e202200181 (2022). https://doi.org/10.1002/anie.202200181
- Y. Guo, R. Zhang, S. Zhang, C. Zhi, Recent advances in Zn–CO2 batteries for the co-production of electricity and carbonaceous fuels. Nano Mater. Sci. (2022). https://doi.org/10.1016/j.nanoms.2022.09.004
- Y. Liu, J. Chen, W. Li, Y. Zhang, X. Fu et al., Aqueous Zn–CO2 batteries: a route towards sustainable energy storage. Ind. Chem. Mater. 2(4), 514–532 (2024). https://doi.org/10.1039/d4im00014e
- P. He, T. Zhang, J. Jiang, H. Zhou, Lithium-air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 7(7), 1267–1280 (2016). https://doi.org/10.1021/acs.jpclett.6b00080
- Y. Wang, H. Zhou, A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power. Sources 195(1), 358–361 (2010). https://doi.org/10.1016/j.jpowsour.2009.06.109
- X. Chen, X. Zhang, H. Li, Q. Zhang, Cation−Solvent, Cation−Anion, and Solvent−Solvent interactions with electrolyte solvation in lithium batteries. Batter. Supercaps 2(2), 128–131 (2019). https://doi.org/10.1002/batt.201800118
- X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53(9), 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
- M. Chen, J. Wu, T. Ye, J. Ye, C. Zhao et al., Adding salt to expand voltage window of humid ionic liquids. Nat. Commun. 11(1), 5809 (2020). https://doi.org/10.1038/s41467-020-19469-3
- Y. Sui, A.M. Scida, B. Li, C. Chen, Y. Fu et al., The influence of ions on the electrochemical stability of aqueous electrolytes. Angew. Chem. Int. Ed. 63(19), e202401555 (2024). https://doi.org/10.1002/anie.202401555
- R. Hou, S. Guo, H. Zhou, Atomic insights into advances and issues in low-temperature electrolytes. Adv. Energy Mater. 13(14), 2300053 (2023). https://doi.org/10.1002/aenm.202300053
- S. Lin, H. Hua, P. Lai, J. Zhao, A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 11(36), 2101775 (2021). https://doi.org/10.1002/aenm.202101775
- H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
- Q. Ren, Q. Wang, Y. Li, X. Song, X. Shangguan et al., High voltage electrolytes for lithium batteries. Prog. Chem. 35, 1077–1096 (2023). https://doi.org/10.7536/PC221132
- H. Shi, Z. Fang, M. Cai, M. Liu, P. Wang et al., Liquid metal–CO2 battery bridged intermittent energy conversion and O2 production in the Martian atmosphere. ACS Sustainable Chem. Eng. 11(24), 9235–9242 (2023). https://doi.org/10.1021/acssuschemeng.3c02346
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
- P. Cao, M. Wu, C. Chen, C. Li, C. Luo et al., Designing antifreeze electrolytes with colloid-like structures for high-rate performance in aqueous zinc-ion batteries. Adv. Energy Mater. 15(10), 2570051 (2025). https://doi.org/10.1002/aenm.202570051
- S. Zhou, X. Chen, X. Zhang, W. Kuang, C. Jiao et al., Recent progress on organic liquid electrolyte for high-temperature sodium batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202418784
- A.-M. Wu, G.-F. Xia, S.-Y. Shen, J.-W. Yin, Y. Mao et al., Recent progress in non-aqueous lithium-air batteries. Acta Phys. Chim. Sin. 32(8), 1866–1879 (2016). https://doi.org/10.3866/pku.whxb201605261
- S.V. Pavlov, S.A. Kislenko, Effects of carbon surface topography on the electrode/electrolyte interface structure and relevance to Li–air batteries. Phys. Chem. Chem. Phys. 18(44), 30830–30836 (2016). https://doi.org/10.1039/C6CP05552D
- X.-H. Yang, P. He, Y.-Y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 11(6), 1127–1130 (2009). https://doi.org/10.1016/j.elecom.2009.03.029
- K. Takechi, T. Shiga, T. Asaoka, A Li–O2/CO2 battery. Chem. Commun. 47(12), 3463 (2011). https://doi.org/10.1039/c0cc05176d
- S.K. Das, S. Xu, L.A. Archer, Carbon dioxide assist for non-aqueous sodium–oxygen batteries. Electrochem. Commun. 27, 59–62 (2013). https://doi.org/10.1016/j.elecom.2012.10.036
- Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Metal–CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 29(15), 1605891 (2017). https://doi.org/10.1002/adma.201605891
- H.-K. Lim, H.-D. Lim, K.-Y. Park, D.-H. Seo, H. Gwon et al., Toward a lithium- “air” battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 135(26), 9733–9742 (2013). https://doi.org/10.1021/ja4016765
- S.R. Gowda, A. Brunet, G.M. Wallraff, B.D. McCloskey, Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4(2), 276–279 (2013). https://doi.org/10.1021/jz301902h
- S. Yang, P. He, H. Zhou, Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 9(5), 1650–1654 (2016). https://doi.org/10.1039/C6EE00004E
- U.R. Farooqui, A.L. Ahmad, N.A. Hamid, Challenges and potential advantages of membranes in lithium air batteries: a review. Renew. Sustain. Energy Rev. 77, 1114–1129 (2017). https://doi.org/10.1016/j.rser.2016.11.220
- Y. Qiao, J. Yi, S. Guo, Y. Sun, S. Wu et al., Li2CO3-free Li–O2/CO2 battery with peroxide discharge product. Energy Environ. Sci. 11(5), 1211–1217 (2018). https://doi.org/10.1039/c7ee03341a
- K. Németh, G. Srajer, CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal–air type rechargeable batteries. RSC Adv. 4(4), 1879–1885 (2014). https://doi.org/10.1039/C3RA45528A
- R. Angamuthu, P. Byers, M. Lutz, A.L. Spek, E. Bouwman, Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327(5963), 313–315 (2010). https://doi.org/10.1126/science.1177981
- J. Zhou, X. Li, C. Yang, Y. Li, K. Guo et al., A quasi-solid-state flexible fiber-shaped Li–CO2 battery with low overpotential and high energy efficiency. Adv. Mater. 31(3), 1804439 (2019). https://doi.org/10.1002/adma.201804439
- Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang et al., Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1(2), 359–370 (2017). https://doi.org/10.1016/j.joule.2017.07.001
- Y. Hou, J. Wang, L. Liu, Y. Liu, S. Chou et al., Mo2C/CNT: an efficient catalyst for rechargeable Li–CO2 batteries. Adv. Funct. Mater. 27(27), 1700564 (2017). https://doi.org/10.1002/adfm.201700564
- Z. Guo, J. Li, H. Qi, X. Sun, H. Li et al., A highly reversible long-life Li–CO2 battery with a RuP2-based catalytic cathode. Small 15(29), 1803246 (2019). https://doi.org/10.1002/smll.201803246
- S. Li, Y. Dong, J. Zhou, Y. Liu, J. Wang et al., Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO2 electrodes in Li–CO2 batteries. Energy Environ. Sci. 11(5), 1318–1325 (2018). https://doi.org/10.1039/C8EE00415C
- Z. Zheng, C. Wu, Q. Gu, K. Konstantinov, J. Wang, Research progress and future perspectives on rechargeable Na–O2 and Na–CO2 batteries. Energy Environ. Mater. 4(2), 158–177 (2021). https://doi.org/10.1002/eem2.12139
- Z. Wang, Y. Cai, Y. Ni, Y. Lu, L. Lin et al., Ultrafine RuO2 nanops/MWCNTs cathodes for rechargeable Na–CO2 batteries with accelerated kinetics of Na2CO3 decomposition. Chin. Chem. Lett. 34(3), 107405 (2023). https://doi.org/10.1016/j.cclet.2022.04.003
- Y. Zhu, S. Feng, P. Zhang, M. Guo, Q. Wang et al., Probing the electrochemical evolutions of Na–CO2 nanobatteries on Pt@NCNT cathodes using in situ environmental TEM. Energy Storage Mater. 33, 88–94 (2020). https://doi.org/10.1016/j.ensm.2020.07.019
- Y. Marcus, Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 4—the selection of extra thermodynamic assumptions. Pure Appl. Chem. 58(12), 1721–1736 (1986). https://doi.org/10.1351/pac198658121721
- N. Xiao, W.D. McCulloch, Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139(28), 9475–9478 (2017). https://doi.org/10.1021/jacs.7b04945
- W. Zhang, C. Hu, Z. Guo, L. Dai, High-performance K–CO2 batteries based on metal-free carbon electrocatalysts. Angew. Chem. Int. Ed. 59(9), 3470–3474 (2020). https://doi.org/10.1002/anie.201913687
- S. Thoka, C.-M. Tsai, Z. Tong, A. Jena, F.-M. Wang et al., Comparative study of Li–CO2 and Na–CO2 batteries with Ru@CNT as a cathode catalyst. ACS Appl. Mater. Interfaces 13(1), 480–490 (2021). https://doi.org/10.1021/acsami.0c17373
- X. Li, G. Qi, J. Zhang, J. Cheng, B. Wang, Artificial solid-electrolyte interphase and bamboo-like N-doped carbon nanotube enabled highly rechargeable K–CO2 batteries. Adv. Funct. Mater. 32(2), 2105029 (2022). https://doi.org/10.1002/adfm.202105029
- A. Khurram, M. He, B.M. Gallant, Tailoring the discharge reaction in Li–CO2 batteries through incorporation of CO2 capture chemistry. Joule 2(12), 2649–2666 (2018). https://doi.org/10.1016/j.joule.2018.09.002
- W. Zhang, F. Zhang, S. Liu, W.K. Pang, Z. Lin et al., Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li–CO2 chemistry. Proc. Natl. Acad. Sci. U.S.A. 120(14), e2219692120 (2023). https://doi.org/10.1073/pnas.2219692120
- Z. Yang, S. Dai, Challenges in engineering the structure of ionic liquids towards direct air capture of CO2. Green Chem. Eng. 2(4), 342–345 (2021). https://doi.org/10.1016/j.gce.2021.08.003
- Y. Xu, Z. Xu, S.-Y. Lee, Z.-S. Wu, Recent progress and perspectives on highly-safe and energy-dense solid-state Li–CO2 batteries. Sci. Bull. 70(2), 135–139 (2025). https://doi.org/10.1016/j.scib.2024.10.023
- G. Qiu, Y. Shi, B. Huang, A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 15(6), 5153–5160 (2022). https://doi.org/10.1007/s12274-022-4183-z
- Y. Dou, Z. Xie, Y. Wei, Z. Peng, Z. Zhou, Redox mediators for high-performance lithium-oxygen batteries. Natl. Sci. Rev. 9(4), nwac040 (2022). https://doi.org/10.1093/nsr/nwac040
- H. Deng, Y. Qiao, X. Zhang, F. Qiu, Z. Chang et al., Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li–O2 battery. J. Mater. Chem. A 7(29), 17261–17265 (2019). https://doi.org/10.1039/C9TA04946K
- X. Li, G. Han, Z. Qian, Q. Liu, Z. Qiang et al., π-conjugation induced anchoring of ferrocene on graphdiyne enable shuttle-free redox mediation in lithium-oxygen batteries. Adv. Sci. 9(4), 2103964 (2022). https://doi.org/10.1002/advs.202103964
- J. Li, H. Zhao, H. Qi, X. Sun, X. Song et al., Drawing a pencil-trace cathode for a high-performance polymer-based Li–CO2 battery with redox mediator. Adv. Funct. Mater. 29(11), 1806863 (2019). https://doi.org/10.1002/adfm.201806863
- W. Li, M. Zhang, X. Sun, C. Sheng, X. Mu et al., Boosting a practical Li–CO2 battery through dimerization reaction based on solid redox mediator. Nat. Commun. 15(1), 803 (2024). https://doi.org/10.1038/s41467-024-45087-4
- Q.-Q. Sun, T. Sun, J.-Y. Du, K. Li, H.-M. Xie et al., A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35(22), 2301088 (2023). https://doi.org/10.1002/adma.202301088
- Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4(3), eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
- Y. Li, Y. Lu, Y. Ni, S. Zheng, Z. Yan et al., Quinone electrodes for alkali-acid hybrid batteries. J. Am. Chem. Soc. 144(18), 8066–8072 (2022). https://doi.org/10.1021/jacs.2c00296
- Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
- Y. He, L. Ding, J. Cheng, S. Mei, X. Xie et al., A “trinity” design of Li–O2 battery engaging the slow-release capsule of redox mediators. Adv. Mater. 35(49), 2308134 (2023). https://doi.org/10.1002/adma.202308134
- C. Zhang, N. Dandu, S. Rastegar, S.N. Misal, Z. Hemmat et al., A comparative study of redox mediators for improved performance of Li–oxygen batteries. Adv. Energy Mater. 10(27), 2000201 (2020). https://doi.org/10.1002/aenm.202000201
- W. Yu, X. Wu, S. Liu, H. Nishihara, L. Li et al., A volatile redox mediator boosts the long-cycle performance of lithium-oxygen batteries. Energy Storage Mater. 38, 571–580 (2021). https://doi.org/10.1016/j.ensm.2021.04.003
- T. Zhang, Q. Chen, X. Li, J. Liu, W. Zhou et al., Redox mediator chemistry regulated aqueous batteries: insights into mechanisms and prospects. CCS Chem. 4(9), 2874–2887 (2022). https://doi.org/10.31635/ccschem.022.202202125
- R.S. Mulliken, Structures of complexes formed by halogen molecules with aromatic and with oxygenated Solvents1. J. Am. Chem. Soc. 72(1), 600–608 (1950). https://doi.org/10.1021/ja01157a151
- X.-G. Wang, C. Wang, Z. Xie, X. Zhang, Y. Chen et al., Improving electrochemical performances of rechargeable Li−CO2 batteries with an electrolyte redox mediator. ChemElectroChem 4(9), 2145–2149 (2017). https://doi.org/10.1002/celc.201700539
- L. Wang, Y. Lu, S. Ma, Z. Lian, X. Gu et al., Optimizing CO2 reduction and evolution reaction mediated by o-phenylenediamine toward high performance Li–CO2 battery. Electrochim. Acta 419, 140424 (2022). https://doi.org/10.1016/j.electacta.2022.140424
- Z. Zhang, W.-L. Bai, Z.-P. Cai, J.-H. Cheng, H.-Y. Kuang et al., Enhanced electrochemical performance of aprotic Li–CO2 batteries with a ruthenium-complex-based mobile catalyst. Angew. Chem. Int. Ed. 60(30), 16404–16408 (2021). https://doi.org/10.1002/anie.202105892
- P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air. Energy Environ. Sci. 9(5), 1783–1793 (2016). https://doi.org/10.1039/C6EE00550K
- D. Kodama, M. Kanakubo, M. Kokubo, S. Hashimoto, H. Nanjo et al., Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib. 302(1–2), 103–108 (2011). https://doi.org/10.1016/j.fluid.2010.08.014
- Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
- A. Sarkar, V.R. Dharmaraj, C.-H. Yi, K. Iputera, S.-Y. Huang et al., Recent advances in rechargeable metal–CO2 batteries with nonaqueous electrolytes. Chem. Rev. 123(15), 9497–9564 (2023). https://doi.org/10.1021/acs.chemrev.3c00167
- T. Chen, Z. Jin, Y. Liu, X. Zhang, H. Wu et al., Stable high-temperature lithium-metal batteries enabled by strong multiple ion-dipole interactions. Angew. Chem. Int. Ed. 61(35), e202207645 (2022). https://doi.org/10.1002/anie.202207645
- J. Chen, C. Chen, T. Huang, A. Yu, LiTFSI concentration optimization in TEGDME solvent for lithium-oxygen batteries. ACS Omega 4(24), 20708–20714 (2019). https://doi.org/10.1021/acsomega.9b02941
- Z. Lu, M. Xiao, S. Wang, D. Han, Z. Huang et al., A rechargeable Li–CO2 battery based on the preservation of dimethyl sulfoxide. J. Mater. Chem. A 10(26), 13821–13828 (2022). https://doi.org/10.1039/D2TA02586H
- X. Hu, Z. Li, Y. Zhao, J. Sun, Q. Zhao et al., Quasi-solid state rechargeable Na–CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3(2), e1602396 (2017). https://doi.org/10.1126/sciadv.1602396
- S.M. George, D. Deb, H. Zhu, S. Sampath, A.J. Bhattacharyya, Spectroscopic investigations of solvent assisted Li-ion transport decoupled from polymer in a gel polymer electrolyte. Appl. Phys. Lett. 121(22), 223903 (2022). https://doi.org/10.1063/5.0112647
- J. Sharma, S.A. Hashmi, Magnesium ion transport in poly(ethylene oxide)-based polymer electrolyte containing plastic-crystalline succinonitrile. J. Solid State Electrochem. 17(8), 2283–2291 (2013). https://doi.org/10.1007/s10008-013-2104-5
- Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204218 (2023). https://doi.org/10.1002/aenm.202204218
- H.X. Yang, Z.K. Liu, Y. Wang, N.W. Li, L. Yu, Multiscale structural gel polymer electrolytes with fast Li+ transport for long-life Li metal batteries. Adv. Funct. Mater. 33(1), 2209837 (2023). https://doi.org/10.1002/adfm.202209837
- Z. Lei, J. Shen, W. Zhang, Q. Wang, J. Wang et al., Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 13(8), 2259–2267 (2020). https://doi.org/10.1007/s12274-020-2845-2
- J. Sharma, S. Hashmi, Magnesium ion-conducting gel polymer electrolyte nanocomposites: effect of active and passive nanofillers. Polym. Compos. 40(4), 1295–1306 (2019). https://doi.org/10.1002/pc.24853
- T.T. Vu, H.J. Cheon, S.Y. Shin, G. Jeong, E. Wi et al., Hybrid electrolytes for solid-state lithium batteries: challenges, progress, and prospects. Energy Storage Mater. 61, 102876 (2023). https://doi.org/10.1016/j.ensm.2023.102876
- P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ion. 180(14–16), 911–916 (2009). https://doi.org/10.1016/j.ssi.2009.03.022
- Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30(17), 1705702 (2018). https://doi.org/10.1002/adma.201705702
- R.-J. Chen, Y.-B. Zhang, T. Liu, B.-Q. Xu, Y.-H. Lin et al., Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach. ACS Appl. Mater. Interfaces 9(11), 9654–9661 (2017). https://doi.org/10.1021/acsami.6b16304
- M. Yang, J. Zhang, Z. Ren, B. Wang, H. Li et al., Li2CO3/LiF-Rich solid electrolyte interface stabilized lithium metal anodes for durable Li–CO2 batteries. Energy Storage Mater. 73, 103843 (2024). https://doi.org/10.1016/j.ensm.2024.103843
- Z. Wang, L. Deng, X.-R. Yang, J.-X. Lin, D.-Q. Cao et al., Tuning CO2 electrocatalytic reduction path for high performance of Li–CO2 battery. Adv. Funct. Mater. 34(41), 2404137 (2024). https://doi.org/10.1002/adfm.202404137
- S. Li, Y. Wang, B. Dan, Z. Wang, X. Liu et al., Engineering the structure-directed functional properties of brominated organic additives for high-performance Li–CO2 batteries. Chem. Eng. J. 498, 155801 (2024). https://doi.org/10.1016/j.cej.2024.155801
- K.M. Naik, A.K. Chourasia, C.S. Sharma, Versatile spinel ferrites MFe2O4 (M = co, Zn, Ni, Cu) enhance dischargeability and efficiency in Li–CO2 Mars batteries with mixed solvent electrolytes. Small (2025). https://doi.org/10.1002/smll.202500638
- X. Sun, D. Wang, Z. Wen, W. Li, H. Zhou et al., An inorganic molten salt electrolyte-based Li–CO2 battery with moderate working temperature and enhanced performance. Chem. Commun. 60(66), 8772–8775 (2024). https://doi.org/10.1039/D4CC02878C
- L. Liu, Y. Qin, H. Zhao, Y. Gao, K. Wang et al., Suppression of CO2 induced lithium anode corrosion by fluorinated functional group in quasi-solid polymer electrolyte enabling long-cycle and high-safety Li–CO2 batteries. Energy Storage Mater. 57, 260–268 (2023). https://doi.org/10.1016/j.ensm.2023.02.006
- M. Mushtaq, X.-W. Guo, J.-P. Bi, Z.-X. Wang, H.-J. Yu, Polymer electrolyte with composite cathode for solid-state Li–CO2 battery. Rare Met. 37(6), 520–526 (2018). https://doi.org/10.1007/s12598-018-1044-8
- R. Wang, X. Zhang, Y. Cai, Q. Nian, Z. Tao et al., Safety-reinforced rechargeable Li–CO2 battery based on a composite solid state electrolyte. Nano Res. 12(10), 2543–2548 (2019). https://doi.org/10.1007/s12274-019-2482-9
- D. Na, R.K. Kampara, D. Yu, B. Yoon, D.Y. Lee et al., Exploring Li–CO2 batteries with electrospun PAN-derived carbon nanofibers and -state electrolyte. J. Alloys Compd. 970, 172559 (2024). https://doi.org/10.1016/j.jallcom.2023.172559
- D. Na, R.K. Kampara, D. Yu, B. Yoon, S.W. Martin et al., Li1.4Al0.4Ti1.6(PO4)3 inorganic solid electrolyte for all-solid-state Li–CO2 batteries with MWCNT and Ru nanop catalysts. Mater. Today Energy 38, 101418 (2023). https://doi.org/10.1016/j.mtener.2023.101418
- D. Na, H. Jeong, J. Baek, H. Yu, S.-M. Lee et al., Highly safe and stable Li–CO2 batteries using conducting ceramic solid electrolyte and MWCNT composite cathode. Electrochim. Acta 419, 140408 (2022). https://doi.org/10.1016/j.electacta.2022.140408
- K.V. Savunthari, C.H. Chen, Y.R. Chen, Z. Tong, K. Iputera et al., Effective Ru/CNT cathode for rechargeable solid-state Li–CO2 batteries. ACS Appl. Mater. Interfaces 13(37), 44266–44273 (2021). https://doi.org/10.1021/acsami.1c11000
- D. Na, D. Yu, H. Kim, B. Yoon, D.D. Lee et al., Enhancing the performance and stability of Li–CO2 batteries through LAGTP solid electrolyte and MWCNT/Ru cathode integration. Nanomaterials 14(23), 1894 (2024). https://doi.org/10.3390/nano14231894
- Q.-C. Zhu, J. Ma, J.-H. Huang, D.-Y. Mao, K.-X. Wang, Realizing long-cycling solid-state Li–CO2 batteries using Zn-doped LATP ceramic electrolytes. Chem. Eng. J. 482, 148977 (2024). https://doi.org/10.1016/j.cej.2024.148977
- X. Yang, D. Zhang, L. Zhao, C. Peng, K. Ren et al., Upgrading cycling stability and capability of hybrid Na–CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. Adv. Energy Mater. 14(16), 2470072 (2024). https://doi.org/10.1002/aenm.202470072
- B. Xu, D. Zhang, S. Chang, M. Hou, C. Peng et al., Fabrication of long-life quasi-solid-state Na–CO2 battery by formation of Na2C2O4 discharge product. Cell Rep. Phys. Sci. 3(7), 100973 (2022). https://doi.org/10.1016/j.xcrp.2022.100973
- H. Yuan, L. Lu, C. Sun, A durable solid-state Na–CO2 battery with solid composite electrolyte Na3.2Zr1.9Ca0.1Si2PO12–PVDF-HFP. Energy Technol. 11(4), 2201383 (2023). https://doi.org/10.1002/ente.202201383
- L. Lu, C. Sun, J. Hao, Z. Wang, S.F. Mayer et al., A high-performance solid-state Na–CO2 battery with poly(vinylidene fluoride-co-hexafluoropropylene)−Na3.2Zr1.9Mg0.1Si2PO12 electrolyte. Energy Environ. Mater. 6(3), e12364 (2023). https://doi.org/10.1002/eem2.12364
- Z. Wang, Y. Mao, L. Sheng, C. Sun, Robust solid-state Na–CO2 battery with Na2.7Zr2Si2PO11.7F0.3-PVDF-HFP composite solid electrolyte and Na15Sn4/Na anode. ACS Appl. Mater. Interfaces 16(10), 12706–12716 (2024). https://doi.org/10.1021/acsami.4c00273
- Y. Lu, Y. Cai, Q. Zhang, L. Liu, Z. Niu et al., A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na–CO2 batteries. Chem. Sci. 10(15), 4306–4312 (2019). https://doi.org/10.1039/c8sc05178j
- Z. Tong, S.-B. Wang, Y.-C. Wang, C.-H. Yi, C.-C. Wu et al., Na@C composite anode for a stable Na|NZSP interface in solid-state Na–CO2 battery. J. Alloys Compd. 922, 166123 (2022). https://doi.org/10.1016/j.jallcom.2022.166123
- P. Xiao, X. Yun, Y. Chen, X. Guo, P. Gao et al., Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 52(15), 5255–5316 (2023). https://doi.org/10.1039/D3CS00151B
- H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7(1), 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
- Y. Zou, G. Liu, Y. Wang, Q. Li, Z. Ma et al., Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature. Adv. Energy Mater. 13(19), 2300443 (2023). https://doi.org/10.1002/aenm.202300443
- J. Li, L. Wang, Y. Zhao, S. Li, X. Fu et al., Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30(27), 2001619 (2020). https://doi.org/10.1002/adfm.202001619
- J. Xu, X. Wang, N. Yuan, J. Ding, S. Qin et al., Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Mater. 23, 383–389 (2019). https://doi.org/10.1016/j.ensm.2019.04.033
- T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 134(39), e202207927 (2022). https://doi.org/10.1002/ange.202207927
- A. Khurram, Y. Yin, L. Yan, L. Zhao, B.M. Gallant, Governing role of solvent on discharge activity in lithium-CO2 batteries. J. Phys. Chem. Lett. 10(21), 6679–6687 (2019). https://doi.org/10.1021/acs.jpclett.9b02615
- G. Liu, Z. Cao, L. Zhou, J. Zhang, Q. Sun et al., Additives engineered nonflammable electrolyte for safer potassium ion batteries. Adv. Funct. Mater. 30(43), 2001934 (2020). https://doi.org/10.1002/adfm.202001934
- B. Liu, W. Xu, P. Yan, S.T. Kim, M.H. Engelhard et al., Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt–solvent coordination for Li–O2 batteries. Adv. Energy Mater. 7(14), 1602605 (2017). https://doi.org/10.1002/aenm.201602605
- K. Pranay Reddy, P. Fischer, M. Marinaro, M. Wohlfahrt-Mehrens, Improved Li–metal cycling performance in high concentrated electrolytes for Li–O2 batteries. ChemElectroChem 5(19), 2758–2766 (2018). https://doi.org/10.1002/celc.201800686
- Y.S. Meng, V. Srinivasan, K. Xu, Designing better electrolytes. Science 378(6624), eabq3750 (2022). https://doi.org/10.1126/science.abq3750
- J. Zhang, J. Gai, K. Song, W. Chen, Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Rep. Phys. Sci. 3(5), 100868 (2022). https://doi.org/10.1016/j.xcrp.2022.100868
- K. Lim, J. Popovic, J. Maier, Ion transport and growth behavior of solid electrolyte interphases on Li and Na with liquid electrolytes based on impedance analysis. J. Mater. Chem. A 11(11), 5725–5733 (2023). https://doi.org/10.1039/D2TA09189E
- G. Qian, Y. Li, H. Chen, L. Xie, T. Liu et al., Revealing the aging process of solid electrolyte interphase on SiOx anode. Nat. Commun. 14(1), 6048 (2023). https://doi.org/10.1038/s41467-023-41867-6
- J. Tan, X. Li, Z. Fang, J. Shen, Designing a stable solid electrolyte interphase on lithium metal anodes by tailoring a Mg atom center and the inner Helmholtz plane for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 15(14), 17893–17903 (2023). https://doi.org/10.1021/acsami.3c00977
- Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang et al., Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15(3), 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4
- C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141(23), 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
- S.T. Oyakhire, S.L. Liao, S.B. Shuchi, M.S. Kim, S.C. Kim et al., Proximity matters: interfacial solvation dictates solid electrolyte interphase composition. Nano Lett. 23(16), 7524–7531 (2023). https://doi.org/10.1021/acs.nanolett.3c02037
- Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
- X. Zhang, J. Meng, X. Wang, Z. Xiao, P. Wu et al., Comprehensive insights into electrolytes and solid electrolyte interfaces in potassium-ion batteries. Energy Storage Mater. 38, 30–49 (2021). https://doi.org/10.1016/j.ensm.2021.02.036
- C. Yan, R. Xu, Y. Xiao, J.-F. Ding, L. Xu et al., Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 30(23), 1909887 (2020). https://doi.org/10.1002/adfm.201909887
- F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang et al., Emerging chemistry for wide-temperature sodium-ion batteries. Chem. Rev. 124(8), 4778–4821 (2024). https://doi.org/10.1021/acs.chemrev.3c00728
- S. Liu, J. Mao, Q. Zhang, Z. Wang, W.K. Pang et al., An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59(9), 3638–3644 (2020). https://doi.org/10.1002/anie.201913174
- L. Wang, J. Zhu, N. Li, Z. Zhang, S. Zhang et al., Superior electrochemical performance of alkali metal anodes enabled by milder Lewis acidity. Energy Environ. Sci. 17(10), 3470–3481 (2024). https://doi.org/10.1039/D4EE00900B
- M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2017). https://doi.org/10.1149/2.0211702jes
- Y. Gu, W.-W. Wang, Y.-J. Li, Q.-H. Wu, S. Tang et al., Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat. Commun. 9(1), 1339 (2018). https://doi.org/10.1038/s41467-018-03466-8
- E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: the solid electrolyte interphase model. J. Electrochem. Soc. 126(12), 2047–2051 (1979). https://doi.org/10.1149/1.2128859
- D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power. Sources 89(2), 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
- W. Dachraoui, R. Pauer, C. Battaglia, R. Erni, operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano 17(20), 20434–20444 (2023). https://doi.org/10.1021/acsnano.3c06879
- W. Song, E.S. Scholtis, P.C. Sherrell, D.K.H. Tsang, J. Ngiam et al., Electronic structure influences on the formation of the solid electrolyte interphase. Energy Environ. Sci. 13(12), 4977–4989 (2020). https://doi.org/10.1039/D0EE01825B
- J. Meng, G. Jia, H. Yang, M. Wang, Recent advances for SEI of hard carbon anode in sodium-ion batteries: a mini review. Front. Chem. 10, 986541 (2022). https://doi.org/10.3389/fchem.2022.986541
- B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7(10), 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
- F. Qiu, S. Ren, X. Mu, Y. Liu, X. Zhang et al., Towards a stable Li–CO2 battery: the effects of CO2 to the Li metal anode. Energy Storage Mater. 26, 443–447 (2020). https://doi.org/10.1016/j.ensm.2019.11.017
- A. Bharti, D. Deb, G. Achutharao, A.J. Bhattacharyya, CO2 crossover to the Li anode and its implications on the solid electrolyte interphase composition in a rechargeable Li–CO2 battery. J. Phys. Chem. C 128(28), 11543–11551 (2024). https://doi.org/10.1021/acs.jpcc.4c02788
- Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai et al., Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5(7), 1860–1872 (2021). https://doi.org/10.1016/j.joule.2021.05.015
- O.B. Chae, B.L. Lucht, Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes. Adv. Energy Mater. 13(14), 2203791 (2023). https://doi.org/10.1002/aenm.202203791
- S. Xia, F. Li, X. Zhang, L. Luo, Y. Zhang et al., Interfacial manipulation via in situ constructed fast ion transport channels toward an ultrahigh rate and practical Li metal anode. ACS Nano 17(20), 20689–20698 (2023). https://doi.org/10.1021/acsnano.3c08864
- P. Zhao, G. Kuang, R. Qiao, K. Liu, F. Boorboor Ajdari et al., Regulating lithium ion transport by a highly stretchable interface for dendrite-free lithium metal batteries. ACS Appl. Energy Mater. 5(8), 10141–10148 (2022). https://doi.org/10.1021/acsaem.2c01873
- W. Wang, J. Wang, C. Lin, H. Ruan, Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries. Adv. Funct. Mater. 33(41), 2303484 (2023). https://doi.org/10.1002/adfm.202303484
- X. Wang, Y. He, S. Tu, L. Fu, Z. Chen et al., Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Mater. 49, 135–143 (2022). https://doi.org/10.1016/j.ensm.2022.04.009
- F.-N. Jiang, S.-J. Yang, H. Liu, X.-B. Cheng, L. Liu et al., Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat 1(4), 506–536 (2021). https://doi.org/10.1002/sus2.37
- R. Zhang, X. Shen, Y.-T. Zhang, X.-L. Zhong, H.-T. Ju et al., Dead lithium formation in lithium metal batteries: a phase field model. J. Energy Chem. 71, 29–35 (2022). https://doi.org/10.1016/j.jechem.2021.12.020
- B. Kim, K. Shin, G. Henkelman, W.-H. Ryu, CO2-mediated porphyrin catalysis in reversible Li–CO2 cells. Chem. Eng. J. 477, 147141 (2023). https://doi.org/10.1016/j.cej.2023.147141
- H.-T. Teng, W.-T. Wang, X.-F. Han, X. Hao, R. Yang et al., Recent development and perspectives of flexible zinc-air batteries. Acta Phys. Chim. Sin. 39, 19–34 (2023). https://doi.org/10.3866/pku.whxb202107017
- Q. Yu, K. Jiang, C. Yu, X. Chen, C. Zhang et al., Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin. Chem. Lett. 32(9), 2659–2678 (2021). https://doi.org/10.1016/j.cclet.2021.03.032
- S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma et al., Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33(6), 2000721 (2021). https://doi.org/10.1002/adma.202000721
- I.D. Seymour, E. Quérel, R.H. Brugge, F.M. Pesci, A. Aguadero, Understanding and engineering interfacial adhesion in solid-state batteries with metallic anodes. Chemsuschem 16(12), e202202215 (2023). https://doi.org/10.1002/cssc.202202215
- H. Zhang, Z. Song, J. Fang, K. Li, M. Zhang et al., Electrolyte optimization for graphite anodes toward fast charging. J. Phys. Chem. C 127(6), 2755–2765 (2023). https://doi.org/10.1021/acs.jpcc.2c08357
- J. Yang, X. Liu, Y. Wang, X. Zhou, L. Weng et al., Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries. Adv. Energy Mater. 11(39), 2101956 (2021). https://doi.org/10.1002/aenm.202101956
- Z. Shadike, Y. Chen, E. Hu, J. Zhang, X.-Q. Yang, Interphasial engineering for Ni-rich NMC cathode materials. Trends Chem. 5(10), 775–787 (2023). https://doi.org/10.1016/j.trechm.2023.08.002
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- S. Li, Y. Liu, J. Zhou, S. Hong, Y. Dong et al., Monodispersed MnO nanops in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li–CO2 batteries. Energy Environ. Sci. 12(3), 1046–1054 (2019). https://doi.org/10.1039/C8EE03283A
- W. Yin, A. Grimaud, I. Azcarate, C. Yang, J.-M. Tarascon, Electrochemical reduction of CO2 mediated by quinone derivatives: implication for Li–CO2 battery. J. Phys. Chem. C 122(12), 6546–6554 (2018). https://doi.org/10.1021/acs.jpcc.8b00109
- Y. Mao, C. Tang, Z. Tang, J. Xie, Z. Chen et al., Long-life Li–CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth. Energy Storage Mater. 18, 405–413 (2019). https://doi.org/10.1016/j.ensm.2018.08.011
- W. Ma, S. Lu, X. Lei, X. Liu, Y. Ding, Porous Mn2O3 cathode for highly durable Li–CO2 batteries. J. Mater. Chem. A 6(42), 20829–20835 (2018). https://doi.org/10.1039/c8ta06143b
- M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, K. Karis et al., A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 555(7697), 502–506 (2018). https://doi.org/10.1038/nature25984
- Y.-J. Yu, F.-L. Zhang, T.-Y. Peng, C.-L. Wang, J. Cheng et al., Sequential C-F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts. Science 371(6535), 1232–1240 (2021). https://doi.org/10.1126/science.abg0781
- X. Li, Z. Feng, Z.-X. Jiang, X. Zhang, Nickel-catalyzed reductive cross-coupling of (hetero)aryl iodides with fluorinated secondary alkyl bromides. Org. Lett. 17(22), 5570–5573 (2015). https://doi.org/10.1021/acs.orglett.5b02716
- Y. Liu, H. Zou, Z. Huang, Q. Wen, J. Lai et al., In situ polymerization of 1, 3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries. Energy Environ. Sci. 16(12), 6110–6119 (2023). https://doi.org/10.1039/D3EE02797J
- Z. Geng, Y. Huang, G. Sun, R. Chen, W. Cao et al., In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 91, 106679 (2022). https://doi.org/10.1016/j.nanoen.2021.106679
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- Z. Wu, C. Wang, Z. Hui, H. Liu, S. Wang et al., Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8(4), 340–350 (2023). https://doi.org/10.1038/s41560-023-01202-1
- O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang et al., In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 32(34), 2000223 (2020). https://doi.org/10.1002/adma.202000223
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- Y. Zhang, Y. Li, G. Zhao, L. Han, T. Lu et al., V3S4/PPy nanocomposites with superior high-rate capability as sodium-ion battery anodes. J. Mater. Chem. A 11(34), 18089–18096 (2023). https://doi.org/10.1039/d3ta02402d
- Y. Ye, Y. Zhao, T. Zhao, S. Xu, Z. Xu et al., An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater. 33(49), 2105029 (2021). https://doi.org/10.1002/adma.202105029
- J. Pan, Y. Zhang, J. Wang, Z. Bai, R. Cao et al., A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state batteries. Adv. Mater. 34(10), 2107183 (2022). https://doi.org/10.1002/adma.202107183
- Y. Liu, F. Fu, C. Sun, A. Zhang, H. Teng et al., Enabling stable interphases via in situ two-step synthetic bilayer polymer electrolyte for solid-state lithium metal batteries. Inorganics 10(4), 42 (2022). https://doi.org/10.3390/inorganics10040042
- A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47(3), 736–851 (2018). https://doi.org/10.1039/c7cs00180k
- J. Pan, Y. Zhang, F. Sun, M. Osenberg, A. Hilger et al., Designing solvated double-layer polymer electrolytes with molecular interactions mediated stable interfaces for sodium ion batteries. Angew. Chem. Int. Ed. 62(17), e202219000 (2023). https://doi.org/10.1002/anie.202219000
- M. Xia, H. Chen, Z. Zheng, Q. Meng, A. Zhao et al., Sodium-difluoro(oxalato)borate-based electrolytes for long-term cycle life and enhanced low-temperature sodium-ion batteries. Adv. Energy Mater. 15(11), 2403306 (2025). https://doi.org/10.1002/aenm.202403306
- D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16(8), 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
- N. Yao, X. Chen, X. Shen, R. Zhang, Z.-H. Fu et al., An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes. Angew. Chem. Int. Ed. 60(39), 21473–21478 (2021). https://doi.org/10.1002/anie.202107657
- S. Lei, Z. Zeng, M. Liu, H. Zhang, S. Cheng et al., Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries. Nano Energy 98, 107265 (2022). https://doi.org/10.1016/j.nanoen.2022.107265
- G. Song, Z. Yi, F. Su, L. Xie, Z. Wang et al., Boosting the low-temperature performance for Li-ion batteries in LiPF6-based local high-concentration electrolyte. ACS Energy Lett. 8(3), 1336–1343 (2023). https://doi.org/10.1021/acsenergylett.2c02903
- J. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu et al., An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 5(5), 1438–1447 (2020). https://doi.org/10.1021/acsenergylett.0c00643
- Y. Li, Y. Yang, Y. Lu, Q. Zhou, X. Qi et al., Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 5(4), 1156–1158 (2020). https://doi.org/10.1021/acsenergylett.0c00337
- Q. Liu, L. Wang, Fundamentals of electrolyte design for wide-temperature lithium metal batteries. Adv. Energy Mater. 13(37), 2301742 (2023). https://doi.org/10.1002/aenm.202301742
References
X. Hu, Z. Li, J. Chen, Flexible Li–CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 56(21), 5785–5789 (2017). https://doi.org/10.1002/anie.201701928
X. Wang, H. Liu, Q. Wang, J. Huo, W. Ge et al., Microbial-derived functional carbon decorated hollow NiCo-LDHs nanoflowers as a highly efficient catalyst for Li–CO2 battery. Appl. Surf. Sci. 540, 148351 (2021). https://doi.org/10.1016/j.apsusc.2020.148351
M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
S. Li, A.V. Nagarajan, D.R. Alfonso, M. Sun, D.R. Kauffman et al., Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem. Int. Ed. 60(12), 6351–6356 (2021). https://doi.org/10.1002/anie.202016129
J.D. Shakun, P.U. Clark, F. He, S.A. Marcott, A.C. Mix et al., Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392), 49–54 (2012). https://doi.org/10.1038/nature10915
G.P. Peters, G. Marland, C. Le Quéré, T. Boden, J.G. Canadell et al., Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Change 2(1), 2–4 (2012). https://doi.org/10.1038/nclimate1332
D.P. Schrag, Preparing to capture carbon. Science 315(5813), 812–813 (2007). https://doi.org/10.1126/science.1137632
S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584), 68–71 (2016). https://doi.org/10.1038/nature16455
B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple et al., Ionic liquid-mediated selective conversion of CO₂ to CO at low overpotentials. Science 334(6056), 643–644 (2011). https://doi.org/10.1126/science.1209786
S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song et al., Polyethylenimine-enhanced electrocatalytic reduction of CO₂ to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014). https://doi.org/10.1021/ja5031529
F. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41(6), 2172–2192 (2012). https://doi.org/10.1039/c1cs15228a
X. Li, S. Yang, N. Feng, P. He, H. Zhou, Progress in research on Li–CO2 batteries: mechanism, catalyst and performance. Chin. J. Catal. 37(7), 1016–1024 (2016). https://doi.org/10.1016/S1872-2067(15)61125-1
C.J. Fetrow, C. Carugati, X.-D. Zhou, S. Wei, Electrochemistry of metal–CO2 batteries: opportunities and challenges. Energy Storage Mater. 45, 911–933 (2022). https://doi.org/10.1016/j.ensm.2021.12.035
F. Wang, Y. Li, X. Xia, W. Cai, Q. Chen et al., Metal–CO2 electrochemistry: from CO2 recycling to energy storage. Adv. Energy Mater. 11(25), 2100667 (2021). https://doi.org/10.1002/aenm.202100667
Y. Cheng, Y. Wang, B. Chen, X. Han, F. He et al., Routes to bidirectional cathodes for reversible aprotic alkali metal–CO2 batteries. Adv. Mater. 36(46), e2410704 (2024). https://doi.org/10.1002/adma.202410704
M.K. Aslam, H. Wang, S. Chen, Q. Li, J. Duan, Progress and perspectives of metal (Li, Na, Al, Zn and K)–CO2 batteries. Mater. Today Energy 31, 101196 (2023). https://doi.org/10.1016/j.mtener.2022.101196
C. Xu, Y. Dong, Y. Shen, H. Zhao, L. Li et al., Fundamental understanding of nonaqueous and hybrid Na–CO2 batteries: challenges and perspectives. Small 19(15), 2206445 (2023). https://doi.org/10.1002/smll.202206445
J. Wang, Y. Zhang, Y. Ma, J. Yin, Y. Wang et al., Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal–organic frameworks and their derived materials. ACS Mater. Lett. 4(11), 2058–2079 (2022). https://doi.org/10.1021/acsmaterialslett.2c00751
X. Sun, X. Mu, W. Zheng, L. Wang, S. Yang et al., Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14(1), 536 (2023). https://doi.org/10.1038/s41467-023-36276-8
X. Zhang, N. Zhao, H. Zhang, Y. Fan, F. Jin et al., Recent advances in wide-range temperature metal–CO2 batteries: a mini review. Nano-Micro Lett. 17(1), 99 (2024). https://doi.org/10.1007/s40820-024-01607-x
X. Yu, A. Manthiram, Recent advances in lithium–carbon dioxide batteries. Small Struct. 1(2), 2000027 (2020). https://doi.org/10.1002/sstr.202000027
X. Mu, H. Pan, P. He, H. Zhou, Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32(27), e1903790 (2020). https://doi.org/10.1002/adma.201903790
G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries. Angew. Chem. Int. Ed. 59(9), 3400–3415 (2020). https://doi.org/10.1002/anie.201906494
J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3(4), 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135
Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), 2201207 (2022). https://doi.org/10.1002/advs.202201207
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). https://doi.org/10.1021/cr500003w
A. Yang, K. Yao, M. Schaller, E. Dashjav, H. Li et al., Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12. eScience 3(6), 100175 (2023). https://doi.org/10.1016/j.esci.2023.100175
E.L. Littauer, K.C. Tsai, Anodic behavior of lithium in aqueous electrolytes: I. transient passivation. J. Electrochem. Soc. 123(6), 771–776 (1976). https://doi.org/10.1149/1.2132931
X. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Recent progress in rechargeable alkali metal–air batteries. Green Energy Environ. 1(1), 4–17 (2016). https://doi.org/10.1016/j.gee.2016.04.004
X. Zhang, Q. Zhang, Z. Zhang, Y. Chen, Z. Xie et al., Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes. Chem. Commun. 51(78), 14636–14639 (2015). https://doi.org/10.1039/c5cc05767a
S. Xu, S.K. Das, L.A. Archer, The Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 3(18), 6656–6660 (2013). https://doi.org/10.1039/C3RA40394G
X. Hu, J. Sun, Z. Li, Q. Zhao, C. Chen et al., Rechargeable room-temperature Na–CO2 batteries. Angew. Chem. Int. Ed. 55(22), 6482–6486 (2016). https://doi.org/10.1002/anie.201602504
L. Zhang, Y. Tang, Q. Liu, T. Yang, C. Du et al., Probing the charging and discharging behavior of K–CO2 nanobatteries in an aberration corrected environmental transmission electron microscope. Nano Energy 53, 544–549 (2018). https://doi.org/10.1016/j.nanoen.2018.09.011
C. Li, Z. Guo, B. Yang, Y. Liu, Y. Wang et al., A rechargeable Li–CO2 battery with a gel polymer electrolyte. Angew. Chem. Int. Ed. 56(31), 9126–9130 (2017). https://doi.org/10.1002/anie.201705017
X. Wang, X. Zhang, Y. Lu, Z. Yan, Z. Tao et al., Flexible and tailorable Na−CO2 batteries based on an all-solid-state polymer electrolyte. ChemElectroChem 5(23), 3628–3632 (2018). https://doi.org/10.1002/celc.201801018
Z. Tong, S.-B. Wang, M.-H. Fang, Y.-T. Lin, K.-T. Tsai et al., Na–CO2 battery with NASICON-structured solid-state electrolyte. Nano Energy 85, 105972 (2021). https://doi.org/10.1016/j.nanoen.2021.105972
S. Wang, K. Xu, H. Song, T. Zhu, Z. Yu et al., A high-energy long-cycling solid-state lithium-metal battery operating at high temperatures. Adv. Energy Mater. 12(38), 2201866 (2022). https://doi.org/10.1002/aenm.202201866
D.-H. Guan, X.-X. Wang, C.-L. Miao, J.-X. Li, J.-Y. Li et al., Host-guest interactions of metal-organic framework enable highly conductive quasi-solid-state electrolytes for Li–CO2 batteries. ACS Nano 18(50), 34299–34311 (2024). https://doi.org/10.1021/acsnano.4c12712
C. Xu, X. Fang, J. Zhan, J. Chen, F. Liang, Progress for metal–CO2 batteries: mechanism and advanced materials. Prog. Chem. 32, 836–850 (2020). https://doi.org/10.7536/PC190924
S. Yang, Y. Qiao, P. He, Y. Liu, Z. Cheng et al., A reversible lithium–CO2 battery with Ru nanops as a cathode catalyst. Energy Environ. Sci. 10(4), 972–978 (2017). https://doi.org/10.1039/C6EE03770D
J. Xie, Y. Wang, Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Acc. Chem. Res. 52(6), 1721–1729 (2019). https://doi.org/10.1021/acs.accounts.9b00179
Z. Zhou, M. Han, Y. Sun, Y. Cui, S.A. El-khodary et al., Zinc-ion and proton as joint charge carriers of S-MoO2 for high-capacity aqueous zinc-ion batteries. Adv. Funct. Mater. 34(7), 2308834 (2024). https://doi.org/10.1002/adfm.202308834
R. Attias, M. Salama, B. Hirsch, R. Pant, Y. Gofer et al., Anion effects on cathode electrochemical activity in rechargeable magnesium batteries: a case study of V2O5. ACS Energy Lett. 4(1), 209–214 (2019). https://doi.org/10.1021/acsenergylett.8b02140
G. Liu, Y. Tang, H. Li, J. He, M. Ye et al., Hydrated eutectic electrolytes stabilizing quasi-underpotential Mg plating/stripping for high-voltage Mg batteries. Angew. Chem. Int. Ed. 62(16), e202217945 (2023). https://doi.org/10.1002/anie.202217945
D. Yuan, J. Zhao, W. Manalastas, S. Kumar, M. Srinivasan, Emerging rechargeable aqueous aluminum ion battery: status, challenges, and outlooks. Nano Mater. Sci. 2(3), 248–263 (2020). https://doi.org/10.1016/j.nanoms.2019.11.001
Y. Sun, Y. Wang, L. Jiang, D. Dong, W. Wang et al., Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries. Energy Environ. Sci. 16(1), 265–274 (2023). https://doi.org/10.1039/D2EE03235J
P. Meng, Z. Yang, J. Zhang, M. Jiang, Y. Wang et al., Electrolyte design for rechargeable aluminum-ion batteries: recent advances and challenges. Energy Storage Mater. 63, 102953 (2023). https://doi.org/10.1016/j.ensm.2023.102953
W. Ma, X. Liu, C. Li, H. Yin, W. Xi et al., Rechargeable Al–CO2 batteries for reversible utilization of CO2. Adv. Mater. 30(28), e1801152 (2018). https://doi.org/10.1002/adma.201801152
C. Zhang, A. Wang, L. Guo, J. Yi, J. Luo, A moisture−assisted rechargeable Mg−CO2 battery. Angew. Chem. Int. Ed. 61(17), e202200181 (2022). https://doi.org/10.1002/anie.202200181
Y. Guo, R. Zhang, S. Zhang, C. Zhi, Recent advances in Zn–CO2 batteries for the co-production of electricity and carbonaceous fuels. Nano Mater. Sci. (2022). https://doi.org/10.1016/j.nanoms.2022.09.004
Y. Liu, J. Chen, W. Li, Y. Zhang, X. Fu et al., Aqueous Zn–CO2 batteries: a route towards sustainable energy storage. Ind. Chem. Mater. 2(4), 514–532 (2024). https://doi.org/10.1039/d4im00014e
P. He, T. Zhang, J. Jiang, H. Zhou, Lithium-air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 7(7), 1267–1280 (2016). https://doi.org/10.1021/acs.jpclett.6b00080
Y. Wang, H. Zhou, A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power. Sources 195(1), 358–361 (2010). https://doi.org/10.1016/j.jpowsour.2009.06.109
X. Chen, X. Zhang, H. Li, Q. Zhang, Cation−Solvent, Cation−Anion, and Solvent−Solvent interactions with electrolyte solvation in lithium batteries. Batter. Supercaps 2(2), 128–131 (2019). https://doi.org/10.1002/batt.201800118
X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53(9), 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
M. Chen, J. Wu, T. Ye, J. Ye, C. Zhao et al., Adding salt to expand voltage window of humid ionic liquids. Nat. Commun. 11(1), 5809 (2020). https://doi.org/10.1038/s41467-020-19469-3
Y. Sui, A.M. Scida, B. Li, C. Chen, Y. Fu et al., The influence of ions on the electrochemical stability of aqueous electrolytes. Angew. Chem. Int. Ed. 63(19), e202401555 (2024). https://doi.org/10.1002/anie.202401555
R. Hou, S. Guo, H. Zhou, Atomic insights into advances and issues in low-temperature electrolytes. Adv. Energy Mater. 13(14), 2300053 (2023). https://doi.org/10.1002/aenm.202300053
S. Lin, H. Hua, P. Lai, J. Zhao, A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 11(36), 2101775 (2021). https://doi.org/10.1002/aenm.202101775
H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021). https://doi.org/10.1002/anie.202004433
Q. Ren, Q. Wang, Y. Li, X. Song, X. Shangguan et al., High voltage electrolytes for lithium batteries. Prog. Chem. 35, 1077–1096 (2023). https://doi.org/10.7536/PC221132
H. Shi, Z. Fang, M. Cai, M. Liu, P. Wang et al., Liquid metal–CO2 battery bridged intermittent energy conversion and O2 production in the Martian atmosphere. ACS Sustainable Chem. Eng. 11(24), 9235–9242 (2023). https://doi.org/10.1021/acssuschemeng.3c02346
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
P. Cao, M. Wu, C. Chen, C. Li, C. Luo et al., Designing antifreeze electrolytes with colloid-like structures for high-rate performance in aqueous zinc-ion batteries. Adv. Energy Mater. 15(10), 2570051 (2025). https://doi.org/10.1002/aenm.202570051
S. Zhou, X. Chen, X. Zhang, W. Kuang, C. Jiao et al., Recent progress on organic liquid electrolyte for high-temperature sodium batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202418784
A.-M. Wu, G.-F. Xia, S.-Y. Shen, J.-W. Yin, Y. Mao et al., Recent progress in non-aqueous lithium-air batteries. Acta Phys. Chim. Sin. 32(8), 1866–1879 (2016). https://doi.org/10.3866/pku.whxb201605261
S.V. Pavlov, S.A. Kislenko, Effects of carbon surface topography on the electrode/electrolyte interface structure and relevance to Li–air batteries. Phys. Chem. Chem. Phys. 18(44), 30830–30836 (2016). https://doi.org/10.1039/C6CP05552D
X.-H. Yang, P. He, Y.-Y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 11(6), 1127–1130 (2009). https://doi.org/10.1016/j.elecom.2009.03.029
K. Takechi, T. Shiga, T. Asaoka, A Li–O2/CO2 battery. Chem. Commun. 47(12), 3463 (2011). https://doi.org/10.1039/c0cc05176d
S.K. Das, S. Xu, L.A. Archer, Carbon dioxide assist for non-aqueous sodium–oxygen batteries. Electrochem. Commun. 27, 59–62 (2013). https://doi.org/10.1016/j.elecom.2012.10.036
Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Metal–CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 29(15), 1605891 (2017). https://doi.org/10.1002/adma.201605891
H.-K. Lim, H.-D. Lim, K.-Y. Park, D.-H. Seo, H. Gwon et al., Toward a lithium- “air” battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 135(26), 9733–9742 (2013). https://doi.org/10.1021/ja4016765
S.R. Gowda, A. Brunet, G.M. Wallraff, B.D. McCloskey, Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4(2), 276–279 (2013). https://doi.org/10.1021/jz301902h
S. Yang, P. He, H. Zhou, Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 9(5), 1650–1654 (2016). https://doi.org/10.1039/C6EE00004E
U.R. Farooqui, A.L. Ahmad, N.A. Hamid, Challenges and potential advantages of membranes in lithium air batteries: a review. Renew. Sustain. Energy Rev. 77, 1114–1129 (2017). https://doi.org/10.1016/j.rser.2016.11.220
Y. Qiao, J. Yi, S. Guo, Y. Sun, S. Wu et al., Li2CO3-free Li–O2/CO2 battery with peroxide discharge product. Energy Environ. Sci. 11(5), 1211–1217 (2018). https://doi.org/10.1039/c7ee03341a
K. Németh, G. Srajer, CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal–air type rechargeable batteries. RSC Adv. 4(4), 1879–1885 (2014). https://doi.org/10.1039/C3RA45528A
R. Angamuthu, P. Byers, M. Lutz, A.L. Spek, E. Bouwman, Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327(5963), 313–315 (2010). https://doi.org/10.1126/science.1177981
J. Zhou, X. Li, C. Yang, Y. Li, K. Guo et al., A quasi-solid-state flexible fiber-shaped Li–CO2 battery with low overpotential and high energy efficiency. Adv. Mater. 31(3), 1804439 (2019). https://doi.org/10.1002/adma.201804439
Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang et al., Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1(2), 359–370 (2017). https://doi.org/10.1016/j.joule.2017.07.001
Y. Hou, J. Wang, L. Liu, Y. Liu, S. Chou et al., Mo2C/CNT: an efficient catalyst for rechargeable Li–CO2 batteries. Adv. Funct. Mater. 27(27), 1700564 (2017). https://doi.org/10.1002/adfm.201700564
Z. Guo, J. Li, H. Qi, X. Sun, H. Li et al., A highly reversible long-life Li–CO2 battery with a RuP2-based catalytic cathode. Small 15(29), 1803246 (2019). https://doi.org/10.1002/smll.201803246
S. Li, Y. Dong, J. Zhou, Y. Liu, J. Wang et al., Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO2 electrodes in Li–CO2 batteries. Energy Environ. Sci. 11(5), 1318–1325 (2018). https://doi.org/10.1039/C8EE00415C
Z. Zheng, C. Wu, Q. Gu, K. Konstantinov, J. Wang, Research progress and future perspectives on rechargeable Na–O2 and Na–CO2 batteries. Energy Environ. Mater. 4(2), 158–177 (2021). https://doi.org/10.1002/eem2.12139
Z. Wang, Y. Cai, Y. Ni, Y. Lu, L. Lin et al., Ultrafine RuO2 nanops/MWCNTs cathodes for rechargeable Na–CO2 batteries with accelerated kinetics of Na2CO3 decomposition. Chin. Chem. Lett. 34(3), 107405 (2023). https://doi.org/10.1016/j.cclet.2022.04.003
Y. Zhu, S. Feng, P. Zhang, M. Guo, Q. Wang et al., Probing the electrochemical evolutions of Na–CO2 nanobatteries on Pt@NCNT cathodes using in situ environmental TEM. Energy Storage Mater. 33, 88–94 (2020). https://doi.org/10.1016/j.ensm.2020.07.019
Y. Marcus, Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 4—the selection of extra thermodynamic assumptions. Pure Appl. Chem. 58(12), 1721–1736 (1986). https://doi.org/10.1351/pac198658121721
N. Xiao, W.D. McCulloch, Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139(28), 9475–9478 (2017). https://doi.org/10.1021/jacs.7b04945
W. Zhang, C. Hu, Z. Guo, L. Dai, High-performance K–CO2 batteries based on metal-free carbon electrocatalysts. Angew. Chem. Int. Ed. 59(9), 3470–3474 (2020). https://doi.org/10.1002/anie.201913687
S. Thoka, C.-M. Tsai, Z. Tong, A. Jena, F.-M. Wang et al., Comparative study of Li–CO2 and Na–CO2 batteries with Ru@CNT as a cathode catalyst. ACS Appl. Mater. Interfaces 13(1), 480–490 (2021). https://doi.org/10.1021/acsami.0c17373
X. Li, G. Qi, J. Zhang, J. Cheng, B. Wang, Artificial solid-electrolyte interphase and bamboo-like N-doped carbon nanotube enabled highly rechargeable K–CO2 batteries. Adv. Funct. Mater. 32(2), 2105029 (2022). https://doi.org/10.1002/adfm.202105029
A. Khurram, M. He, B.M. Gallant, Tailoring the discharge reaction in Li–CO2 batteries through incorporation of CO2 capture chemistry. Joule 2(12), 2649–2666 (2018). https://doi.org/10.1016/j.joule.2018.09.002
W. Zhang, F. Zhang, S. Liu, W.K. Pang, Z. Lin et al., Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li–CO2 chemistry. Proc. Natl. Acad. Sci. U.S.A. 120(14), e2219692120 (2023). https://doi.org/10.1073/pnas.2219692120
Z. Yang, S. Dai, Challenges in engineering the structure of ionic liquids towards direct air capture of CO2. Green Chem. Eng. 2(4), 342–345 (2021). https://doi.org/10.1016/j.gce.2021.08.003
Y. Xu, Z. Xu, S.-Y. Lee, Z.-S. Wu, Recent progress and perspectives on highly-safe and energy-dense solid-state Li–CO2 batteries. Sci. Bull. 70(2), 135–139 (2025). https://doi.org/10.1016/j.scib.2024.10.023
G. Qiu, Y. Shi, B. Huang, A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 15(6), 5153–5160 (2022). https://doi.org/10.1007/s12274-022-4183-z
Y. Dou, Z. Xie, Y. Wei, Z. Peng, Z. Zhou, Redox mediators for high-performance lithium-oxygen batteries. Natl. Sci. Rev. 9(4), nwac040 (2022). https://doi.org/10.1093/nsr/nwac040
H. Deng, Y. Qiao, X. Zhang, F. Qiu, Z. Chang et al., Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li–O2 battery. J. Mater. Chem. A 7(29), 17261–17265 (2019). https://doi.org/10.1039/C9TA04946K
X. Li, G. Han, Z. Qian, Q. Liu, Z. Qiang et al., π-conjugation induced anchoring of ferrocene on graphdiyne enable shuttle-free redox mediation in lithium-oxygen batteries. Adv. Sci. 9(4), 2103964 (2022). https://doi.org/10.1002/advs.202103964
J. Li, H. Zhao, H. Qi, X. Sun, X. Song et al., Drawing a pencil-trace cathode for a high-performance polymer-based Li–CO2 battery with redox mediator. Adv. Funct. Mater. 29(11), 1806863 (2019). https://doi.org/10.1002/adfm.201806863
W. Li, M. Zhang, X. Sun, C. Sheng, X. Mu et al., Boosting a practical Li–CO2 battery through dimerization reaction based on solid redox mediator. Nat. Commun. 15(1), 803 (2024). https://doi.org/10.1038/s41467-024-45087-4
Q.-Q. Sun, T. Sun, J.-Y. Du, K. Li, H.-M. Xie et al., A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35(22), 2301088 (2023). https://doi.org/10.1002/adma.202301088
Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4(3), eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
Y. Li, Y. Lu, Y. Ni, S. Zheng, Z. Yan et al., Quinone electrodes for alkali-acid hybrid batteries. J. Am. Chem. Soc. 144(18), 8066–8072 (2022). https://doi.org/10.1021/jacs.2c00296
Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
Y. He, L. Ding, J. Cheng, S. Mei, X. Xie et al., A “trinity” design of Li–O2 battery engaging the slow-release capsule of redox mediators. Adv. Mater. 35(49), 2308134 (2023). https://doi.org/10.1002/adma.202308134
C. Zhang, N. Dandu, S. Rastegar, S.N. Misal, Z. Hemmat et al., A comparative study of redox mediators for improved performance of Li–oxygen batteries. Adv. Energy Mater. 10(27), 2000201 (2020). https://doi.org/10.1002/aenm.202000201
W. Yu, X. Wu, S. Liu, H. Nishihara, L. Li et al., A volatile redox mediator boosts the long-cycle performance of lithium-oxygen batteries. Energy Storage Mater. 38, 571–580 (2021). https://doi.org/10.1016/j.ensm.2021.04.003
T. Zhang, Q. Chen, X. Li, J. Liu, W. Zhou et al., Redox mediator chemistry regulated aqueous batteries: insights into mechanisms and prospects. CCS Chem. 4(9), 2874–2887 (2022). https://doi.org/10.31635/ccschem.022.202202125
R.S. Mulliken, Structures of complexes formed by halogen molecules with aromatic and with oxygenated Solvents1. J. Am. Chem. Soc. 72(1), 600–608 (1950). https://doi.org/10.1021/ja01157a151
X.-G. Wang, C. Wang, Z. Xie, X. Zhang, Y. Chen et al., Improving electrochemical performances of rechargeable Li−CO2 batteries with an electrolyte redox mediator. ChemElectroChem 4(9), 2145–2149 (2017). https://doi.org/10.1002/celc.201700539
L. Wang, Y. Lu, S. Ma, Z. Lian, X. Gu et al., Optimizing CO2 reduction and evolution reaction mediated by o-phenylenediamine toward high performance Li–CO2 battery. Electrochim. Acta 419, 140424 (2022). https://doi.org/10.1016/j.electacta.2022.140424
Z. Zhang, W.-L. Bai, Z.-P. Cai, J.-H. Cheng, H.-Y. Kuang et al., Enhanced electrochemical performance of aprotic Li–CO2 batteries with a ruthenium-complex-based mobile catalyst. Angew. Chem. Int. Ed. 60(30), 16404–16408 (2021). https://doi.org/10.1002/anie.202105892
P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air. Energy Environ. Sci. 9(5), 1783–1793 (2016). https://doi.org/10.1039/C6EE00550K
D. Kodama, M. Kanakubo, M. Kokubo, S. Hashimoto, H. Nanjo et al., Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib. 302(1–2), 103–108 (2011). https://doi.org/10.1016/j.fluid.2010.08.014
Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
A. Sarkar, V.R. Dharmaraj, C.-H. Yi, K. Iputera, S.-Y. Huang et al., Recent advances in rechargeable metal–CO2 batteries with nonaqueous electrolytes. Chem. Rev. 123(15), 9497–9564 (2023). https://doi.org/10.1021/acs.chemrev.3c00167
T. Chen, Z. Jin, Y. Liu, X. Zhang, H. Wu et al., Stable high-temperature lithium-metal batteries enabled by strong multiple ion-dipole interactions. Angew. Chem. Int. Ed. 61(35), e202207645 (2022). https://doi.org/10.1002/anie.202207645
J. Chen, C. Chen, T. Huang, A. Yu, LiTFSI concentration optimization in TEGDME solvent for lithium-oxygen batteries. ACS Omega 4(24), 20708–20714 (2019). https://doi.org/10.1021/acsomega.9b02941
Z. Lu, M. Xiao, S. Wang, D. Han, Z. Huang et al., A rechargeable Li–CO2 battery based on the preservation of dimethyl sulfoxide. J. Mater. Chem. A 10(26), 13821–13828 (2022). https://doi.org/10.1039/D2TA02586H
X. Hu, Z. Li, Y. Zhao, J. Sun, Q. Zhao et al., Quasi-solid state rechargeable Na–CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3(2), e1602396 (2017). https://doi.org/10.1126/sciadv.1602396
S.M. George, D. Deb, H. Zhu, S. Sampath, A.J. Bhattacharyya, Spectroscopic investigations of solvent assisted Li-ion transport decoupled from polymer in a gel polymer electrolyte. Appl. Phys. Lett. 121(22), 223903 (2022). https://doi.org/10.1063/5.0112647
J. Sharma, S.A. Hashmi, Magnesium ion transport in poly(ethylene oxide)-based polymer electrolyte containing plastic-crystalline succinonitrile. J. Solid State Electrochem. 17(8), 2283–2291 (2013). https://doi.org/10.1007/s10008-013-2104-5
Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204218 (2023). https://doi.org/10.1002/aenm.202204218
H.X. Yang, Z.K. Liu, Y. Wang, N.W. Li, L. Yu, Multiscale structural gel polymer electrolytes with fast Li+ transport for long-life Li metal batteries. Adv. Funct. Mater. 33(1), 2209837 (2023). https://doi.org/10.1002/adfm.202209837
Z. Lei, J. Shen, W. Zhang, Q. Wang, J. Wang et al., Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 13(8), 2259–2267 (2020). https://doi.org/10.1007/s12274-020-2845-2
J. Sharma, S. Hashmi, Magnesium ion-conducting gel polymer electrolyte nanocomposites: effect of active and passive nanofillers. Polym. Compos. 40(4), 1295–1306 (2019). https://doi.org/10.1002/pc.24853
T.T. Vu, H.J. Cheon, S.Y. Shin, G. Jeong, E. Wi et al., Hybrid electrolytes for solid-state lithium batteries: challenges, progress, and prospects. Energy Storage Mater. 61, 102876 (2023). https://doi.org/10.1016/j.ensm.2023.102876
P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ion. 180(14–16), 911–916 (2009). https://doi.org/10.1016/j.ssi.2009.03.022
Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30(17), 1705702 (2018). https://doi.org/10.1002/adma.201705702
R.-J. Chen, Y.-B. Zhang, T. Liu, B.-Q. Xu, Y.-H. Lin et al., Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach. ACS Appl. Mater. Interfaces 9(11), 9654–9661 (2017). https://doi.org/10.1021/acsami.6b16304
M. Yang, J. Zhang, Z. Ren, B. Wang, H. Li et al., Li2CO3/LiF-Rich solid electrolyte interface stabilized lithium metal anodes for durable Li–CO2 batteries. Energy Storage Mater. 73, 103843 (2024). https://doi.org/10.1016/j.ensm.2024.103843
Z. Wang, L. Deng, X.-R. Yang, J.-X. Lin, D.-Q. Cao et al., Tuning CO2 electrocatalytic reduction path for high performance of Li–CO2 battery. Adv. Funct. Mater. 34(41), 2404137 (2024). https://doi.org/10.1002/adfm.202404137
S. Li, Y. Wang, B. Dan, Z. Wang, X. Liu et al., Engineering the structure-directed functional properties of brominated organic additives for high-performance Li–CO2 batteries. Chem. Eng. J. 498, 155801 (2024). https://doi.org/10.1016/j.cej.2024.155801
K.M. Naik, A.K. Chourasia, C.S. Sharma, Versatile spinel ferrites MFe2O4 (M = co, Zn, Ni, Cu) enhance dischargeability and efficiency in Li–CO2 Mars batteries with mixed solvent electrolytes. Small (2025). https://doi.org/10.1002/smll.202500638
X. Sun, D. Wang, Z. Wen, W. Li, H. Zhou et al., An inorganic molten salt electrolyte-based Li–CO2 battery with moderate working temperature and enhanced performance. Chem. Commun. 60(66), 8772–8775 (2024). https://doi.org/10.1039/D4CC02878C
L. Liu, Y. Qin, H. Zhao, Y. Gao, K. Wang et al., Suppression of CO2 induced lithium anode corrosion by fluorinated functional group in quasi-solid polymer electrolyte enabling long-cycle and high-safety Li–CO2 batteries. Energy Storage Mater. 57, 260–268 (2023). https://doi.org/10.1016/j.ensm.2023.02.006
M. Mushtaq, X.-W. Guo, J.-P. Bi, Z.-X. Wang, H.-J. Yu, Polymer electrolyte with composite cathode for solid-state Li–CO2 battery. Rare Met. 37(6), 520–526 (2018). https://doi.org/10.1007/s12598-018-1044-8
R. Wang, X. Zhang, Y. Cai, Q. Nian, Z. Tao et al., Safety-reinforced rechargeable Li–CO2 battery based on a composite solid state electrolyte. Nano Res. 12(10), 2543–2548 (2019). https://doi.org/10.1007/s12274-019-2482-9
D. Na, R.K. Kampara, D. Yu, B. Yoon, D.Y. Lee et al., Exploring Li–CO2 batteries with electrospun PAN-derived carbon nanofibers and -state electrolyte. J. Alloys Compd. 970, 172559 (2024). https://doi.org/10.1016/j.jallcom.2023.172559
D. Na, R.K. Kampara, D. Yu, B. Yoon, S.W. Martin et al., Li1.4Al0.4Ti1.6(PO4)3 inorganic solid electrolyte for all-solid-state Li–CO2 batteries with MWCNT and Ru nanop catalysts. Mater. Today Energy 38, 101418 (2023). https://doi.org/10.1016/j.mtener.2023.101418
D. Na, H. Jeong, J. Baek, H. Yu, S.-M. Lee et al., Highly safe and stable Li–CO2 batteries using conducting ceramic solid electrolyte and MWCNT composite cathode. Electrochim. Acta 419, 140408 (2022). https://doi.org/10.1016/j.electacta.2022.140408
K.V. Savunthari, C.H. Chen, Y.R. Chen, Z. Tong, K. Iputera et al., Effective Ru/CNT cathode for rechargeable solid-state Li–CO2 batteries. ACS Appl. Mater. Interfaces 13(37), 44266–44273 (2021). https://doi.org/10.1021/acsami.1c11000
D. Na, D. Yu, H. Kim, B. Yoon, D.D. Lee et al., Enhancing the performance and stability of Li–CO2 batteries through LAGTP solid electrolyte and MWCNT/Ru cathode integration. Nanomaterials 14(23), 1894 (2024). https://doi.org/10.3390/nano14231894
Q.-C. Zhu, J. Ma, J.-H. Huang, D.-Y. Mao, K.-X. Wang, Realizing long-cycling solid-state Li–CO2 batteries using Zn-doped LATP ceramic electrolytes. Chem. Eng. J. 482, 148977 (2024). https://doi.org/10.1016/j.cej.2024.148977
X. Yang, D. Zhang, L. Zhao, C. Peng, K. Ren et al., Upgrading cycling stability and capability of hybrid Na–CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. Adv. Energy Mater. 14(16), 2470072 (2024). https://doi.org/10.1002/aenm.202470072
B. Xu, D. Zhang, S. Chang, M. Hou, C. Peng et al., Fabrication of long-life quasi-solid-state Na–CO2 battery by formation of Na2C2O4 discharge product. Cell Rep. Phys. Sci. 3(7), 100973 (2022). https://doi.org/10.1016/j.xcrp.2022.100973
H. Yuan, L. Lu, C. Sun, A durable solid-state Na–CO2 battery with solid composite electrolyte Na3.2Zr1.9Ca0.1Si2PO12–PVDF-HFP. Energy Technol. 11(4), 2201383 (2023). https://doi.org/10.1002/ente.202201383
L. Lu, C. Sun, J. Hao, Z. Wang, S.F. Mayer et al., A high-performance solid-state Na–CO2 battery with poly(vinylidene fluoride-co-hexafluoropropylene)−Na3.2Zr1.9Mg0.1Si2PO12 electrolyte. Energy Environ. Mater. 6(3), e12364 (2023). https://doi.org/10.1002/eem2.12364
Z. Wang, Y. Mao, L. Sheng, C. Sun, Robust solid-state Na–CO2 battery with Na2.7Zr2Si2PO11.7F0.3-PVDF-HFP composite solid electrolyte and Na15Sn4/Na anode. ACS Appl. Mater. Interfaces 16(10), 12706–12716 (2024). https://doi.org/10.1021/acsami.4c00273
Y. Lu, Y. Cai, Q. Zhang, L. Liu, Z. Niu et al., A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na–CO2 batteries. Chem. Sci. 10(15), 4306–4312 (2019). https://doi.org/10.1039/c8sc05178j
Z. Tong, S.-B. Wang, Y.-C. Wang, C.-H. Yi, C.-C. Wu et al., Na@C composite anode for a stable Na|NZSP interface in solid-state Na–CO2 battery. J. Alloys Compd. 922, 166123 (2022). https://doi.org/10.1016/j.jallcom.2022.166123
P. Xiao, X. Yun, Y. Chen, X. Guo, P. Gao et al., Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 52(15), 5255–5316 (2023). https://doi.org/10.1039/D3CS00151B
H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7(1), 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
Y. Zou, G. Liu, Y. Wang, Q. Li, Z. Ma et al., Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature. Adv. Energy Mater. 13(19), 2300443 (2023). https://doi.org/10.1002/aenm.202300443
J. Li, L. Wang, Y. Zhao, S. Li, X. Fu et al., Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30(27), 2001619 (2020). https://doi.org/10.1002/adfm.202001619
J. Xu, X. Wang, N. Yuan, J. Ding, S. Qin et al., Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Mater. 23, 383–389 (2019). https://doi.org/10.1016/j.ensm.2019.04.033
T. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin et al., Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. 134(39), e202207927 (2022). https://doi.org/10.1002/ange.202207927
A. Khurram, Y. Yin, L. Yan, L. Zhao, B.M. Gallant, Governing role of solvent on discharge activity in lithium-CO2 batteries. J. Phys. Chem. Lett. 10(21), 6679–6687 (2019). https://doi.org/10.1021/acs.jpclett.9b02615
G. Liu, Z. Cao, L. Zhou, J. Zhang, Q. Sun et al., Additives engineered nonflammable electrolyte for safer potassium ion batteries. Adv. Funct. Mater. 30(43), 2001934 (2020). https://doi.org/10.1002/adfm.202001934
B. Liu, W. Xu, P. Yan, S.T. Kim, M.H. Engelhard et al., Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt–solvent coordination for Li–O2 batteries. Adv. Energy Mater. 7(14), 1602605 (2017). https://doi.org/10.1002/aenm.201602605
K. Pranay Reddy, P. Fischer, M. Marinaro, M. Wohlfahrt-Mehrens, Improved Li–metal cycling performance in high concentrated electrolytes for Li–O2 batteries. ChemElectroChem 5(19), 2758–2766 (2018). https://doi.org/10.1002/celc.201800686
Y.S. Meng, V. Srinivasan, K. Xu, Designing better electrolytes. Science 378(6624), eabq3750 (2022). https://doi.org/10.1126/science.abq3750
J. Zhang, J. Gai, K. Song, W. Chen, Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Rep. Phys. Sci. 3(5), 100868 (2022). https://doi.org/10.1016/j.xcrp.2022.100868
K. Lim, J. Popovic, J. Maier, Ion transport and growth behavior of solid electrolyte interphases on Li and Na with liquid electrolytes based on impedance analysis. J. Mater. Chem. A 11(11), 5725–5733 (2023). https://doi.org/10.1039/D2TA09189E
G. Qian, Y. Li, H. Chen, L. Xie, T. Liu et al., Revealing the aging process of solid electrolyte interphase on SiOx anode. Nat. Commun. 14(1), 6048 (2023). https://doi.org/10.1038/s41467-023-41867-6
J. Tan, X. Li, Z. Fang, J. Shen, Designing a stable solid electrolyte interphase on lithium metal anodes by tailoring a Mg atom center and the inner Helmholtz plane for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 15(14), 17893–17903 (2023). https://doi.org/10.1021/acsami.3c00977
Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang et al., Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15(3), 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4
C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141(23), 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
S.T. Oyakhire, S.L. Liao, S.B. Shuchi, M.S. Kim, S.C. Kim et al., Proximity matters: interfacial solvation dictates solid electrolyte interphase composition. Nano Lett. 23(16), 7524–7531 (2023). https://doi.org/10.1021/acs.nanolett.3c02037
Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
X. Zhang, J. Meng, X. Wang, Z. Xiao, P. Wu et al., Comprehensive insights into electrolytes and solid electrolyte interfaces in potassium-ion batteries. Energy Storage Mater. 38, 30–49 (2021). https://doi.org/10.1016/j.ensm.2021.02.036
C. Yan, R. Xu, Y. Xiao, J.-F. Ding, L. Xu et al., Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 30(23), 1909887 (2020). https://doi.org/10.1002/adfm.201909887
F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang et al., Emerging chemistry for wide-temperature sodium-ion batteries. Chem. Rev. 124(8), 4778–4821 (2024). https://doi.org/10.1021/acs.chemrev.3c00728
S. Liu, J. Mao, Q. Zhang, Z. Wang, W.K. Pang et al., An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59(9), 3638–3644 (2020). https://doi.org/10.1002/anie.201913174
L. Wang, J. Zhu, N. Li, Z. Zhang, S. Zhang et al., Superior electrochemical performance of alkali metal anodes enabled by milder Lewis acidity. Energy Environ. Sci. 17(10), 3470–3481 (2024). https://doi.org/10.1039/D4EE00900B
M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2017). https://doi.org/10.1149/2.0211702jes
Y. Gu, W.-W. Wang, Y.-J. Li, Q.-H. Wu, S. Tang et al., Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat. Commun. 9(1), 1339 (2018). https://doi.org/10.1038/s41467-018-03466-8
E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: the solid electrolyte interphase model. J. Electrochem. Soc. 126(12), 2047–2051 (1979). https://doi.org/10.1149/1.2128859
D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power. Sources 89(2), 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
W. Dachraoui, R. Pauer, C. Battaglia, R. Erni, operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano 17(20), 20434–20444 (2023). https://doi.org/10.1021/acsnano.3c06879
W. Song, E.S. Scholtis, P.C. Sherrell, D.K.H. Tsang, J. Ngiam et al., Electronic structure influences on the formation of the solid electrolyte interphase. Energy Environ. Sci. 13(12), 4977–4989 (2020). https://doi.org/10.1039/D0EE01825B
J. Meng, G. Jia, H. Yang, M. Wang, Recent advances for SEI of hard carbon anode in sodium-ion batteries: a mini review. Front. Chem. 10, 986541 (2022). https://doi.org/10.3389/fchem.2022.986541
B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7(10), 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
F. Qiu, S. Ren, X. Mu, Y. Liu, X. Zhang et al., Towards a stable Li–CO2 battery: the effects of CO2 to the Li metal anode. Energy Storage Mater. 26, 443–447 (2020). https://doi.org/10.1016/j.ensm.2019.11.017
A. Bharti, D. Deb, G. Achutharao, A.J. Bhattacharyya, CO2 crossover to the Li anode and its implications on the solid electrolyte interphase composition in a rechargeable Li–CO2 battery. J. Phys. Chem. C 128(28), 11543–11551 (2024). https://doi.org/10.1021/acs.jpcc.4c02788
Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai et al., Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5(7), 1860–1872 (2021). https://doi.org/10.1016/j.joule.2021.05.015
O.B. Chae, B.L. Lucht, Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes. Adv. Energy Mater. 13(14), 2203791 (2023). https://doi.org/10.1002/aenm.202203791
S. Xia, F. Li, X. Zhang, L. Luo, Y. Zhang et al., Interfacial manipulation via in situ constructed fast ion transport channels toward an ultrahigh rate and practical Li metal anode. ACS Nano 17(20), 20689–20698 (2023). https://doi.org/10.1021/acsnano.3c08864
P. Zhao, G. Kuang, R. Qiao, K. Liu, F. Boorboor Ajdari et al., Regulating lithium ion transport by a highly stretchable interface for dendrite-free lithium metal batteries. ACS Appl. Energy Mater. 5(8), 10141–10148 (2022). https://doi.org/10.1021/acsaem.2c01873
W. Wang, J. Wang, C. Lin, H. Ruan, Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries. Adv. Funct. Mater. 33(41), 2303484 (2023). https://doi.org/10.1002/adfm.202303484
X. Wang, Y. He, S. Tu, L. Fu, Z. Chen et al., Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Mater. 49, 135–143 (2022). https://doi.org/10.1016/j.ensm.2022.04.009
F.-N. Jiang, S.-J. Yang, H. Liu, X.-B. Cheng, L. Liu et al., Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat 1(4), 506–536 (2021). https://doi.org/10.1002/sus2.37
R. Zhang, X. Shen, Y.-T. Zhang, X.-L. Zhong, H.-T. Ju et al., Dead lithium formation in lithium metal batteries: a phase field model. J. Energy Chem. 71, 29–35 (2022). https://doi.org/10.1016/j.jechem.2021.12.020
B. Kim, K. Shin, G. Henkelman, W.-H. Ryu, CO2-mediated porphyrin catalysis in reversible Li–CO2 cells. Chem. Eng. J. 477, 147141 (2023). https://doi.org/10.1016/j.cej.2023.147141
H.-T. Teng, W.-T. Wang, X.-F. Han, X. Hao, R. Yang et al., Recent development and perspectives of flexible zinc-air batteries. Acta Phys. Chim. Sin. 39, 19–34 (2023). https://doi.org/10.3866/pku.whxb202107017
Q. Yu, K. Jiang, C. Yu, X. Chen, C. Zhang et al., Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin. Chem. Lett. 32(9), 2659–2678 (2021). https://doi.org/10.1016/j.cclet.2021.03.032
S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma et al., Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33(6), 2000721 (2021). https://doi.org/10.1002/adma.202000721
I.D. Seymour, E. Quérel, R.H. Brugge, F.M. Pesci, A. Aguadero, Understanding and engineering interfacial adhesion in solid-state batteries with metallic anodes. Chemsuschem 16(12), e202202215 (2023). https://doi.org/10.1002/cssc.202202215
H. Zhang, Z. Song, J. Fang, K. Li, M. Zhang et al., Electrolyte optimization for graphite anodes toward fast charging. J. Phys. Chem. C 127(6), 2755–2765 (2023). https://doi.org/10.1021/acs.jpcc.2c08357
J. Yang, X. Liu, Y. Wang, X. Zhou, L. Weng et al., Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries. Adv. Energy Mater. 11(39), 2101956 (2021). https://doi.org/10.1002/aenm.202101956
Z. Shadike, Y. Chen, E. Hu, J. Zhang, X.-Q. Yang, Interphasial engineering for Ni-rich NMC cathode materials. Trends Chem. 5(10), 775–787 (2023). https://doi.org/10.1016/j.trechm.2023.08.002
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
S. Li, Y. Liu, J. Zhou, S. Hong, Y. Dong et al., Monodispersed MnO nanops in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li–CO2 batteries. Energy Environ. Sci. 12(3), 1046–1054 (2019). https://doi.org/10.1039/C8EE03283A
W. Yin, A. Grimaud, I. Azcarate, C. Yang, J.-M. Tarascon, Electrochemical reduction of CO2 mediated by quinone derivatives: implication for Li–CO2 battery. J. Phys. Chem. C 122(12), 6546–6554 (2018). https://doi.org/10.1021/acs.jpcc.8b00109
Y. Mao, C. Tang, Z. Tang, J. Xie, Z. Chen et al., Long-life Li–CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth. Energy Storage Mater. 18, 405–413 (2019). https://doi.org/10.1016/j.ensm.2018.08.011
W. Ma, S. Lu, X. Lei, X. Liu, Y. Ding, Porous Mn2O3 cathode for highly durable Li–CO2 batteries. J. Mater. Chem. A 6(42), 20829–20835 (2018). https://doi.org/10.1039/c8ta06143b
M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, K. Karis et al., A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 555(7697), 502–506 (2018). https://doi.org/10.1038/nature25984
Y.-J. Yu, F.-L. Zhang, T.-Y. Peng, C.-L. Wang, J. Cheng et al., Sequential C-F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts. Science 371(6535), 1232–1240 (2021). https://doi.org/10.1126/science.abg0781
X. Li, Z. Feng, Z.-X. Jiang, X. Zhang, Nickel-catalyzed reductive cross-coupling of (hetero)aryl iodides with fluorinated secondary alkyl bromides. Org. Lett. 17(22), 5570–5573 (2015). https://doi.org/10.1021/acs.orglett.5b02716
Y. Liu, H. Zou, Z. Huang, Q. Wen, J. Lai et al., In situ polymerization of 1, 3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries. Energy Environ. Sci. 16(12), 6110–6119 (2023). https://doi.org/10.1039/D3EE02797J
Z. Geng, Y. Huang, G. Sun, R. Chen, W. Cao et al., In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 91, 106679 (2022). https://doi.org/10.1016/j.nanoen.2021.106679
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
Z. Wu, C. Wang, Z. Hui, H. Liu, S. Wang et al., Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8(4), 340–350 (2023). https://doi.org/10.1038/s41560-023-01202-1
O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang et al., In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 32(34), 2000223 (2020). https://doi.org/10.1002/adma.202000223
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
Y. Zhang, Y. Li, G. Zhao, L. Han, T. Lu et al., V3S4/PPy nanocomposites with superior high-rate capability as sodium-ion battery anodes. J. Mater. Chem. A 11(34), 18089–18096 (2023). https://doi.org/10.1039/d3ta02402d
Y. Ye, Y. Zhao, T. Zhao, S. Xu, Z. Xu et al., An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater. 33(49), 2105029 (2021). https://doi.org/10.1002/adma.202105029
J. Pan, Y. Zhang, J. Wang, Z. Bai, R. Cao et al., A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state batteries. Adv. Mater. 34(10), 2107183 (2022). https://doi.org/10.1002/adma.202107183
Y. Liu, F. Fu, C. Sun, A. Zhang, H. Teng et al., Enabling stable interphases via in situ two-step synthetic bilayer polymer electrolyte for solid-state lithium metal batteries. Inorganics 10(4), 42 (2022). https://doi.org/10.3390/inorganics10040042
A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47(3), 736–851 (2018). https://doi.org/10.1039/c7cs00180k
J. Pan, Y. Zhang, F. Sun, M. Osenberg, A. Hilger et al., Designing solvated double-layer polymer electrolytes with molecular interactions mediated stable interfaces for sodium ion batteries. Angew. Chem. Int. Ed. 62(17), e202219000 (2023). https://doi.org/10.1002/anie.202219000
M. Xia, H. Chen, Z. Zheng, Q. Meng, A. Zhao et al., Sodium-difluoro(oxalato)borate-based electrolytes for long-term cycle life and enhanced low-temperature sodium-ion batteries. Adv. Energy Mater. 15(11), 2403306 (2025). https://doi.org/10.1002/aenm.202403306
D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16(8), 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
N. Yao, X. Chen, X. Shen, R. Zhang, Z.-H. Fu et al., An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes. Angew. Chem. Int. Ed. 60(39), 21473–21478 (2021). https://doi.org/10.1002/anie.202107657
S. Lei, Z. Zeng, M. Liu, H. Zhang, S. Cheng et al., Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries. Nano Energy 98, 107265 (2022). https://doi.org/10.1016/j.nanoen.2022.107265
G. Song, Z. Yi, F. Su, L. Xie, Z. Wang et al., Boosting the low-temperature performance for Li-ion batteries in LiPF6-based local high-concentration electrolyte. ACS Energy Lett. 8(3), 1336–1343 (2023). https://doi.org/10.1021/acsenergylett.2c02903
J. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu et al., An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 5(5), 1438–1447 (2020). https://doi.org/10.1021/acsenergylett.0c00643
Y. Li, Y. Yang, Y. Lu, Q. Zhou, X. Qi et al., Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 5(4), 1156–1158 (2020). https://doi.org/10.1021/acsenergylett.0c00337
Q. Liu, L. Wang, Fundamentals of electrolyte design for wide-temperature lithium metal batteries. Adv. Energy Mater. 13(37), 2301742 (2023). https://doi.org/10.1002/aenm.202301742