Construction of High-Performance Membranes for Vanadium Redox Flow Batteries: Challenges, Development, and Perspectives
Corresponding Author: Hongxia Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 260
Abstract
While being a promising candidate for large-scale energy storage, the current market penetration of vanadium redox flow batteries (VRFBs) is still limited by several challenges. As one of the key components in VRFBs, a membrane is employed to separate the catholyte and anolyte to prevent the vanadium ions from cross-mixing while allowing the proton conduction to maintain charge balance in the system during operation. To overcome the weakness of commercial membranes, various types of membranes, ranging from ion exchange membranes with diverse functional groups to non-ionic porous membranes, have been designed and reported to achieve higher ionic conductivity while maintaining low vanadium ion permeability, thus enhancing efficiency. In addition, besides overall efficiency, stability and cost-effectiveness of the membrane are also critical aspects that determine the practical applicability of the membranes and thus VRFBs. In this article, we have offered comprehensive insights into the mechanism of ion transportation in membranes of VRFBs that contribute to the challenges and issues of VRFB applications. We have further discussed optimal strategies for solving the trade-off between the membrane efficiency and its durability in VRFB applications. The development of state-of-the-art membranes through various material and structure engineering is demonstrated to reveal the relationship of properties-structure-performance.
Highlights:
1 Critically analyses the ion transport mechanisms of various membranes and compares them and highlights the challenges of membranes for vanadium redox flow battery (VRFB).
2 In-depth analysis and discussion of the best strategies for membranes to achieve high-performance VRFB.
3 Prospective approaches to realising high-performance, sustainable VRFB membranes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Li, Y.C. Lu, Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 32(47), 2002132 (2020). https://doi.org/10.1002/adma.202002132
- S. Huang, Z. Yuan, M. Salla, X. Wang, H. Zhang et al., A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy Environ. Sci. 16(2), 438–445 (2023). https://doi.org/10.1039/D2EE02402K
- J. Ye, J. Liu, C. Zheng, T. Sun, S. Yu et al., Simple acid etched graphene oxide constructing high-performance sandwich structural hybrid membrane for redox flow battery. Sustain. Mater. Technol. 35, e00550 (2023). https://doi.org/10.1016/j.susmat.2022.e00550
- E. Zhao, K. Gao, X. Luo, L. Li, J. Zhao et al., Heterostructure VO2@VS2 tailored by one-step hydrothermal synthesis for stable and highly efficient Zn-ion storage. Mater. Futures 3(4), 045101 (2024). https://doi.org/10.1088/2752-5724/ad778d
- M. Jacob, K. Wissel, O. Clemens, Recycling of solid-state batteries: challenge and opportunity for a circular economy? Mater. Futures 3(1), 012101 (2024). https://doi.org/10.1088/2752-5724/acfb28
- L. Zhi, T. Li, X. Liu, Z. Yuan, X. Li, Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries. Nano Energy 102, 107697 (2022). https://doi.org/10.1016/j.nanoen.2022.107697
- Y. Ding, B. Ling, Xu. Xin Zhao, Y.W. Yang et al., Porous zinc metal anodes for aqueous zinc-ion batteries: advances and prospectives. Energy Mater. Devices 2(3), 9370040 (2024). https://doi.org/10.26599/EMD.2024.9370040
- Q.-C. Jiang, J. Li, Y.-J. Yang, Y.-J. Ren, L. Dai et al., Ultrafine SnO2 in situ modified graphite felt derived from metal–organic framework as a superior electrode for vanadium redox flow battery. Rare Met. 42(4), 1214–1226 (2023). https://doi.org/10.1007/s12598-022-02228-2
- C. Zhang, L. Zhang, Y. Ding, S. Peng, X. Guo et al., Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 15, 324–350 (2018). https://doi.org/10.1016/j.ensm.2018.06.008
- J. Girschik, L. Kopietz, M. Joemann, A. Grevé, C. Doetsch, Redox flow batteries: stationary energy storages with potential. Chem. Ing. Tech. 93, 523–533 (2021). https://doi.org/10.1002/cite.202100001
- L. Zeng, T.S. Zhao, L. Wei, H.R. Jiang, M.C. Wu, Anion exchange membranes for aqueous acid-based redox flow batteries: current status and challenges. Appl. Energy 233, 622–643 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
- J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, The chemistry of redox-flow batteries. Angew. Chem. Int. Ed. 54(34), 9776–9809 (2015). https://doi.org/10.1002/anie.201410823
- W. Liu, W. Lu, H. Zhang, X. Li, Aqueous flow batteries: research and development. Chem 25(7), 1649–1664 (2019). https://doi.org/10.1002/chem.201802798
- Z. Huang, A. Mu, Research and analysis of performance improvement of vanadium redox flow battery in microgrid: a technology review. Int. J. Energy Res. 45(10), 14170–14193 (2021). https://doi.org/10.1002/er.6716
- Q. Jiang, Y. Ren, Y. Yang, H. Liu, L. Wang et al., High-activity and stability graphite felt supported by Fe, N, S co-doped carbon nanofibers derived from bimetal-organic framework for vanadium redox flow battery. Chem. Eng. J. 460, 141751 (2023). https://doi.org/10.1016/j.cej.2023.141751
- T. Gao, C. Li, W. Bai, Y. Luo, D. Yu et al., High proton conductivity membrane based on sulfonated polybenzimidazole by doping ethylenediaminetetraacetic acid-modified MOF-808 for vanadium flow battery. ACS Appl. Polym. Mater. 6(11), 6552–6560 (2024). https://doi.org/10.1021/acsapm.4c00845
- Q.Y. Zhao, G.Y. Yin, Y.F. Liu, R.R. Tang, X.W. Wu et al., Recent advances in material chemistry for zinc enabled redox flow batteries. Carbon Neutralization 2(1), 90–114 (2023). https://doi.org/10.1002/cnl2.43
- M. Yang, Z. Xu, W. Xiang, H. Xu, M. Ding et al., High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Mater. 44, 433–440 (2022). https://doi.org/10.1016/j.ensm.2021.10.043
- J. Wu, C. Yuan, T. Li, Z. Yuan, H. Zhang, X. Li, Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane. J. Am. Chem. Soc. 143, 13135–13144 (2021). https://doi.org/10.1021/jacs.1c04317
- G.S. Nambafu, A.M. Hollas, S. Zhang, P.S. Rice, D. Boglaienko et al., Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery. Nat. Commun. 15(1), 2566 (2024). https://doi.org/10.1038/s41467-024-45862-3
- J.S. Shamie, C. Liu, L.L. Shaw, V.L. Sprenkle, Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions. Sci. Rep. 5, 11215 (2015). https://doi.org/10.1038/srep11215
- Z. Li, G. Weng, Q. Zou, G. Cong, Y.-C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016). https://doi.org/10.1016/j.nanoen.2016.09.043
- X. Yu, W.A. Yu, A. Manthiram, A mediator-ion nitrobenzene - iodine nonaqueous redox flow battery with asymmetric solvents. Energy Storage Mater. 29, 266–272 (2020). https://doi.org/10.1016/j.ensm.2020.04.023
- C. Ye, A. Wang, C. Breakwell, R. Tan, C. Grazia Bezzu et al., Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat. Commun. 13(1), 3184 (2022). https://doi.org/10.1038/s41467-022-30943-y
- M. Skyllas-Kazacos, M. Rychcik, R.G. Robins, A.G. Fane, M.A. Green, New all-vanadium redox flow cell. J. Electrochem. Soc. 133(5), 1057–1058 (1986). https://doi.org/10.1149/1.2108706
- E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16(2), 85–95 (1985). https://doi.org/10.1016/0378-7753(85)80082-3
- Y. Jiang, Z. Liu, Y. Lv, A. Tang, L. Dai et al., Perovskite enables high performance vanadium redox flow battery. Chem. Eng. J. 443, 136341 (2022). https://doi.org/10.1016/j.cej.2022.136341
- Y. Jiang, Z. Liu, Y. Ren, A. Tang, L. Dai, L. Wang, S. Liu, Y. Liu, Z. He, Maneuverable b-site cation in perovskite tuning anode reaction kinetics in vanadium redox flow batteries. J. Mater. Sci. Technol. 186, 199–206 (2024). https://doi.org/10.1016/j.jmst.2023.12.005
- L. Ye, S. Qi, T. Cheng, Y. Jiang, Z. Feng et al., Vanadium redox flow battery: review and perspective of 3D electrodes. ACS Nano 18(29), 18852–18869 (2024). https://doi.org/10.1021/acsnano.4c06675
- A. Fetyan, M.O. Bamgbopa, A. Andisetiawan, A. Alhammadi, R.A. Susantyoko, Evaluation of asymmetric flow rates for better performance vanadium redox flow battery. Batter. Supercaps 6(11), e202300301 (2023). https://doi.org/10.1002/batt.202300301
- Z. Wang, Z. Guo, J. Ren, Y. Li, B. Liu et al., An electrolyte with elevated average valence for suppressing the capacity decay of vanadium redox flow batteries. ACS Cent. Sci. 9(1), 56–63 (2022). https://doi.org/10.1021/acscentsci.2c01112
- K.H. Rho, S.J. Yoon, J. Ryu, S.M. Cho, M.S. Kim et al., Study on thermal behavior of vanadium redox flow battery at low temperature to prevent precipitation. J. Energy Storage 49, 104110 (2022). https://doi.org/10.1016/j.est.2022.104110
- Y. Wang, A. Mu, W. Wang, B. Yang, J. Wang, A review of capacity decay studies of all-vanadium redox flow batteries: mechanism and state estimation. ChemSusChem 17(14), e202301787 (2024). https://doi.org/10.1002/cssc.202301787
- Q. Dai, Z. Zhao, M. Shi, C. Deng, H. Zhang et al., Ion conductive membranes for flow batteries: design and ions transport mechanism. J. Membr. Sci. 632, 119355 (2021). https://doi.org/10.1016/j.memsci.2021.119355
- J. Ye, C. Zheng, J. Liu, T. Sun, S. Yu et al., In situ grown tungsten trioxide nanops on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery. Adv. Funct. Mater. 32(8), 2109427 (2022). https://doi.org/10.1002/adfm.202109427
- Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang et al., Recent development of membrane for vanadium redox flow battery applications: a review. Appl. Energy 238, 202–224 (2019). https://doi.org/10.1016/j.apenergy.2018.12.087
- J. Wu, Q. Dai, H. Zhang, X. Li, Recent development in composite membranes for flow batteries. ChemSusChem 13(15), 3805–3819 (2020). https://doi.org/10.1002/cssc.202000633
- J. Ye, S. Yu, C. Zheng, T. Sun, J. Liu et al., Advanced hybrid membrane for vanadium redox flow battery created by polytetrafluoroethylene layer and functionalized silicon carbide nanowires. Chem. Eng. J. 427, 131413 (2022). https://doi.org/10.1016/j.cej.2021.131413
- L. Hu, L. Gao, M. Di, X. Jiang, X. Wu et al., Ion/Molecule-selective transport nanochannels of membranes for redox flow batteries. Energy Storage Mater. 34, 648–668 (2021). https://doi.org/10.1016/j.ensm.2020.10.008
- J. Ye, Y. Cheng, L. Sun, M. Ding, C. Wu et al., A green speek/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J. Membr. Sci. 572, 110–118 (2019). https://doi.org/10.1016/j.memsci.2018.11.009
- S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
- L. Qiao, H. Zhang, W. Lu, C. Xiao, Q. Fu et al., Advanced porous membranes with slit-like selective layer for flow battery. Nano Energy 54, 73–81 (2018). https://doi.org/10.1016/j.nanoen.2018.10.003
- R. Yang, Z. Xu, S. Yang, I. Michos, L.-F. Li et al., Nonionic zeolite membrane as potential ion separator in redox-flow battery. J. Membr. Sci. 450, 12–17 (2014). https://doi.org/10.1016/j.memsci.2013.08.048
- Z. Liu, R. Li, J. Chen, X. Wu, K. Zhang et al., Theoretical investigation into suitable pore sizes of membranes for vanadium redox flow batteries. ChemElectroChem 4, 2184–2189 (2017). https://doi.org/10.1002/celc.201700244
- K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7(1), 75–83 (2008). https://doi.org/10.1038/nmat2074
- J. Ye, L. Xia, H. Li, F.P.G. de Arquer, H. Wang, The critical analysis of membranes toward sustainable and efficient vanadium redox flow batteries. Adv. Mater. 36(28), 2402090 (2024). https://doi.org/10.1002/adma.202402090
- W. Lu, D. Shi, H. Zhang, X. Li, Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery. J. Membr. Sci. 620, 118947 (2021). https://doi.org/10.1016/j.memsci.2020.118947
- X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, L. Wei, Modeling of ion transport through a porous separator in vanadium redox flow batteries. J. Power Sources 327, 67–76 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.046
- C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo, Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sources 195(3), 890–897 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.041
- Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei et al., Capacity decay and remediation of nafion-based all-vanadium redox flow batteries. ChemSusChem 6(2), 268–274 (2013). https://doi.org/10.1002/cssc.201200730
- A. Tang, J. Bao, M. Skyllas-Kazacos, Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J. Power Sources 196(24), 10737–10747 (2011). https://doi.org/10.1016/j.jpowsour.2011.09.003
- D. Chen, M.A. Hickner, E. Agar, E.C. Kumbur, Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries. Electrochem. Commun. 26, 37–40 (2013). https://doi.org/10.1016/j.elecom.2012.10.007
- C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim et al., A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sustain. Energy Rev. 69, 263–274 (2017). https://doi.org/10.1016/j.rser.2016.11.188
- F. Sepehr, S.J. Paddison, The solvation structure and thermodynamics of aqueous vanadium cations. Chem. Phys. Lett. 585, 53–58 (2013). https://doi.org/10.1016/j.cplett.2013.08.089
- J. Sun, X. Li, X. Xi, Q. Lai, T. Liu et al., The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium. J. Power Sources 271, 1–7 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.111
- Z. Tang, R. Svoboda, J.S. Lawton, D.S. Aaron, A.B. Papandrew et al., Composition and conductivity of membranes equilibrated with solutions of sulfuric acid and vanadyl sulfate. J. Electrochem. Soc. 160(9), F1040–F1047 (2013). https://doi.org/10.1149/2.083309jes
- Y. Yang, Q. Wang, S. Xiong, Z. Song, Research progress on optimized membranes for vanadium redox flow batteries. Inorg. Chem. Front. 11(14), 4049–4079 (2024). https://doi.org/10.1039/d4qi00520a
- M.J. Jung, J. Parrondo, C.G. Arges, V. Ramani, Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery. J. Mater. Chem. A 1(35), 10458–10464 (2013). https://doi.org/10.1039/C3TA11459G
- Y. Zhang, X. Zhou, R. Xue, Q. Yu, F. Jiang et al., Proton exchange membranes with ultra-low vanadium ions permeability improved by sulfated zirconia for all vanadium redox flow battery. Int. J. Hydrog. Energy 44(12), 5997–6006 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.043
- F. Wang, F. Ai, Y.-C. Lu, Ion selective membrane for redox flow battery, What’s next? Next Energy 1(3), 100053 (2023). https://doi.org/10.1016/j.nxener.2023.100053
- Z. Yuan, H. Zhang, X. Li, Ion conducting membranes for aqueous flow battery systems. Chem. Commun. 54(55), 7570–7588 (2018). https://doi.org/10.1039/c8cc03058h
- B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, A comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 510, 18–26 (2016). https://doi.org/10.1016/j.memsci.2016.03.007
- J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources 166(2), 531–536 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
- X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu et al., Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J. Membr. Sci. 341, 149–154 (2009). https://doi.org/10.1016/j.memsci.2009.05.051
- Q. Chen, Y.-Y. Du, K.-M. Li, H.-F. Xiao, W. Wang et al., Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries. Mater. Des. 113, 149–156 (2017). https://doi.org/10.1016/j.matdes.2016.10.019
- J. Ye, D. Yuan, M. Ding, Y. Long, T. Long et al., A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J. Power Sources 482, 229023 (2021). https://doi.org/10.1016/j.jpowsour.2020.229023
- Q. Luo, H. Zhang, J. Chen, D. You, C. Sun et al., Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. J. Membr. Sci. 325(2), 553–558 (2008). https://doi.org/10.1016/j.memsci.2008.08.025
- X. Teng, J. Dai, J. Su, Y. Zhu, H. Liu et al., A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application. J. Power Sources 240, 131–139 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.177
- X. Yang, H. Zhu, F. Jiang, X. Zhou, Notably enhanced proton conductivity by thermally-induced phase-separation transition of nafion/ poly(vinylidene fluoride) blend membranes. J. Power Sources 473, 228586 (2020). https://doi.org/10.1016/j.jpowsour.2020.228586
- H.G. Kim, R. Kim, S. Kim, C. Choi, B. Kim et al., Propylene carbonate-derived size modulation of water cluster in pore-filled Nafion/polypropylene composite membrane for the use in vanadium redox flow batteries. J. Ind. Eng. Chem. 60, 401–406 (2018). https://doi.org/10.1016/j.jiec.2017.11.027
- Z. Mai, H. Zhang, X. Li, S. Xiao, H. Zhang, Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. J. Power Sources 196(13), 5737–5741 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.048
- S. Winardi, S.C. Raghu, M.O. Oo, Q. Yan, N. Wai et al., Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J. Membr. Sci. 450, 313–322 (2014). https://doi.org/10.1016/j.memsci.2013.09.024
- Z. Mai, H. Zhang, X. Li, C. Bi, H. Dai, Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. J. Power Sources 196(1), 482–487 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.028
- D. Chen, S. Kim, L. Li, G. Yang, M.A. Hickner, Stable fluorinated sulfonated poly(arylene ether) membranes for vanadium redox flow batteries. RSC Adv. 2(21), 8087 (2012). https://doi.org/10.1039/c2ra20834b
- M.A. Aziz, S. Shanmugam, Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. J. Mater. Chem. A 5(32), 16663–16671 (2017). https://doi.org/10.1039/C7TA05155G
- N. Wang, J. Yu, Z. Zhou, D. Fang, S. Liu et al., SPPEK/TPA composite membrane as a separator of vanadium redox flow battery. J. Membr. Sci. 437, 114–121 (2013). https://doi.org/10.1016/j.memsci.2013.02.053
- X. Huang, Y. Pu, Y. Zhou, Y. Zhang, H. Zhang, In-situ and ex-situ degradation of sulfonated polyimide membrane for vanadium redox flow battery application. J. Membr. Sci. 526, 281–292 (2017). https://doi.org/10.1016/j.memsci.2016.09.053
- D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by Sol‐Gel method: synthesis and application. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/5102014
- F. Pena-Pereira, R.M.B.O. Duarte, A.C. Duarte, Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. Trac Trends Anal. Chem. 40, 90–105 (2012). https://doi.org/10.1016/j.trac.2012.07.015
- A.L. Ahmad, N.F.C. Lah, N.A. Norzli, W.Y. Pang, A contrastive study of self-assembly and physical blending mechanism of TiO2 blended polyethersulfone membranes for enhanced humic acid removal and alleviation of membrane fouling. Membranes 12(2), 162 (2022). https://doi.org/10.3390/membranes12020162
- P.K. Leung, Q. Xu, T.S. Zhao, L. Zeng, C. Zhang, Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries. Electrochim. Acta 105, 584–592 (2013). https://doi.org/10.1016/j.electacta.2013.04.155
- G. Wang, F. Wang, A. Li, M. Zhang, J. Zhang et al., Sulfonated poly(ether ether ketone)/s–TiO2 composite membrane for a vanadium redox flow battery. J. Appl. Polym. Sci. 137(26), 48830 (2020). https://doi.org/10.1002/app.48830
- L. Zhang, Y. Jiang, H. Wang, P. Qian, J. Sheng et al., Sulfonated poly (ether ketone)/sulfonated titanium dioxide hybrid membrane with high selectivity and good stability for vanadium redox flow battery. J. Energy Storage 45, 103705 (2022). https://doi.org/10.1016/j.est.2021.103705
- S.I. Hossain, M.A. Aziz, D. Han, P. Selvam, S. Shanmugam, Fabrication of SPAEK–cerium zirconium oxide nanotube composite membrane with outstanding performance and durability for vanadium redox flow batteries. J. Mater. Chem. A 6(41), 20205–20213 (2018). https://doi.org/10.1039/C8TA08349E
- J. Ye, X. Zhao, Y. Ma, J. Su, C. Xiang et al., Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries. Adv. Energy Mater. 10(22), 1904041 (2020). https://doi.org/10.1002/aenm.201904041
- A. Ali, S.S. Rahimian Koloor, A.H. Alshehri, A. Arockiarajan, Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures: a review. J. Mater. Res. Technol. 24, 6495–6521 (2023). https://doi.org/10.1016/j.jmrt.2023.04.072
- Y. Pu, S. Zhu, P. Wang, Y. Zhou, P. Yang et al., Novel branched sulfonated polyimide/molybdenum disulfide nanosheets composite membrane for vanadium redox flow battery application. Appl. Surf. Sci. 448, 186–202 (2018). https://doi.org/10.1016/j.apsusc.2018.04.090
- Y. Zhang, Y. Pu, P. Yang, H. Yang, S. Xuan et al., Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application. J. Mater. Sci. 53(20), 14506–14524 (2018). https://doi.org/10.1007/s10853-018-2620-x
- J. Li, Q. Zhang, S. Peng, D. Zhang, X. Yan et al., Electrospinning fiberization of carbon nanotube hybrid sulfonated poly (ether ether ketone) ion conductive membranes for a vanadium redox flow battery. J. Membr. Sci. 583, 93–102 (2019). https://doi.org/10.1016/j.memsci.2019.04.043
- R. Sigwadi, M.S. Dhlamini, T. Mokrani, F. Nemavhola, Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon 5(7), e02112 (2019). https://doi.org/10.1016/j.heliyon.2019.e02112
- P. Han, H. Wang, Z. Liu, X. Chen, W. Ma et al., Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon 49(2), 693–700 (2011). https://doi.org/10.1016/j.carbon.2010.10.022
- K.J. Lee, Y.H. Chu, Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system. Vacuum 107, 269–276 (2014). https://doi.org/10.1016/j.vacuum.2014.02.023
- H. Lin, J. Wu, F. Zhou, X. Zhao, P. Lu et al., Graphitic carbon nitride-based photocatalysts in the applications of environmental catalysis. J. Environ. Sci. 124, 570–590 (2023). https://doi.org/10.1016/j.jes.2021.11.017
- R. Niu, L. Kong, L. Zheng, H. Wang, H. Shi, Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery. J. Membr. Sci. 525, 220–228 (2017). https://doi.org/10.1016/j.memsci.2016.10.049
- Y. Quan, G. Wang, A. Li, X. Wei, F. Li et al., Novel sulfonated poly(ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications. RSC Adv. 9(7), 3838–3846 (2019). https://doi.org/10.1039/c8ra09695c
- X. Song, L. Ding, L. Wang, M. He, X. Han, Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries. Electrochim. Acta 295, 1034–1043 (2019). https://doi.org/10.1016/j.electacta.2018.11.123
- S. Liu, L. Wang, Y. Ding, B. Liu, X. Han et al., Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochim. Acta 130, 90–96 (2014). https://doi.org/10.1016/j.electacta.2014.02.144
- D. Chen, X. Chen, L. Ding, X. Li, Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application. J. Membr. Sci. 553, 25–31 (2018). https://doi.org/10.1016/j.memsci.2018.02.039
- S. Liu, L. Wang, D. Li, B. Liu, J. Wang et al., Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/quaternized poly(ether imide) for vanadium redox flow battery applications. J. Mater. Chem. A 3(34), 17590–17597 (2015). https://doi.org/10.1039/C5TA04351D
- Z. Li, W. Dai, L. Yu, L. Liu, J. Xi et al., Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application. ACS Appl. Mater. Interf. 6(21), 18885–18893 (2014). https://doi.org/10.1021/am5047125
- J. Ren, Y. Dong, J. Dai, H. Hu, Y. Zhu et al., A novel chloromethylated/quaternized poly(sulfone)/poly(vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery. J. Membr. Sci. 544, 186–194 (2017). https://doi.org/10.1016/j.memsci.2017.09.015
- X. Liao, Y. Gong, Y. Liu, D. Zuo, H. Zhang, Blend membranes of quaternized poly(vinylbenzyl chloride-co-styrene) and quaternized polysulfone for anion-exchange membrane fuel cells. RSC Adv. 5(120), 99347–99355 (2015). https://doi.org/10.1039/C5RA17839H
- T. Sadhasivam, K. Dhanabalan, P.T. Thong, J.Y. Kim, S.H. Roh, H.Y. Jung, Development of perfluorosulfonic acid polymer-based hybrid composite membrane with alkoxysilane functionalized polymer for vanadium redox flow battery. Int. J. Energy Res. 44(3), 1999–2010 (2020). https://doi.org/10.1002/er.5053
- S.-L. Huang, M.-L. Chen, Y.-S. Lin, Chitosan–silica anion exchange membrane for the vanadium redox flow energy storage battery applications. React. Funct. Polym. 119, 1–8 (2017). https://doi.org/10.1016/j.reactfunctpolym.2017.07.011
- A. Mukhopadhyay, Z. Cheng, A. Natan, Y. Ma, Y. Yang et al., Stable and highly ion-selective membrane made from cellulose nanocrystals for aqueous redox flow batteries. Nano Lett. 19(12), 8979–8989 (2019). https://doi.org/10.1021/acs.nanolett.9b03964
- Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w
- J. Long, H. Yang, Y. Wang, W. Xu, J. Liu et al., Branched sulfonated polyimide/sulfonated methylcellulose composite membranes with remarkable proton conductivity and selectivity for vanadium redox flow batteries. ChemElectroChem 7(4), 937–945 (2020). https://doi.org/10.1002/celc.201901887
- Z. Ding, L. Zhong, X. Wang, L. Zhang, Effect of lignin–cellulose nanofibrils on the hydrophilicity and mechanical properties of polyethersulfone ultrafiltration membranes. High Perform. Polym. 28(10), 1192–1200 (2016). https://doi.org/10.1177/0954008315621611
- O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558), 703–706 (1995). https://doi.org/10.1038/378703a0
- S. Liu, X. Sang, L. Wang, J. Zhang, J. Song et al., Incorporation of metal-organic framework in polymer membrane enhances vanadium flow battery performance. Electrochim. Acta 257, 243–249 (2017). https://doi.org/10.1016/j.electacta.2017.10.084
- S. Zhai, X. Jia, Z. Lu, Y. Ai, X. Liu et al., Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. J. Membr. Sci. 662, 121003 (2022). https://doi.org/10.1016/j.memsci.2022.121003
- X.-B. Yang, L. Zhao, K. Goh, X. Sui, L.-H. Meng et al., Ultra-high ion selectivity of a modified nafion composite membrane for vanadium redox flow battery by incorporation of phosphotungstic acid coupled UiO-66-NH2. ChemistrySelect 4(15), 4633–4641 (2019). https://doi.org/10.1002/slct.201900888
- S. Zhai, Z. Lu, Y. Ai, X. Liu, Q. Wang et al., Highly selective proton exchange membranes for vanadium redox flow batteries enabled by the incorporation of water-insoluble phosphotungstic acid-metal organic framework nanohybrids. J. Membr. Sci. 645, 120214 (2022). https://doi.org/10.1016/j.memsci.2021.120214
- T. Mohammadi, M.S. Kazacos, Modification of anion-exchange membranes for vanadium redox flow battery applications. J. Power Sources 63(2), 179–186 (1996). https://doi.org/10.1016/S0378-7753(96)02463-9
- J. Qiu, J. Zhang, J. Chen, J. Peng, L. Xu et al., Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into pvdf film for vanadium redox flow battery applications. J. Membr. Sci. 334, 9–15 (2009). https://doi.org/10.1016/j.memsci.2009.02.009
- J. Ma, Y. Wang, J. Peng, J. Qiu, L. Xu et al., Designing a new process to prepare amphoteric ion exchange membrane with well-distributed grafted chains for vanadium redox flow battery. J. Membr. Sci. 419, 1–8 (2012). https://doi.org/10.1016/j.memsci.2012.04.034
- J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen et al., Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J. Mater. Chem. 18(11), 1232–1238 (2008). https://doi.org/10.1039/B718526J
- X. Zhang, H. Chen, H. Zhang, Layer-by-layer assembly: from conventional to unconventional methods. Chem. Commun. 14, 1395–1405 (2007). https://doi.org/10.1039/b615590a
- Y. Wang, S. Wang, M. Xiao, S. Song, D. Han et al., Amphoteric ion exchange membrane synthesized by direct polymerization for vanadium redox flow battery application. Int. J. Hydrog. Energy 39(28), 16123–16131 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.049
- X. Yan, C. Zhang, Y. Dai, W. Zheng, X. Ruan et al., A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery. J. Membr. Sci. 544, 98–107 (2017). https://doi.org/10.1016/j.memsci.2017.09.025
- Y. Li, X. Lin, L. Wu, C. Jiang, M.M. Hossain et al., Quaternized membranes bearing zwitterionic groups for vanadium redox flow battery through a green route. J. Membr. Sci. 483, 60–69 (2015). https://doi.org/10.1016/j.memsci.2015.02.014
- J.B. Liao, M.Z. Lu, Y.Q. Chu, J.L. Wang, Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries. J. Power Sources 282, 241–247 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.025
- F.J. Oldenburg, E. Nilsson, T.J. Schmidt, L. Gubler, Tackling capacity fading in vanadium redox flow batteries with amphoteric polybenzimidazole/nafion bilayer membranes. ChemSusChem 12(12), 2620–2627 (2019). https://doi.org/10.1002/cssc.201900546
- R. Xue, F. Jiang, F. Wang, X. Zhou, Towards cost-effective proton-exchange membranes for redox flow batteries: a facile and innovative method. J. Power Sources 449, 227475 (2020). https://doi.org/10.1016/j.jpowsour.2019.227475
- W. Lu, H. Zhang, X. Li, Membranes fabricated by solvent treatment for flow battery: effects of initial structures and intrinsic properties. J. Membr. Sci. 577, 212–218 (2019). https://doi.org/10.1016/j.memsci.2019.02.011
- L. Ding, Y. Wang, L. Wang, X. Han, Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery. J. Membr. Sci. 642, 119934 (2022). https://doi.org/10.1016/j.memsci.2021.119934
- P. Arora, Z.J. Zhang, Battery separators. Chem. Rev. 104(10), 4419–4462 (2004). https://doi.org/10.1021/cr020738u
- J. Cao, Z. Yuan, X. Li, W. Xu, H. Zhang, Hydrophilic poly(vinylidene fluoride) porous membrane with well connected ion transport networks for vanadium flow battery. J. Power Sources 298, 228–235 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.067
- J. Qiu, L. Zhao, M. Zhai, J. Ni, H. Zhou et al., Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. J. Power Sources 177(2), 617–623 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.089
- Y. Zhou, P. Qiu, Y. Ma, X. Zhang, D. Xu et al., BaTiO3/PVDF-g-PSSA composite proton exchange membranes for vanadium redox flow battery. Ceram. Int. 41, S758–S762 (2015). https://doi.org/10.1016/j.ceramint.2015.03.131
- B. Tian, X.-Y. Wang, L.-N. Zhang, F.-N. Shi, Y. Zhang et al., Preparation of PVDF anionic exchange membrane by chemical grafting of GMA onto PVDF macromolecule. Solid State Ion. 293, 56–63 (2016). https://doi.org/10.1016/j.ssi.2016.06.006
- W. Lu, D. Shi, H. Zhang, X. Li, Highly selective core-shell structural membrane with cage-shaped pores for flow battery. Energy Storage Mater. 17, 325–333 (2019). https://doi.org/10.1016/j.ensm.2018.07.003
- X. Xi, C. Ding, H. Zhang, X. Li, Y. Cheng et al., Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application. J. Power Sources 274, 1126–1134 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.160
- J. Chen, L. Wang, L. Wang, Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66). ACS Appl. Mater. Interfaces 12, 41350–41358 (2020). https://doi.org/10.1021/acsami.0c10527
- Z. Yuan, Y. Duan, H. Zhang, X. Li, H. Zhang et al., Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ. Sci. 9(2), 441–447 (2016). https://doi.org/10.1039/C5EE02896E
- Y. Li, H. Zhang, X. Li, H. Zhang, W. Wei, Porous poly (ether sulfone) membranes with tunable morphology: fabrication and their application for vanadium flow battery. J. Power Sources 233, 202–208 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.088
- T. Luo, O. David, Y. Gendel, M. Wessling, Porous poly(benzimidazole) membrane for all vanadium redox flow battery. J. Power Sources 312, 45–54 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.042
- C. Wu, S. Lu, H. Wang, X. Xu, S. Peng et al., A novel polysulfone–polyvinylpyrrolidone membrane with superior proton-to-vanadium ion selectivity for vanadium redox flow batteries. J. Mater. Chem. A 4(4), 1174–1179 (2016). https://doi.org/10.1039/C5TA08593D
- C. Wu, H. Bai, Y. Lv, Z. Lv, Y. Xiang et al., Enhanced membrane ion selectivity by incorporating graphene oxide nanosheet for vanadium redox flow battery application. Electrochim. Acta 248, 454–461 (2017). https://doi.org/10.1016/j.electacta.2017.07.122
- V.E. Sizov, M.S. Kondratenko, M.O. Gallyamov, K.J. Stevenson, Advanced porous polybenzimidazole membranes for vanadium redox batteries synthesized via a supercritical phase-inversion method. J. Supercrit. Fluids 137, 111–117 (2018). https://doi.org/10.1016/j.supflu.2018.03.018
- T. Luo, B. Dreusicke, M. Wessling, Tuning the ion selectivity of porous poly(2, 5-benzimidazole) membranes by phase separation for all vanadium redox flow batteries. J. Membr. Sci. 556, 164–177 (2018). https://doi.org/10.1016/j.memsci.2018.03.086
- P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37(2), 365–405 (2008). https://doi.org/10.1039/b610848m
- S. Costeux, CO2-blown nanocellular foams. J. Appl. Polym. Sci. 131(23), 41293 (2014). https://doi.org/10.1002/app.41293
- J. Dai, Y. Dong, P. Gao, J. Ren, C. Yu et al., A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency. Polymer 140, 233–239 (2018). https://doi.org/10.1016/j.polymer.2018.02.051
- Z. Yuan, X. Zhu, M. Li, W. Lu, X. Li et al., A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. Int. Ed. 55(9), 3058–3062 (2016). https://doi.org/10.1002/anie.201510849
- T. Ji, C. Zhang, X. Xiao, Y. Wang, D. Cao et al., High ion conductive and selective membrane achieved through dual ion conducting mechanisms. Small 19(14), e2206807 (2023). https://doi.org/10.1002/smll.202206807
- H. Mögelin, G. Yao, H. Zhong, A.R. dos Santos, A. Barascu et al., Porous glass membranes for vanadium redox-flow battery application: effect of pore size on the performance. J. Power Sources 377, 18–25 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.001
- Y. Xia, Y. Wang, H. Cao, S. Lin, Y. Xia et al., Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J. Membr. Sci. 653, 120517 (2022). https://doi.org/10.1016/j.memsci.2022.120517
- J. Chu, Q. Liu, W. Ji, J. Li, X. Ma, Novel microporous sulfonated polyimide membranes with high energy efficiency under low ion exchange capacity for all vanadium flow battery. Electrochim. Acta 446, 142080 (2023). https://doi.org/10.1016/j.electacta.2023.142080
- M.Z. Ahmad, R. Castro-Muñoz, P.M. Budd, Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale 12(46), 23333–23370 (2020). https://doi.org/10.1039/d0nr07042d
- E. Moukheiber, G. De Moor, L. Flandin, C. Bas, Investigation of ionomer structure through its dependence on ion exchange capacity (IEC). J. Membr. Sci. 389, 294–304 (2012). https://doi.org/10.1016/j.memsci.2011.10.041
- Q. Chen, Y. Huang, X. Hu, B. Hu, M. Liu et al., A novel ion-solvating polymer electrolyte based on imidazole-containing polymers for alkaline water electrolysis. J. Membr. Sci. 668, 121186 (2023). https://doi.org/10.1016/j.memsci.2022.121186
- M.R. Kraglund, M. Carmo, G. Schiller, S.A. Ansar, D. Aili et al., Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers. Energy Environ. Sci. 12(11), 3313–3318 (2019). https://doi.org/10.1039/C9EE00832B
- X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance. Electrochim. Acta 153, 492–498 (2015). https://doi.org/10.1016/j.electacta.2014.11.185
- T. Mu, W. Tang, Y. Jin, X. Che, J. Liu et al., Ether-free poly(p-terphenyl-co-acetylpyridine) membranes with different thicknesses for vanadium redox flow batteries. ACS Appl. Energy Mater. 5(9), 11713–11722 (2022). https://doi.org/10.1021/acsaem.2c02216
- G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377(1–2), 1–35 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
- Q. Zhang, Q.-F. Dong, M.-S. Zheng, Z.-W. Tian, The preparation of a novel anion-exchange membrane and its application in all-vanadium redox batteries. J. Membr. Sci. 421, 232–237 (2012). https://doi.org/10.1016/j.memsci.2012.07.024
- L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, Z.H. Zhang, Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries. J. Power Sources 327, 374–383 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.081
- J.-K. Jang, T.-H. Kim, S.J. Yoon, J.Y. Lee, J.-C. Lee et al., Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H2SO4 absorption capability for use in vanadium redox flow batteries. J. Mater. Chem. A 4(37), 14342–14355 (2016). https://doi.org/10.1039/C6TA05080H
- S. Peng, X. Yan, D. Zhang, X. Wu, Y. Luo et al., A H3PO4 preswelling strategy to enhance the proton conductivity of a H2SO4-doped polybenzimidazole membrane for vanadium flow batteries. RSC Adv. 6(28), 23479–23488 (2016). https://doi.org/10.1039/C6RA00831C
- Z. Xia, L. Ying, J. Fang, Y.-Y. Du, W.-M. Zhang et al., Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications. J. Membr. Sci. 525, 229–239 (2017). https://doi.org/10.1016/j.memsci.2016.10.050
References
Z. Li, Y.C. Lu, Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 32(47), 2002132 (2020). https://doi.org/10.1002/adma.202002132
S. Huang, Z. Yuan, M. Salla, X. Wang, H. Zhang et al., A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy Environ. Sci. 16(2), 438–445 (2023). https://doi.org/10.1039/D2EE02402K
J. Ye, J. Liu, C. Zheng, T. Sun, S. Yu et al., Simple acid etched graphene oxide constructing high-performance sandwich structural hybrid membrane for redox flow battery. Sustain. Mater. Technol. 35, e00550 (2023). https://doi.org/10.1016/j.susmat.2022.e00550
E. Zhao, K. Gao, X. Luo, L. Li, J. Zhao et al., Heterostructure VO2@VS2 tailored by one-step hydrothermal synthesis for stable and highly efficient Zn-ion storage. Mater. Futures 3(4), 045101 (2024). https://doi.org/10.1088/2752-5724/ad778d
M. Jacob, K. Wissel, O. Clemens, Recycling of solid-state batteries: challenge and opportunity for a circular economy? Mater. Futures 3(1), 012101 (2024). https://doi.org/10.1088/2752-5724/acfb28
L. Zhi, T. Li, X. Liu, Z. Yuan, X. Li, Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries. Nano Energy 102, 107697 (2022). https://doi.org/10.1016/j.nanoen.2022.107697
Y. Ding, B. Ling, Xu. Xin Zhao, Y.W. Yang et al., Porous zinc metal anodes for aqueous zinc-ion batteries: advances and prospectives. Energy Mater. Devices 2(3), 9370040 (2024). https://doi.org/10.26599/EMD.2024.9370040
Q.-C. Jiang, J. Li, Y.-J. Yang, Y.-J. Ren, L. Dai et al., Ultrafine SnO2 in situ modified graphite felt derived from metal–organic framework as a superior electrode for vanadium redox flow battery. Rare Met. 42(4), 1214–1226 (2023). https://doi.org/10.1007/s12598-022-02228-2
C. Zhang, L. Zhang, Y. Ding, S. Peng, X. Guo et al., Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 15, 324–350 (2018). https://doi.org/10.1016/j.ensm.2018.06.008
J. Girschik, L. Kopietz, M. Joemann, A. Grevé, C. Doetsch, Redox flow batteries: stationary energy storages with potential. Chem. Ing. Tech. 93, 523–533 (2021). https://doi.org/10.1002/cite.202100001
L. Zeng, T.S. Zhao, L. Wei, H.R. Jiang, M.C. Wu, Anion exchange membranes for aqueous acid-based redox flow batteries: current status and challenges. Appl. Energy 233, 622–643 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, The chemistry of redox-flow batteries. Angew. Chem. Int. Ed. 54(34), 9776–9809 (2015). https://doi.org/10.1002/anie.201410823
W. Liu, W. Lu, H. Zhang, X. Li, Aqueous flow batteries: research and development. Chem 25(7), 1649–1664 (2019). https://doi.org/10.1002/chem.201802798
Z. Huang, A. Mu, Research and analysis of performance improvement of vanadium redox flow battery in microgrid: a technology review. Int. J. Energy Res. 45(10), 14170–14193 (2021). https://doi.org/10.1002/er.6716
Q. Jiang, Y. Ren, Y. Yang, H. Liu, L. Wang et al., High-activity and stability graphite felt supported by Fe, N, S co-doped carbon nanofibers derived from bimetal-organic framework for vanadium redox flow battery. Chem. Eng. J. 460, 141751 (2023). https://doi.org/10.1016/j.cej.2023.141751
T. Gao, C. Li, W. Bai, Y. Luo, D. Yu et al., High proton conductivity membrane based on sulfonated polybenzimidazole by doping ethylenediaminetetraacetic acid-modified MOF-808 for vanadium flow battery. ACS Appl. Polym. Mater. 6(11), 6552–6560 (2024). https://doi.org/10.1021/acsapm.4c00845
Q.Y. Zhao, G.Y. Yin, Y.F. Liu, R.R. Tang, X.W. Wu et al., Recent advances in material chemistry for zinc enabled redox flow batteries. Carbon Neutralization 2(1), 90–114 (2023). https://doi.org/10.1002/cnl2.43
M. Yang, Z. Xu, W. Xiang, H. Xu, M. Ding et al., High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Mater. 44, 433–440 (2022). https://doi.org/10.1016/j.ensm.2021.10.043
J. Wu, C. Yuan, T. Li, Z. Yuan, H. Zhang, X. Li, Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane. J. Am. Chem. Soc. 143, 13135–13144 (2021). https://doi.org/10.1021/jacs.1c04317
G.S. Nambafu, A.M. Hollas, S. Zhang, P.S. Rice, D. Boglaienko et al., Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery. Nat. Commun. 15(1), 2566 (2024). https://doi.org/10.1038/s41467-024-45862-3
J.S. Shamie, C. Liu, L.L. Shaw, V.L. Sprenkle, Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions. Sci. Rep. 5, 11215 (2015). https://doi.org/10.1038/srep11215
Z. Li, G. Weng, Q. Zou, G. Cong, Y.-C. Lu, A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016). https://doi.org/10.1016/j.nanoen.2016.09.043
X. Yu, W.A. Yu, A. Manthiram, A mediator-ion nitrobenzene - iodine nonaqueous redox flow battery with asymmetric solvents. Energy Storage Mater. 29, 266–272 (2020). https://doi.org/10.1016/j.ensm.2020.04.023
C. Ye, A. Wang, C. Breakwell, R. Tan, C. Grazia Bezzu et al., Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat. Commun. 13(1), 3184 (2022). https://doi.org/10.1038/s41467-022-30943-y
M. Skyllas-Kazacos, M. Rychcik, R.G. Robins, A.G. Fane, M.A. Green, New all-vanadium redox flow cell. J. Electrochem. Soc. 133(5), 1057–1058 (1986). https://doi.org/10.1149/1.2108706
E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16(2), 85–95 (1985). https://doi.org/10.1016/0378-7753(85)80082-3
Y. Jiang, Z. Liu, Y. Lv, A. Tang, L. Dai et al., Perovskite enables high performance vanadium redox flow battery. Chem. Eng. J. 443, 136341 (2022). https://doi.org/10.1016/j.cej.2022.136341
Y. Jiang, Z. Liu, Y. Ren, A. Tang, L. Dai, L. Wang, S. Liu, Y. Liu, Z. He, Maneuverable b-site cation in perovskite tuning anode reaction kinetics in vanadium redox flow batteries. J. Mater. Sci. Technol. 186, 199–206 (2024). https://doi.org/10.1016/j.jmst.2023.12.005
L. Ye, S. Qi, T. Cheng, Y. Jiang, Z. Feng et al., Vanadium redox flow battery: review and perspective of 3D electrodes. ACS Nano 18(29), 18852–18869 (2024). https://doi.org/10.1021/acsnano.4c06675
A. Fetyan, M.O. Bamgbopa, A. Andisetiawan, A. Alhammadi, R.A. Susantyoko, Evaluation of asymmetric flow rates for better performance vanadium redox flow battery. Batter. Supercaps 6(11), e202300301 (2023). https://doi.org/10.1002/batt.202300301
Z. Wang, Z. Guo, J. Ren, Y. Li, B. Liu et al., An electrolyte with elevated average valence for suppressing the capacity decay of vanadium redox flow batteries. ACS Cent. Sci. 9(1), 56–63 (2022). https://doi.org/10.1021/acscentsci.2c01112
K.H. Rho, S.J. Yoon, J. Ryu, S.M. Cho, M.S. Kim et al., Study on thermal behavior of vanadium redox flow battery at low temperature to prevent precipitation. J. Energy Storage 49, 104110 (2022). https://doi.org/10.1016/j.est.2022.104110
Y. Wang, A. Mu, W. Wang, B. Yang, J. Wang, A review of capacity decay studies of all-vanadium redox flow batteries: mechanism and state estimation. ChemSusChem 17(14), e202301787 (2024). https://doi.org/10.1002/cssc.202301787
Q. Dai, Z. Zhao, M. Shi, C. Deng, H. Zhang et al., Ion conductive membranes for flow batteries: design and ions transport mechanism. J. Membr. Sci. 632, 119355 (2021). https://doi.org/10.1016/j.memsci.2021.119355
J. Ye, C. Zheng, J. Liu, T. Sun, S. Yu et al., In situ grown tungsten trioxide nanops on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery. Adv. Funct. Mater. 32(8), 2109427 (2022). https://doi.org/10.1002/adfm.202109427
Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang et al., Recent development of membrane for vanadium redox flow battery applications: a review. Appl. Energy 238, 202–224 (2019). https://doi.org/10.1016/j.apenergy.2018.12.087
J. Wu, Q. Dai, H. Zhang, X. Li, Recent development in composite membranes for flow batteries. ChemSusChem 13(15), 3805–3819 (2020). https://doi.org/10.1002/cssc.202000633
J. Ye, S. Yu, C. Zheng, T. Sun, J. Liu et al., Advanced hybrid membrane for vanadium redox flow battery created by polytetrafluoroethylene layer and functionalized silicon carbide nanowires. Chem. Eng. J. 427, 131413 (2022). https://doi.org/10.1016/j.cej.2021.131413
L. Hu, L. Gao, M. Di, X. Jiang, X. Wu et al., Ion/Molecule-selective transport nanochannels of membranes for redox flow batteries. Energy Storage Mater. 34, 648–668 (2021). https://doi.org/10.1016/j.ensm.2020.10.008
J. Ye, Y. Cheng, L. Sun, M. Ding, C. Wu et al., A green speek/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J. Membr. Sci. 572, 110–118 (2019). https://doi.org/10.1016/j.memsci.2018.11.009
S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
L. Qiao, H. Zhang, W. Lu, C. Xiao, Q. Fu et al., Advanced porous membranes with slit-like selective layer for flow battery. Nano Energy 54, 73–81 (2018). https://doi.org/10.1016/j.nanoen.2018.10.003
R. Yang, Z. Xu, S. Yang, I. Michos, L.-F. Li et al., Nonionic zeolite membrane as potential ion separator in redox-flow battery. J. Membr. Sci. 450, 12–17 (2014). https://doi.org/10.1016/j.memsci.2013.08.048
Z. Liu, R. Li, J. Chen, X. Wu, K. Zhang et al., Theoretical investigation into suitable pore sizes of membranes for vanadium redox flow batteries. ChemElectroChem 4, 2184–2189 (2017). https://doi.org/10.1002/celc.201700244
K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7(1), 75–83 (2008). https://doi.org/10.1038/nmat2074
J. Ye, L. Xia, H. Li, F.P.G. de Arquer, H. Wang, The critical analysis of membranes toward sustainable and efficient vanadium redox flow batteries. Adv. Mater. 36(28), 2402090 (2024). https://doi.org/10.1002/adma.202402090
W. Lu, D. Shi, H. Zhang, X. Li, Advanced poly(vinyl pyrrolidone) decorated chlorinated polyvinyl chloride membrane with low area resistance for vanadium flow battery. J. Membr. Sci. 620, 118947 (2021). https://doi.org/10.1016/j.memsci.2020.118947
X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, L. Wei, Modeling of ion transport through a porous separator in vanadium redox flow batteries. J. Power Sources 327, 67–76 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.046
C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo, Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sources 195(3), 890–897 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.041
Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei et al., Capacity decay and remediation of nafion-based all-vanadium redox flow batteries. ChemSusChem 6(2), 268–274 (2013). https://doi.org/10.1002/cssc.201200730
A. Tang, J. Bao, M. Skyllas-Kazacos, Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J. Power Sources 196(24), 10737–10747 (2011). https://doi.org/10.1016/j.jpowsour.2011.09.003
D. Chen, M.A. Hickner, E. Agar, E.C. Kumbur, Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries. Electrochem. Commun. 26, 37–40 (2013). https://doi.org/10.1016/j.elecom.2012.10.007
C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim et al., A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sustain. Energy Rev. 69, 263–274 (2017). https://doi.org/10.1016/j.rser.2016.11.188
F. Sepehr, S.J. Paddison, The solvation structure and thermodynamics of aqueous vanadium cations. Chem. Phys. Lett. 585, 53–58 (2013). https://doi.org/10.1016/j.cplett.2013.08.089
J. Sun, X. Li, X. Xi, Q. Lai, T. Liu et al., The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium. J. Power Sources 271, 1–7 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.111
Z. Tang, R. Svoboda, J.S. Lawton, D.S. Aaron, A.B. Papandrew et al., Composition and conductivity of membranes equilibrated with solutions of sulfuric acid and vanadyl sulfate. J. Electrochem. Soc. 160(9), F1040–F1047 (2013). https://doi.org/10.1149/2.083309jes
Y. Yang, Q. Wang, S. Xiong, Z. Song, Research progress on optimized membranes for vanadium redox flow batteries. Inorg. Chem. Front. 11(14), 4049–4079 (2024). https://doi.org/10.1039/d4qi00520a
M.J. Jung, J. Parrondo, C.G. Arges, V. Ramani, Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery. J. Mater. Chem. A 1(35), 10458–10464 (2013). https://doi.org/10.1039/C3TA11459G
Y. Zhang, X. Zhou, R. Xue, Q. Yu, F. Jiang et al., Proton exchange membranes with ultra-low vanadium ions permeability improved by sulfated zirconia for all vanadium redox flow battery. Int. J. Hydrog. Energy 44(12), 5997–6006 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.043
F. Wang, F. Ai, Y.-C. Lu, Ion selective membrane for redox flow battery, What’s next? Next Energy 1(3), 100053 (2023). https://doi.org/10.1016/j.nxener.2023.100053
Z. Yuan, H. Zhang, X. Li, Ion conducting membranes for aqueous flow battery systems. Chem. Commun. 54(55), 7570–7588 (2018). https://doi.org/10.1039/c8cc03058h
B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, A comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 510, 18–26 (2016). https://doi.org/10.1016/j.memsci.2016.03.007
J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources 166(2), 531–536 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu et al., Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J. Membr. Sci. 341, 149–154 (2009). https://doi.org/10.1016/j.memsci.2009.05.051
Q. Chen, Y.-Y. Du, K.-M. Li, H.-F. Xiao, W. Wang et al., Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries. Mater. Des. 113, 149–156 (2017). https://doi.org/10.1016/j.matdes.2016.10.019
J. Ye, D. Yuan, M. Ding, Y. Long, T. Long et al., A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J. Power Sources 482, 229023 (2021). https://doi.org/10.1016/j.jpowsour.2020.229023
Q. Luo, H. Zhang, J. Chen, D. You, C. Sun et al., Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. J. Membr. Sci. 325(2), 553–558 (2008). https://doi.org/10.1016/j.memsci.2008.08.025
X. Teng, J. Dai, J. Su, Y. Zhu, H. Liu et al., A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application. J. Power Sources 240, 131–139 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.177
X. Yang, H. Zhu, F. Jiang, X. Zhou, Notably enhanced proton conductivity by thermally-induced phase-separation transition of nafion/ poly(vinylidene fluoride) blend membranes. J. Power Sources 473, 228586 (2020). https://doi.org/10.1016/j.jpowsour.2020.228586
H.G. Kim, R. Kim, S. Kim, C. Choi, B. Kim et al., Propylene carbonate-derived size modulation of water cluster in pore-filled Nafion/polypropylene composite membrane for the use in vanadium redox flow batteries. J. Ind. Eng. Chem. 60, 401–406 (2018). https://doi.org/10.1016/j.jiec.2017.11.027
Z. Mai, H. Zhang, X. Li, S. Xiao, H. Zhang, Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. J. Power Sources 196(13), 5737–5741 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.048
S. Winardi, S.C. Raghu, M.O. Oo, Q. Yan, N. Wai et al., Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J. Membr. Sci. 450, 313–322 (2014). https://doi.org/10.1016/j.memsci.2013.09.024
Z. Mai, H. Zhang, X. Li, C. Bi, H. Dai, Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. J. Power Sources 196(1), 482–487 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.028
D. Chen, S. Kim, L. Li, G. Yang, M.A. Hickner, Stable fluorinated sulfonated poly(arylene ether) membranes for vanadium redox flow batteries. RSC Adv. 2(21), 8087 (2012). https://doi.org/10.1039/c2ra20834b
M.A. Aziz, S. Shanmugam, Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. J. Mater. Chem. A 5(32), 16663–16671 (2017). https://doi.org/10.1039/C7TA05155G
N. Wang, J. Yu, Z. Zhou, D. Fang, S. Liu et al., SPPEK/TPA composite membrane as a separator of vanadium redox flow battery. J. Membr. Sci. 437, 114–121 (2013). https://doi.org/10.1016/j.memsci.2013.02.053
X. Huang, Y. Pu, Y. Zhou, Y. Zhang, H. Zhang, In-situ and ex-situ degradation of sulfonated polyimide membrane for vanadium redox flow battery application. J. Membr. Sci. 526, 281–292 (2017). https://doi.org/10.1016/j.memsci.2016.09.053
D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by Sol‐Gel method: synthesis and application. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/5102014
F. Pena-Pereira, R.M.B.O. Duarte, A.C. Duarte, Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. Trac Trends Anal. Chem. 40, 90–105 (2012). https://doi.org/10.1016/j.trac.2012.07.015
A.L. Ahmad, N.F.C. Lah, N.A. Norzli, W.Y. Pang, A contrastive study of self-assembly and physical blending mechanism of TiO2 blended polyethersulfone membranes for enhanced humic acid removal and alleviation of membrane fouling. Membranes 12(2), 162 (2022). https://doi.org/10.3390/membranes12020162
P.K. Leung, Q. Xu, T.S. Zhao, L. Zeng, C. Zhang, Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries. Electrochim. Acta 105, 584–592 (2013). https://doi.org/10.1016/j.electacta.2013.04.155
G. Wang, F. Wang, A. Li, M. Zhang, J. Zhang et al., Sulfonated poly(ether ether ketone)/s–TiO2 composite membrane for a vanadium redox flow battery. J. Appl. Polym. Sci. 137(26), 48830 (2020). https://doi.org/10.1002/app.48830
L. Zhang, Y. Jiang, H. Wang, P. Qian, J. Sheng et al., Sulfonated poly (ether ketone)/sulfonated titanium dioxide hybrid membrane with high selectivity and good stability for vanadium redox flow battery. J. Energy Storage 45, 103705 (2022). https://doi.org/10.1016/j.est.2021.103705
S.I. Hossain, M.A. Aziz, D. Han, P. Selvam, S. Shanmugam, Fabrication of SPAEK–cerium zirconium oxide nanotube composite membrane with outstanding performance and durability for vanadium redox flow batteries. J. Mater. Chem. A 6(41), 20205–20213 (2018). https://doi.org/10.1039/C8TA08349E
J. Ye, X. Zhao, Y. Ma, J. Su, C. Xiang et al., Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries. Adv. Energy Mater. 10(22), 1904041 (2020). https://doi.org/10.1002/aenm.201904041
A. Ali, S.S. Rahimian Koloor, A.H. Alshehri, A. Arockiarajan, Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures: a review. J. Mater. Res. Technol. 24, 6495–6521 (2023). https://doi.org/10.1016/j.jmrt.2023.04.072
Y. Pu, S. Zhu, P. Wang, Y. Zhou, P. Yang et al., Novel branched sulfonated polyimide/molybdenum disulfide nanosheets composite membrane for vanadium redox flow battery application. Appl. Surf. Sci. 448, 186–202 (2018). https://doi.org/10.1016/j.apsusc.2018.04.090
Y. Zhang, Y. Pu, P. Yang, H. Yang, S. Xuan et al., Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application. J. Mater. Sci. 53(20), 14506–14524 (2018). https://doi.org/10.1007/s10853-018-2620-x
J. Li, Q. Zhang, S. Peng, D. Zhang, X. Yan et al., Electrospinning fiberization of carbon nanotube hybrid sulfonated poly (ether ether ketone) ion conductive membranes for a vanadium redox flow battery. J. Membr. Sci. 583, 93–102 (2019). https://doi.org/10.1016/j.memsci.2019.04.043
R. Sigwadi, M.S. Dhlamini, T. Mokrani, F. Nemavhola, Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon 5(7), e02112 (2019). https://doi.org/10.1016/j.heliyon.2019.e02112
P. Han, H. Wang, Z. Liu, X. Chen, W. Ma et al., Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon 49(2), 693–700 (2011). https://doi.org/10.1016/j.carbon.2010.10.022
K.J. Lee, Y.H. Chu, Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system. Vacuum 107, 269–276 (2014). https://doi.org/10.1016/j.vacuum.2014.02.023
H. Lin, J. Wu, F. Zhou, X. Zhao, P. Lu et al., Graphitic carbon nitride-based photocatalysts in the applications of environmental catalysis. J. Environ. Sci. 124, 570–590 (2023). https://doi.org/10.1016/j.jes.2021.11.017
R. Niu, L. Kong, L. Zheng, H. Wang, H. Shi, Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery. J. Membr. Sci. 525, 220–228 (2017). https://doi.org/10.1016/j.memsci.2016.10.049
Y. Quan, G. Wang, A. Li, X. Wei, F. Li et al., Novel sulfonated poly(ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications. RSC Adv. 9(7), 3838–3846 (2019). https://doi.org/10.1039/c8ra09695c
X. Song, L. Ding, L. Wang, M. He, X. Han, Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries. Electrochim. Acta 295, 1034–1043 (2019). https://doi.org/10.1016/j.electacta.2018.11.123
S. Liu, L. Wang, Y. Ding, B. Liu, X. Han et al., Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochim. Acta 130, 90–96 (2014). https://doi.org/10.1016/j.electacta.2014.02.144
D. Chen, X. Chen, L. Ding, X. Li, Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application. J. Membr. Sci. 553, 25–31 (2018). https://doi.org/10.1016/j.memsci.2018.02.039
S. Liu, L. Wang, D. Li, B. Liu, J. Wang et al., Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/quaternized poly(ether imide) for vanadium redox flow battery applications. J. Mater. Chem. A 3(34), 17590–17597 (2015). https://doi.org/10.1039/C5TA04351D
Z. Li, W. Dai, L. Yu, L. Liu, J. Xi et al., Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application. ACS Appl. Mater. Interf. 6(21), 18885–18893 (2014). https://doi.org/10.1021/am5047125
J. Ren, Y. Dong, J. Dai, H. Hu, Y. Zhu et al., A novel chloromethylated/quaternized poly(sulfone)/poly(vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery. J. Membr. Sci. 544, 186–194 (2017). https://doi.org/10.1016/j.memsci.2017.09.015
X. Liao, Y. Gong, Y. Liu, D. Zuo, H. Zhang, Blend membranes of quaternized poly(vinylbenzyl chloride-co-styrene) and quaternized polysulfone for anion-exchange membrane fuel cells. RSC Adv. 5(120), 99347–99355 (2015). https://doi.org/10.1039/C5RA17839H
T. Sadhasivam, K. Dhanabalan, P.T. Thong, J.Y. Kim, S.H. Roh, H.Y. Jung, Development of perfluorosulfonic acid polymer-based hybrid composite membrane with alkoxysilane functionalized polymer for vanadium redox flow battery. Int. J. Energy Res. 44(3), 1999–2010 (2020). https://doi.org/10.1002/er.5053
S.-L. Huang, M.-L. Chen, Y.-S. Lin, Chitosan–silica anion exchange membrane for the vanadium redox flow energy storage battery applications. React. Funct. Polym. 119, 1–8 (2017). https://doi.org/10.1016/j.reactfunctpolym.2017.07.011
A. Mukhopadhyay, Z. Cheng, A. Natan, Y. Ma, Y. Yang et al., Stable and highly ion-selective membrane made from cellulose nanocrystals for aqueous redox flow batteries. Nano Lett. 19(12), 8979–8989 (2019). https://doi.org/10.1021/acs.nanolett.9b03964
Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w
J. Long, H. Yang, Y. Wang, W. Xu, J. Liu et al., Branched sulfonated polyimide/sulfonated methylcellulose composite membranes with remarkable proton conductivity and selectivity for vanadium redox flow batteries. ChemElectroChem 7(4), 937–945 (2020). https://doi.org/10.1002/celc.201901887
Z. Ding, L. Zhong, X. Wang, L. Zhang, Effect of lignin–cellulose nanofibrils on the hydrophilicity and mechanical properties of polyethersulfone ultrafiltration membranes. High Perform. Polym. 28(10), 1192–1200 (2016). https://doi.org/10.1177/0954008315621611
O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558), 703–706 (1995). https://doi.org/10.1038/378703a0
S. Liu, X. Sang, L. Wang, J. Zhang, J. Song et al., Incorporation of metal-organic framework in polymer membrane enhances vanadium flow battery performance. Electrochim. Acta 257, 243–249 (2017). https://doi.org/10.1016/j.electacta.2017.10.084
S. Zhai, X. Jia, Z. Lu, Y. Ai, X. Liu et al., Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. J. Membr. Sci. 662, 121003 (2022). https://doi.org/10.1016/j.memsci.2022.121003
X.-B. Yang, L. Zhao, K. Goh, X. Sui, L.-H. Meng et al., Ultra-high ion selectivity of a modified nafion composite membrane for vanadium redox flow battery by incorporation of phosphotungstic acid coupled UiO-66-NH2. ChemistrySelect 4(15), 4633–4641 (2019). https://doi.org/10.1002/slct.201900888
S. Zhai, Z. Lu, Y. Ai, X. Liu, Q. Wang et al., Highly selective proton exchange membranes for vanadium redox flow batteries enabled by the incorporation of water-insoluble phosphotungstic acid-metal organic framework nanohybrids. J. Membr. Sci. 645, 120214 (2022). https://doi.org/10.1016/j.memsci.2021.120214
T. Mohammadi, M.S. Kazacos, Modification of anion-exchange membranes for vanadium redox flow battery applications. J. Power Sources 63(2), 179–186 (1996). https://doi.org/10.1016/S0378-7753(96)02463-9
J. Qiu, J. Zhang, J. Chen, J. Peng, L. Xu et al., Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into pvdf film for vanadium redox flow battery applications. J. Membr. Sci. 334, 9–15 (2009). https://doi.org/10.1016/j.memsci.2009.02.009
J. Ma, Y. Wang, J. Peng, J. Qiu, L. Xu et al., Designing a new process to prepare amphoteric ion exchange membrane with well-distributed grafted chains for vanadium redox flow battery. J. Membr. Sci. 419, 1–8 (2012). https://doi.org/10.1016/j.memsci.2012.04.034
J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen et al., Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J. Mater. Chem. 18(11), 1232–1238 (2008). https://doi.org/10.1039/B718526J
X. Zhang, H. Chen, H. Zhang, Layer-by-layer assembly: from conventional to unconventional methods. Chem. Commun. 14, 1395–1405 (2007). https://doi.org/10.1039/b615590a
Y. Wang, S. Wang, M. Xiao, S. Song, D. Han et al., Amphoteric ion exchange membrane synthesized by direct polymerization for vanadium redox flow battery application. Int. J. Hydrog. Energy 39(28), 16123–16131 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.049
X. Yan, C. Zhang, Y. Dai, W. Zheng, X. Ruan et al., A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery. J. Membr. Sci. 544, 98–107 (2017). https://doi.org/10.1016/j.memsci.2017.09.025
Y. Li, X. Lin, L. Wu, C. Jiang, M.M. Hossain et al., Quaternized membranes bearing zwitterionic groups for vanadium redox flow battery through a green route. J. Membr. Sci. 483, 60–69 (2015). https://doi.org/10.1016/j.memsci.2015.02.014
J.B. Liao, M.Z. Lu, Y.Q. Chu, J.L. Wang, Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries. J. Power Sources 282, 241–247 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.025
F.J. Oldenburg, E. Nilsson, T.J. Schmidt, L. Gubler, Tackling capacity fading in vanadium redox flow batteries with amphoteric polybenzimidazole/nafion bilayer membranes. ChemSusChem 12(12), 2620–2627 (2019). https://doi.org/10.1002/cssc.201900546
R. Xue, F. Jiang, F. Wang, X. Zhou, Towards cost-effective proton-exchange membranes for redox flow batteries: a facile and innovative method. J. Power Sources 449, 227475 (2020). https://doi.org/10.1016/j.jpowsour.2019.227475
W. Lu, H. Zhang, X. Li, Membranes fabricated by solvent treatment for flow battery: effects of initial structures and intrinsic properties. J. Membr. Sci. 577, 212–218 (2019). https://doi.org/10.1016/j.memsci.2019.02.011
L. Ding, Y. Wang, L. Wang, X. Han, Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery. J. Membr. Sci. 642, 119934 (2022). https://doi.org/10.1016/j.memsci.2021.119934
P. Arora, Z.J. Zhang, Battery separators. Chem. Rev. 104(10), 4419–4462 (2004). https://doi.org/10.1021/cr020738u
J. Cao, Z. Yuan, X. Li, W. Xu, H. Zhang, Hydrophilic poly(vinylidene fluoride) porous membrane with well connected ion transport networks for vanadium flow battery. J. Power Sources 298, 228–235 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.067
J. Qiu, L. Zhao, M. Zhai, J. Ni, H. Zhou et al., Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. J. Power Sources 177(2), 617–623 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.089
Y. Zhou, P. Qiu, Y. Ma, X. Zhang, D. Xu et al., BaTiO3/PVDF-g-PSSA composite proton exchange membranes for vanadium redox flow battery. Ceram. Int. 41, S758–S762 (2015). https://doi.org/10.1016/j.ceramint.2015.03.131
B. Tian, X.-Y. Wang, L.-N. Zhang, F.-N. Shi, Y. Zhang et al., Preparation of PVDF anionic exchange membrane by chemical grafting of GMA onto PVDF macromolecule. Solid State Ion. 293, 56–63 (2016). https://doi.org/10.1016/j.ssi.2016.06.006
W. Lu, D. Shi, H. Zhang, X. Li, Highly selective core-shell structural membrane with cage-shaped pores for flow battery. Energy Storage Mater. 17, 325–333 (2019). https://doi.org/10.1016/j.ensm.2018.07.003
X. Xi, C. Ding, H. Zhang, X. Li, Y. Cheng et al., Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application. J. Power Sources 274, 1126–1134 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.160
J. Chen, L. Wang, L. Wang, Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66). ACS Appl. Mater. Interfaces 12, 41350–41358 (2020). https://doi.org/10.1021/acsami.0c10527
Z. Yuan, Y. Duan, H. Zhang, X. Li, H. Zhang et al., Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ. Sci. 9(2), 441–447 (2016). https://doi.org/10.1039/C5EE02896E
Y. Li, H. Zhang, X. Li, H. Zhang, W. Wei, Porous poly (ether sulfone) membranes with tunable morphology: fabrication and their application for vanadium flow battery. J. Power Sources 233, 202–208 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.088
T. Luo, O. David, Y. Gendel, M. Wessling, Porous poly(benzimidazole) membrane for all vanadium redox flow battery. J. Power Sources 312, 45–54 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.042
C. Wu, S. Lu, H. Wang, X. Xu, S. Peng et al., A novel polysulfone–polyvinylpyrrolidone membrane with superior proton-to-vanadium ion selectivity for vanadium redox flow batteries. J. Mater. Chem. A 4(4), 1174–1179 (2016). https://doi.org/10.1039/C5TA08593D
C. Wu, H. Bai, Y. Lv, Z. Lv, Y. Xiang et al., Enhanced membrane ion selectivity by incorporating graphene oxide nanosheet for vanadium redox flow battery application. Electrochim. Acta 248, 454–461 (2017). https://doi.org/10.1016/j.electacta.2017.07.122
V.E. Sizov, M.S. Kondratenko, M.O. Gallyamov, K.J. Stevenson, Advanced porous polybenzimidazole membranes for vanadium redox batteries synthesized via a supercritical phase-inversion method. J. Supercrit. Fluids 137, 111–117 (2018). https://doi.org/10.1016/j.supflu.2018.03.018
T. Luo, B. Dreusicke, M. Wessling, Tuning the ion selectivity of porous poly(2, 5-benzimidazole) membranes by phase separation for all vanadium redox flow batteries. J. Membr. Sci. 556, 164–177 (2018). https://doi.org/10.1016/j.memsci.2018.03.086
P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37(2), 365–405 (2008). https://doi.org/10.1039/b610848m
S. Costeux, CO2-blown nanocellular foams. J. Appl. Polym. Sci. 131(23), 41293 (2014). https://doi.org/10.1002/app.41293
J. Dai, Y. Dong, P. Gao, J. Ren, C. Yu et al., A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency. Polymer 140, 233–239 (2018). https://doi.org/10.1016/j.polymer.2018.02.051
Z. Yuan, X. Zhu, M. Li, W. Lu, X. Li et al., A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. Int. Ed. 55(9), 3058–3062 (2016). https://doi.org/10.1002/anie.201510849
T. Ji, C. Zhang, X. Xiao, Y. Wang, D. Cao et al., High ion conductive and selective membrane achieved through dual ion conducting mechanisms. Small 19(14), e2206807 (2023). https://doi.org/10.1002/smll.202206807
H. Mögelin, G. Yao, H. Zhong, A.R. dos Santos, A. Barascu et al., Porous glass membranes for vanadium redox-flow battery application: effect of pore size on the performance. J. Power Sources 377, 18–25 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.001
Y. Xia, Y. Wang, H. Cao, S. Lin, Y. Xia et al., Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J. Membr. Sci. 653, 120517 (2022). https://doi.org/10.1016/j.memsci.2022.120517
J. Chu, Q. Liu, W. Ji, J. Li, X. Ma, Novel microporous sulfonated polyimide membranes with high energy efficiency under low ion exchange capacity for all vanadium flow battery. Electrochim. Acta 446, 142080 (2023). https://doi.org/10.1016/j.electacta.2023.142080
M.Z. Ahmad, R. Castro-Muñoz, P.M. Budd, Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale 12(46), 23333–23370 (2020). https://doi.org/10.1039/d0nr07042d
E. Moukheiber, G. De Moor, L. Flandin, C. Bas, Investigation of ionomer structure through its dependence on ion exchange capacity (IEC). J. Membr. Sci. 389, 294–304 (2012). https://doi.org/10.1016/j.memsci.2011.10.041
Q. Chen, Y. Huang, X. Hu, B. Hu, M. Liu et al., A novel ion-solvating polymer electrolyte based on imidazole-containing polymers for alkaline water electrolysis. J. Membr. Sci. 668, 121186 (2023). https://doi.org/10.1016/j.memsci.2022.121186
M.R. Kraglund, M. Carmo, G. Schiller, S.A. Ansar, D. Aili et al., Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers. Energy Environ. Sci. 12(11), 3313–3318 (2019). https://doi.org/10.1039/C9EE00832B
X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance. Electrochim. Acta 153, 492–498 (2015). https://doi.org/10.1016/j.electacta.2014.11.185
T. Mu, W. Tang, Y. Jin, X. Che, J. Liu et al., Ether-free poly(p-terphenyl-co-acetylpyridine) membranes with different thicknesses for vanadium redox flow batteries. ACS Appl. Energy Mater. 5(9), 11713–11722 (2022). https://doi.org/10.1021/acsaem.2c02216
G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377(1–2), 1–35 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
Q. Zhang, Q.-F. Dong, M.-S. Zheng, Z.-W. Tian, The preparation of a novel anion-exchange membrane and its application in all-vanadium redox batteries. J. Membr. Sci. 421, 232–237 (2012). https://doi.org/10.1016/j.memsci.2012.07.024
L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, Z.H. Zhang, Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries. J. Power Sources 327, 374–383 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.081
J.-K. Jang, T.-H. Kim, S.J. Yoon, J.Y. Lee, J.-C. Lee et al., Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H2SO4 absorption capability for use in vanadium redox flow batteries. J. Mater. Chem. A 4(37), 14342–14355 (2016). https://doi.org/10.1039/C6TA05080H
S. Peng, X. Yan, D. Zhang, X. Wu, Y. Luo et al., A H3PO4 preswelling strategy to enhance the proton conductivity of a H2SO4-doped polybenzimidazole membrane for vanadium flow batteries. RSC Adv. 6(28), 23479–23488 (2016). https://doi.org/10.1039/C6RA00831C
Z. Xia, L. Ying, J. Fang, Y.-Y. Du, W.-M. Zhang et al., Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications. J. Membr. Sci. 525, 229–239 (2017). https://doi.org/10.1016/j.memsci.2016.10.050