Nanosized Anatase TiO2 with Exposed (001) Facet for High-Capacity Mg2+ Ion Storage in Magnesium Ion Batteries
Corresponding Author: Fusheng Pan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 17
Abstract
Micro-sized anatase TiO2 displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg2+ in anatase TiO2 lattice. Herein, we report that nanosized anatase TiO2 exposed (001) facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg2+ ion storage. First-principles calculations reveal that the diffusion energy barrier of Mg2+ on the (001) facet is significantly lower than those in the bulk phase and on (100) facet, and the adsorption energy of Mg2+ on the (001) facet is also considerably lower than that on (100) facet, which guarantees superior interfacial Mg2+ storage of (001) facet. Moreover, anatase TiO2 exposed (001) facet displays a significantly higher capacity of 312.9 mAh g−1 in Mg–Li dual-salt electrolyte compared to 234.3 mAh g−1 in Li salt electrolyte. The adsorption energies of Mg2+ on (001) facet are much lower than the adsorption energies of Li+ on (001) facet, implying that the Mg2+ ion interfacial storage is more favorable. These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions. This work offers valuable guidance for the rational design of high-capacity storage systems.
Highlights:
1 Nanosized anatase TiO2 exposed (001) facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg2+ ion storage.
2 Anatase TiO2 exposed (001) facet displays a significantly higher capacity of 312.9 mAh g−1 in Mg–Li dual-salt electrolyte.
3 The adsorption energies of Mg2+ on (001) facet are much lower than the adsorption energies of Li+ on (001) facet, implying that the Mg2+ ion interfacial storage is more favorable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-G. Guo, J.-S. Hu, L.-J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008). https://doi.org/10.1002/adma.200800627
- S.-K. Jung, I. Hwang, D. Chang, K.-Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
- J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4(1), 56–72 (2011). https://doi.org/10.1039/C0EE00281J
- M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
- J. Xiao, H. Zhan, X. Wang, Z.Q. Xu, Z. Xiong et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15(8), 683–689 (2020). https://doi.org/10.1038/s41565-020-0704-7
- R. Jain, A.S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani et al., Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 7(9), 736–746 (2022). https://doi.org/10.1038/s41578-022-00454-9
- Y. Zhao, L. Peng, B. Liu, G. Yu, Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett. 14(5), 2849–2853 (2014). https://doi.org/10.1021/nl5008568
- R. Malik, D. Burch, M. Bazant, G. Ceder, P size dependence of the ionic diffusivity. Nano Lett. 10(10), 4123–4127 (2010). https://doi.org/10.1021/nl1023595
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2007). https://doi.org/10.1038/nnano.2007.411
- Y. Zhao, X. Zhu, Q. Zhang, L. Gu, Z. Shi et al., High-Na-content birnessite via P’3-stacking with tunable active facets for advanced aqueous sodium-ion batteries. ACS Nano 18(47), 32556–32568 (2024). https://doi.org/10.1021/acsnano.4c09448
- F. Lin, I.M. Markus, D. Nordlund, T.-C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
- B. Li, P. Gu, G. Zhang, Y. Lu, K. Huang et al., Ultrathin nanosheet assembled Sn0.91Co0.19S2 nanocages with exposed (100) facets for high-performance lithium-ion batteries. Small 14(5), 1702184 (2018). https://doi.org/10.1002/smll.201702184
- J.M. Feckl, K. Fominykh, M. Döblinger, D. Fattakhova-Rohlfing, T. Bein, Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem. Int. Ed. 51(30), 7459–7463 (2012). https://doi.org/10.1002/anie.201201463
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
- L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen et al., Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4(2), 269–284 (2011). https://doi.org/10.1039/c0ee00029a
- N. Wu, Z.-Z. Yang, H.-R. Yao, Y.-X. Yin, L. Gu et al., Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium–magnesium co-intercalation. Angew. Chem. Int. Ed. 54(19), 5757–5761 (2015). https://doi.org/10.1002/anie.201501005
- Z. Tai, C.M. Subramaniyam, S.-L. Chou, L. Chen, H.-K. Liu et al., Few atomic layered lithium cathode materials to achieve ultrahigh rate capability in lithium-ion batteries. Adv. Mater. 29(34), 1700605 (2017). https://doi.org/10.1002/adma.201700605
- L. Xue, S.V. Savilov, V.V. Lunin, H. Xia, Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv. Funct. Mater. 28(7), 1705836 (2018). https://doi.org/10.1002/adfm.201705836
- J. Xu, Y. Hong, S. Dou, J. Wu, J. Zhang et al., Ultrafast synthesis of oxygen vacancy-rich MgFeSiO4 cathode to boost diffusion kinetics for rechargeable magnesium-ion batteries. Nano Lett. 25(2), 730–739 (2025). https://doi.org/10.1021/acs.nanolett.4c04908
- W. Ren, M.S. Ng, Y. Zhang, A.E. Lakraychi, Y. Liang et al., Fluorine-free ion-selective membrane with enhanced Mg2+ transport for Mg-organic batteries. ACS Nano 19(5), 5781–5788 (2025). https://doi.org/10.1021/acsnano.4c17740
- G. Li, Z. Yao, C. Li, In-situ multi-scale structural engineering of cathode and electrolyte for high-rate and long-life Mg metal batteries. J. Energy Chem. 105, 44–53 (2025). https://doi.org/10.1016/j.jechem.2025.01.034
- F. Liu, T. Wang, X. Liu, L.-Z. Fan, Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 11(2), 2000787 (2021). https://doi.org/10.1002/aenm.202000787
- D. Wang, Z. Zhang, Y. Hao, H. Jia, X. Shen et al., Challenges and progress in rechargeable magnesium-ion batteries: materials, interfaces, and devices. Adv. Funct. Mater. 34(51), 2410406 (2024). https://doi.org/10.1002/adfm.202410406
- Z. Fan, R. Li, X. Zhang, W. Zhao, Z. Pan et al., Defect engineering: can it mitigate strong coulomb effect of Mg2+ in cathode materials for rechargeable magnesium batteries? Nano-Micro Lett. 17(1), 4 (2024). https://doi.org/10.1007/s40820-024-01495-1
- B. Zhang, J. Yue, D. Wang, H. Jia, G. Huang et al., Alloy alleviating galvanic corrosion enables uniform Mg deposition with long cycle life. ACS Energy Lett. 9(4), 1771–1776 (2024). https://doi.org/10.1021/acsenergylett.4c00363
- Y. Han, G. Li, Z. Hu, F. Wang, J. Chu et al., High-performance Mg–organic batteries based on hybrid MgCl2–LiCl/THF electrolytes. Energy Storage Mater. 46, 300–312 (2022). https://doi.org/10.1016/j.ensm.2022.01.022
- J. Chen, H. Lan, S. Wang, X. Liu, Q. Zhu et al., Realizing an energy-dense potassium metal battery at-40 ℃ via an integrated anode-free and dual-ion strategy. J. Am. Chem. Soc. 147(3), 2393–2402 (2025). https://doi.org/10.1021/jacs.4c12126
- Y. Liu, A. Xu, J. Wang, F. Jiang, H. Pang et al., Amorphous MoS3 anchored within hollow carbon as a cathode material for magnesium-ion batteries. ACS Nano 18(48), 33197–33209 (2024). https://doi.org/10.1021/acsnano.4c12188
- E. Sheha, M.H. Makled, W.M. Nouman, A. Bassyouni, S. Yaghmour et al., Vanadium oxide/graphene nanoplatelet as a cathode material for Mg-ion battery. Graphene 5(4), 178–188 (2016). https://doi.org/10.4236/graphene.2016.54015
- L. Wang, P.E. Vullum, K. Asheim, X. Wang, A.M. Svensson et al., High capacity Mg batteries based on surface-controlled electrochemical reactions. Nano Energy 48, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.03.061
- X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131(9), 3152–3153 (2009). https://doi.org/10.1021/ja8092373
- Q. He, B. Yu, Z. Li, Y. Zhao, Density functional theory for battery materials. Energy Environ. Mater. 2(4), 264–279 (2019). https://doi.org/10.1002/eem2.12056
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter 48(7), 4978 (1993). https://doi.org/10.1103/physrevb.48.4978.2
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
- G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- A. Roy, M. Sotoudeh, S. Dinda, Y. Tang, C. Kübel et al., Improving rechargeable magnesium batteries through dual cation co-intercalation strategy. Nat. Commun. 15(1), 492 (2024). https://doi.org/10.1038/s41467-023-44495-2
- Y. Du, Y. Chen, S. Tan, J. Chen, X. Huang et al., Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping. Energy Storage Mater. 62, 102939 (2023). https://doi.org/10.1016/j.ensm.2023.102939
- J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D. Luan et al., Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 132(17), 6124–6130 (2010). https://doi.org/10.1021/ja100102y
- C. Zhu, Y. Tang, L. Liu, R. Sheng, X. Li et al., A high-performance rechargeable Mg2+/Li+ hybrid battery using CNT@TiO2 nanocables as the cathode. J. Colloid Interface Sci. 581, 307–313 (2021). https://doi.org/10.1016/j.jcis.2020.07.104
- X. Yu, G. Zhao, C. Liu, C. Wu, H. Huang et al., A MoS2 and graphene alternately stacking van der waals heterostructure for Li+/Mg2+ co-intercalation. Adv. Funct. Mater. 31(42), 2103214 (2021). https://doi.org/10.1002/adfm.202103214
- D. Wu, F. Wang, H. Yang, Y. Xu, Y. Zhuang et al., Realizing rapid electrochemical kinetics of Mg2+ in Ti-Nb oxides through a Li+ intercalation activated strategy toward extremely fast charge/discharge dual-ion batteries. Energy Storage Mater. 52, 94–103 (2022). https://doi.org/10.1016/j.ensm.2022.07.042
- J. Tian, D. Cao, X. Zhou, J. Hu, M. Huang et al., High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg–Li dual-salt electrolyte. ACS Nano 12(4), 3424–3435 (2018). https://doi.org/10.1021/acsnano.7b09177
- M. Mao, X. Ji, S. Hou, T. Gao, F. Wang et al., Tuning anionic chemistry to improve kinetics of Mg intercalation. Chem. Mater. 31(9), 3183–3191 (2019). https://doi.org/10.1021/acs.chemmater.8b05218
- X. Sun, P. Bonnick, L.F. Nazar, Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett. 1(1), 297–301 (2016). https://doi.org/10.1021/acsenergylett.6b00145
- J. Sheng, C. Peng, S. Yan, G. Zhang, Y. Jiang et al., New anatase phase VTi2.6O7.2 ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. J. Mater. Chem. A 6(28), 13901–13907 (2018). https://doi.org/10.1039/C8TA01818A
- Y. Zhang, D. Li, J. Li, Y. Li, L. Wang et al., Flexible TiVCTx MXene film for high-performance magnesium-ion storage device. J. Colloid Interface Sci. 657, 550–558 (2024). https://doi.org/10.1016/j.jcis.2023.11.175
- J. Yue, F. Xiong, Z. Shadike, X. Gao, J. Chen et al., A layer-structured high entropy oxide with highly reversible Fe3+/Fe4+ redox as advanced cathode material for sodium ion batteries. J. Power. Sources 627, 235735 (2025). https://doi.org/10.1016/j.jpowsour.2024.235735
- X. Sun, V. Duffort, L.F. Nazar, Prussian blue Mg–Li hybrid batteries. Adv. Sci. 3(8), 1600044 (2016). https://doi.org/10.1002/advs.201600044
- F. Liu, Y. Liu, X. Zhao, K. Liu, H. Yin et al., Prelithiated V2C MXene: a high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation. Small 16(8), 1906076 (2020). https://doi.org/10.1002/smll.201906076
- T. Gao, F. Han, Y. Zhu, L. Suo, C. Luo et al., Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5(5), 1401507 (2015). https://doi.org/10.1002/aenm.201401507
- C. Pei, F. Xiong, J. Sheng, Y. Yin, S. Tan et al., VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 9(20), 17060–17066 (2017). https://doi.org/10.1021/acsami.7b02480
- S. Su, Y. NuLi, Z. Huang, Q. Miao, J. Yang et al., A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Appl. Mater. Interfaces 8(11), 7111–7117 (2016). https://doi.org/10.1021/acsami.6b00106
References
Y.-G. Guo, J.-S. Hu, L.-J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008). https://doi.org/10.1002/adma.200800627
S.-K. Jung, I. Hwang, D. Chang, K.-Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4(1), 56–72 (2011). https://doi.org/10.1039/C0EE00281J
M. Liu, L.-J. Hu, Z.-K. Guan, T.-L. Chen, X.-Y. Zhang et al., Tailoring cathode-electrolyte interface for high-power and stable lithium-sulfur batteries. Nano-Micro Lett. 17(1), 85 (2024). https://doi.org/10.1007/s40820-024-01573-4
J. Xiao, H. Zhan, X. Wang, Z.Q. Xu, Z. Xiong et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15(8), 683–689 (2020). https://doi.org/10.1038/s41565-020-0704-7
R. Jain, A.S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani et al., Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 7(9), 736–746 (2022). https://doi.org/10.1038/s41578-022-00454-9
Y. Zhao, L. Peng, B. Liu, G. Yu, Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett. 14(5), 2849–2853 (2014). https://doi.org/10.1021/nl5008568
R. Malik, D. Burch, M. Bazant, G. Ceder, P size dependence of the ionic diffusivity. Nano Lett. 10(10), 4123–4127 (2010). https://doi.org/10.1021/nl1023595
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2007). https://doi.org/10.1038/nnano.2007.411
Y. Zhao, X. Zhu, Q. Zhang, L. Gu, Z. Shi et al., High-Na-content birnessite via P’3-stacking with tunable active facets for advanced aqueous sodium-ion batteries. ACS Nano 18(47), 32556–32568 (2024). https://doi.org/10.1021/acsnano.4c09448
F. Lin, I.M. Markus, D. Nordlund, T.-C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
B. Li, P. Gu, G. Zhang, Y. Lu, K. Huang et al., Ultrathin nanosheet assembled Sn0.91Co0.19S2 nanocages with exposed (100) facets for high-performance lithium-ion batteries. Small 14(5), 1702184 (2018). https://doi.org/10.1002/smll.201702184
J.M. Feckl, K. Fominykh, M. Döblinger, D. Fattakhova-Rohlfing, T. Bein, Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem. Int. Ed. 51(30), 7459–7463 (2012). https://doi.org/10.1002/anie.201201463
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen et al., Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4(2), 269–284 (2011). https://doi.org/10.1039/c0ee00029a
N. Wu, Z.-Z. Yang, H.-R. Yao, Y.-X. Yin, L. Gu et al., Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium–magnesium co-intercalation. Angew. Chem. Int. Ed. 54(19), 5757–5761 (2015). https://doi.org/10.1002/anie.201501005
Z. Tai, C.M. Subramaniyam, S.-L. Chou, L. Chen, H.-K. Liu et al., Few atomic layered lithium cathode materials to achieve ultrahigh rate capability in lithium-ion batteries. Adv. Mater. 29(34), 1700605 (2017). https://doi.org/10.1002/adma.201700605
L. Xue, S.V. Savilov, V.V. Lunin, H. Xia, Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv. Funct. Mater. 28(7), 1705836 (2018). https://doi.org/10.1002/adfm.201705836
J. Xu, Y. Hong, S. Dou, J. Wu, J. Zhang et al., Ultrafast synthesis of oxygen vacancy-rich MgFeSiO4 cathode to boost diffusion kinetics for rechargeable magnesium-ion batteries. Nano Lett. 25(2), 730–739 (2025). https://doi.org/10.1021/acs.nanolett.4c04908
W. Ren, M.S. Ng, Y. Zhang, A.E. Lakraychi, Y. Liang et al., Fluorine-free ion-selective membrane with enhanced Mg2+ transport for Mg-organic batteries. ACS Nano 19(5), 5781–5788 (2025). https://doi.org/10.1021/acsnano.4c17740
G. Li, Z. Yao, C. Li, In-situ multi-scale structural engineering of cathode and electrolyte for high-rate and long-life Mg metal batteries. J. Energy Chem. 105, 44–53 (2025). https://doi.org/10.1016/j.jechem.2025.01.034
F. Liu, T. Wang, X. Liu, L.-Z. Fan, Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 11(2), 2000787 (2021). https://doi.org/10.1002/aenm.202000787
D. Wang, Z. Zhang, Y. Hao, H. Jia, X. Shen et al., Challenges and progress in rechargeable magnesium-ion batteries: materials, interfaces, and devices. Adv. Funct. Mater. 34(51), 2410406 (2024). https://doi.org/10.1002/adfm.202410406
Z. Fan, R. Li, X. Zhang, W. Zhao, Z. Pan et al., Defect engineering: can it mitigate strong coulomb effect of Mg2+ in cathode materials for rechargeable magnesium batteries? Nano-Micro Lett. 17(1), 4 (2024). https://doi.org/10.1007/s40820-024-01495-1
B. Zhang, J. Yue, D. Wang, H. Jia, G. Huang et al., Alloy alleviating galvanic corrosion enables uniform Mg deposition with long cycle life. ACS Energy Lett. 9(4), 1771–1776 (2024). https://doi.org/10.1021/acsenergylett.4c00363
Y. Han, G. Li, Z. Hu, F. Wang, J. Chu et al., High-performance Mg–organic batteries based on hybrid MgCl2–LiCl/THF electrolytes. Energy Storage Mater. 46, 300–312 (2022). https://doi.org/10.1016/j.ensm.2022.01.022
J. Chen, H. Lan, S. Wang, X. Liu, Q. Zhu et al., Realizing an energy-dense potassium metal battery at-40 ℃ via an integrated anode-free and dual-ion strategy. J. Am. Chem. Soc. 147(3), 2393–2402 (2025). https://doi.org/10.1021/jacs.4c12126
Y. Liu, A. Xu, J. Wang, F. Jiang, H. Pang et al., Amorphous MoS3 anchored within hollow carbon as a cathode material for magnesium-ion batteries. ACS Nano 18(48), 33197–33209 (2024). https://doi.org/10.1021/acsnano.4c12188
E. Sheha, M.H. Makled, W.M. Nouman, A. Bassyouni, S. Yaghmour et al., Vanadium oxide/graphene nanoplatelet as a cathode material for Mg-ion battery. Graphene 5(4), 178–188 (2016). https://doi.org/10.4236/graphene.2016.54015
L. Wang, P.E. Vullum, K. Asheim, X. Wang, A.M. Svensson et al., High capacity Mg batteries based on surface-controlled electrochemical reactions. Nano Energy 48, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.03.061
X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131(9), 3152–3153 (2009). https://doi.org/10.1021/ja8092373
Q. He, B. Yu, Z. Li, Y. Zhao, Density functional theory for battery materials. Energy Environ. Mater. 2(4), 264–279 (2019). https://doi.org/10.1002/eem2.12056
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter 48(7), 4978 (1993). https://doi.org/10.1103/physrevb.48.4978.2
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
A. Roy, M. Sotoudeh, S. Dinda, Y. Tang, C. Kübel et al., Improving rechargeable magnesium batteries through dual cation co-intercalation strategy. Nat. Commun. 15(1), 492 (2024). https://doi.org/10.1038/s41467-023-44495-2
Y. Du, Y. Chen, S. Tan, J. Chen, X. Huang et al., Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping. Energy Storage Mater. 62, 102939 (2023). https://doi.org/10.1016/j.ensm.2023.102939
J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D. Luan et al., Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 132(17), 6124–6130 (2010). https://doi.org/10.1021/ja100102y
C. Zhu, Y. Tang, L. Liu, R. Sheng, X. Li et al., A high-performance rechargeable Mg2+/Li+ hybrid battery using CNT@TiO2 nanocables as the cathode. J. Colloid Interface Sci. 581, 307–313 (2021). https://doi.org/10.1016/j.jcis.2020.07.104
X. Yu, G. Zhao, C. Liu, C. Wu, H. Huang et al., A MoS2 and graphene alternately stacking van der waals heterostructure for Li+/Mg2+ co-intercalation. Adv. Funct. Mater. 31(42), 2103214 (2021). https://doi.org/10.1002/adfm.202103214
D. Wu, F. Wang, H. Yang, Y. Xu, Y. Zhuang et al., Realizing rapid electrochemical kinetics of Mg2+ in Ti-Nb oxides through a Li+ intercalation activated strategy toward extremely fast charge/discharge dual-ion batteries. Energy Storage Mater. 52, 94–103 (2022). https://doi.org/10.1016/j.ensm.2022.07.042
J. Tian, D. Cao, X. Zhou, J. Hu, M. Huang et al., High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg–Li dual-salt electrolyte. ACS Nano 12(4), 3424–3435 (2018). https://doi.org/10.1021/acsnano.7b09177
M. Mao, X. Ji, S. Hou, T. Gao, F. Wang et al., Tuning anionic chemistry to improve kinetics of Mg intercalation. Chem. Mater. 31(9), 3183–3191 (2019). https://doi.org/10.1021/acs.chemmater.8b05218
X. Sun, P. Bonnick, L.F. Nazar, Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett. 1(1), 297–301 (2016). https://doi.org/10.1021/acsenergylett.6b00145
J. Sheng, C. Peng, S. Yan, G. Zhang, Y. Jiang et al., New anatase phase VTi2.6O7.2 ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. J. Mater. Chem. A 6(28), 13901–13907 (2018). https://doi.org/10.1039/C8TA01818A
Y. Zhang, D. Li, J. Li, Y. Li, L. Wang et al., Flexible TiVCTx MXene film for high-performance magnesium-ion storage device. J. Colloid Interface Sci. 657, 550–558 (2024). https://doi.org/10.1016/j.jcis.2023.11.175
J. Yue, F. Xiong, Z. Shadike, X. Gao, J. Chen et al., A layer-structured high entropy oxide with highly reversible Fe3+/Fe4+ redox as advanced cathode material for sodium ion batteries. J. Power. Sources 627, 235735 (2025). https://doi.org/10.1016/j.jpowsour.2024.235735
X. Sun, V. Duffort, L.F. Nazar, Prussian blue Mg–Li hybrid batteries. Adv. Sci. 3(8), 1600044 (2016). https://doi.org/10.1002/advs.201600044
F. Liu, Y. Liu, X. Zhao, K. Liu, H. Yin et al., Prelithiated V2C MXene: a high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation. Small 16(8), 1906076 (2020). https://doi.org/10.1002/smll.201906076
T. Gao, F. Han, Y. Zhu, L. Suo, C. Luo et al., Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5(5), 1401507 (2015). https://doi.org/10.1002/aenm.201401507
C. Pei, F. Xiong, J. Sheng, Y. Yin, S. Tan et al., VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 9(20), 17060–17066 (2017). https://doi.org/10.1021/acsami.7b02480
S. Su, Y. NuLi, Z. Huang, Q. Miao, J. Yang et al., A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Appl. Mater. Interfaces 8(11), 7111–7117 (2016). https://doi.org/10.1021/acsami.6b00106