Cement-Based Thermoelectric Materials, Devices and Applications
Corresponding Author: Guangming Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 29
Abstract
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry. With the upgrading of infrastructure and the improvement of building standards, traditional cement fails to reconcile ecological responsibility with advanced functional performance. By incorporating tailored fillers into cement matrices, the resulting composites achieve enhanced thermoelectric (TE) conversion capabilities. These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients, facilitating bidirectional energy conversion. This review offers a comprehensive and timely overview of cement-based thermoelectric materials (CTEMs), integrating material design, device fabrication, and diverse applications into a holistic perspective. It summarizes recent advancements in TE performance enhancement, encompassing fillers optimization and matrices innovation. Additionally, the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices (CTEDs), providing detailed discussions on their roles in monitoring and protection, energy harvesting, and smart building. We also address sustainability, durability, and lifecycle considerations of CTEMs, which are essential for real-world deployment. Finally, we outline future research directions in materials design, device engineering, and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.
Highlights:
1 Covering the most cutting-edge advances in cement-based thermoelectric materials.
2 The first systematic summary of the preparation, performance and functional applications of cement-based thermoelectric devices.
3 The challenges and strategies for materials, devices and applications are fully discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Zhang, H. Wang, J. Fu, G. Chen, Flexible films of poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate)/single-walled carbon nanotube/MXene thermoelectric composites and their devices. Energy Mater. Adv. 6, 0143 (2025). https://doi.org/10.34133/energymatadv.0143
- H. Qin, S. Ding, A. Ashour, Q. Zheng, B. Han, Revolutionizing infrastructure: the evolving landscape of electricity-based multifunctional concrete from concept to practice. Prog. Mater. Sci. 145, 101310 (2024). https://doi.org/10.1016/j.pmatsci.2024.101310
- B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials. Cem. Concr. Res. 41(12), 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001
- Z. Wang, T. Shao, H. Zhang, J. Huo, J. Liu et al., Principles, properties and applications of smart conductive cement-based composites: a state-of-the-art review. Constr. Build. Mater. 408, 133569 (2023). https://doi.org/10.1016/j.conbuildmat.2023.133569
- T.-C. Hou, K.-H. Tai, Y.-M. Su, Study on temperature and damage sensing capability of Portland cement paste through the thermoelectric measurements, in Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017 (SPIE, Portland, Oregon, USA 2017). https://doi.org/10.1117/12.2258596
- M. Sun, Z. Li, Q. Mao, D. Shen, Study on the hole conduction phenomenon in carbon fiber-reinforced concrete. Cem. Concr. Res. 28(4), 549–554 (1998). https://doi.org/10.1016/S0008-8846(98)00011-8
- D.D.L. Chung, Cement reinforced with short carbon fibers: a multifunctional material. Compos. Part B Eng. 31(6–7), 511–526 (2000). https://doi.org/10.1016/S1359-8368(99)00071-2
- S. Wen, D.D.L. Chung, Cement-based thermocouples. Cem. Concr. Res. 31(3), 507–510 (2001). https://doi.org/10.1016/S0008-8846(00)00391-4
- J. Wei, Y. Fan, L. Zhao, F. Xue, L. Hao et al., Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear. Ceram. Int. 44(6), 5829–5833 (2018). https://doi.org/10.1016/j.ceramint.2018.01.074
- S. Ghosh, S. Harish, K.A. Rocky, M. Ohtaki, B.B. Saha, Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting. Energy Build. 202, 109419 (2019). https://doi.org/10.1016/j.enbuild.2019.109419
- T. Ji, X. Zhang, W. Li, Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings. Constr. Build. Mater. 115, 576–581 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.035
- S. Ghahari, E. Ghafari, N. Lu, Effect of ZnO nanops on thermoelectric properties of cement composite for waste heat harvesting. Constr. Build. Mater. 146, 755–763 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.165
- J. Wei, Q. Zhang, L. Zhao, L. Hao, Z. Nie, Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites. Ceram. Int. 43(14), 10763–10769 (2017). https://doi.org/10.1016/j.ceramint.2017.05.088
- J. Zuo, W. Yao, K. Wu, Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites. Fuller. Nanotub. Carbon Nanostruct. 23(5), 383–391 (2015). https://doi.org/10.1080/1536383X.2013.863760
- J. Wei, Q. Zhang, L. Zhao, L. Hao, C. Yang, Enhanced thermoelectric properties of carbon fiber reinforced cement composites. Ceram. Int. 42(10), 11568–11573 (2016). https://doi.org/10.1016/j.ceramint.2016.04.014
- J. Cai, J. Tan, X. Li, Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Constr. Build. Mater. 237, 117757 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117757
- Y. Cui, Y. Wei, Mixed “ionic-electronic” thermoelectric effect of reduced graphene oxide reinforced cement-based composites. Cem. Concr. Compos. 128, 104442 (2022). https://doi.org/10.1016/j.cemconcomp.2022.104442
- J. Wei, Y. Zhou, Y. Wang, Z. Miao, Y. Guo et al., A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing. Energy 265, 126398 (2023). https://doi.org/10.1016/j.energy.2022.126398
- X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
- Q. Xiong, G. Han, G. Wang, X. Lu, X. Zhou, The doping strategies for modulation of transport properties in thermoelectric materials. Adv. Funct. Mater. 34(52), 2411304 (2024). https://doi.org/10.1002/adfm.202411304
- R.O. Agbaoye, J. Janovec, A. Ayuela, J.S. Dolado, Thermoelectric properties of the main species present in Portland cement pastes. Cem. Concr. Res. 183, 107587 (2024). https://doi.org/10.1016/j.cemconres.2024.107587
- Y. Wei, Y. Cui, Y. Wang, Ionic thermoelectric effect of pure cement paste and its temperature sensing performance. Constr. Build. Mater. 364, 129898 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129898
- L. Liu, J. Chen, L. Liang, L. Deng, G. Chen, A PEDOT: PSS thermoelectric fiber generator. Nano Energy 102, 107678 (2022). https://doi.org/10.1016/j.nanoen.2022.107678
- Q. Zhou, H. Li, C. Du, Z. Ye, L. Liang et al., High-performance flexible thermoelectric generators with tunable in-plane and out-of-plane architectures. Nano Energy 118, 109007 (2023). https://doi.org/10.1016/j.nanoen.2023.109007
- J. Fu, S. Zhang, G. Chen, Poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate)-based thermoelectric composite films. Compos. Commun. 51, 102069 (2024). https://doi.org/10.1016/j.coco.2024.102069
- M. Kong, Q. Jiang, W. Zhong, Z. Wang, Y. Ma et al., Unraveling the correlation between reduced thickness and enhanced electrical conductivity in HNO3-treated PEDOT: PSS ultrathin nanofilms. Mater. Today Nano 29, 100574 (2025). https://doi.org/10.1016/j.mtnano.2025.100574
- P.C. Aïtcin, 3-Portland cement, in Science and Technology of Concrete Admixtures. ed. by P.C. Aïtcin, R.J. Flatt (Woodhead Publishing, New Delhi, 2016), pp. 27–51. https://doi.org/10.1016/B978-0-08-100693-1.00003-5
- S. Wen, D.D.L. Chung, Seebeck effect in carbon fiber-reinforced cement. Cem. Concr. Res. 29(12), 1989–1993 (1999). https://doi.org/10.1016/S0008-8846(99)00185-4
- J. Wei, Y. Wang, X. Li, Z. Jia, S. Qiao et al., Effect of porosity and crack on the thermoelectric properties of expanded graphite/carbon fiber reinforced cement-based composites. Int. J. Energy Res. 44(8), 6885–6893 (2020). https://doi.org/10.1002/er.5437
- I. Asadi, P. Shafigh, Z.F. Bin Abu Hassan, N.B. Mahyuddin, Thermal conductivity of concrete–a review. J. Build. Eng. 20, 81–93 (2018). https://doi.org/10.1016/j.jobe.2018.07.002
- W. Zhang, H. Min, X. Gu, Y. Xi, Y. Xing, Mesoscale model for thermal conductivity of concrete. Constr. Build. Mater. 98, 8–16 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.106
- A.H. Shin, U. Kodide, Thermal conductivity of ternary mixtures for concrete pavements. Cem. Concr. Compos. 34(4), 575–582 (2012). https://doi.org/10.1016/j.cemconcomp.2011.11.009
- S. Sun, M. Li, X.-L. Shi, Z.-G. Chen, Advances in ionic thermoelectrics: from materials to devices. Adv. Energy Mater. 13(9), 2203692 (2023). https://doi.org/10.1002/aenm.202203692
- Q. Qian, H. Cheng, H. Xie, Y. Wu, Y. Fang et al., A mixed ion/electron thermoelectric generator with ultrahigh steady thermopower by exploring both the hole tunneling and ion accumulations. Adv. Energy Mater. 15(20), 2404522 (2025). https://doi.org/10.1002/aenm.202404522
- Z. Du, L. Li, G. Shen, An ultra-thin wearable thermoelectric paster based on structured organic ion gel electrolyte. Nano-Micro Lett. 17(1), 204 (2025). https://doi.org/10.1007/s40820-025-01721-4
- Y. Cui, Y. Wei, Effect of pore structure on the ionic thermoelectric effect of pure cement paste. Ceram. Int. 50(15), 26558–26568 (2024). https://doi.org/10.1016/j.ceramint.2024.04.384
- S. Wen, D.D.L. Chung, Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers. Cem. Concr. Res. 30(8), 1295–1298 (2000). https://doi.org/10.1016/S0008-8846(00)00341-0
- J. Wei, Z. Nie, G. He, L. Hao, L. Zhao et al., Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites. RSC Adv. 4(89), 48128–48134 (2014). https://doi.org/10.1039/C4RA07864K
- J.H. Kim, J.H. Han, J.H. Kim, C.-M. Yang, D.W. Kim et al., Enhancing thermoelectric performance in carbon fiber-reinforced cement composites through boron doping. Constr. Build. Mater. 392, 131983 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131983
- Y. Guo, J. Wei, L. Zhao, L. Sheng, T. Wang et al., Record high ZT value of carbon fiber reinforced cementitious composites by changing the microcrystalline structure of carbon fibers for large-scale energy harvesting. Constr. Build. Mater. 470, 140669 (2025). https://doi.org/10.1016/j.conbuildmat.2025.140669
- S. Wen, D.D.L. Chung, Thermoelectric behavior of carbon–cement composites. Carbon 40(13), 2495–2497 (2002). https://doi.org/10.1016/S0008-6223(02)00142-2
- J. Wei, L. Zhao, Q. Zhang, Z. Nie, L. Hao, Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting. Energy Build. 159, 66–74 (2018). https://doi.org/10.1016/j.enbuild.2017.10.032
- J. Wei, Z. Jia, Y. Wang, Y. Jiang, Z. Miao et al., Enhanced thermoelectric performance of low carbon cement-based composites by reduced graphene oxide. Energy Build. 250, 111279 (2021). https://doi.org/10.1016/j.enbuild.2021.111279
- J. Wei, L. Sheng, E. Lv, Z. Jiang, W. Gao et al., Significant improvement in thermoelectric properties of carbon-reinforced cementitious composites achieved by regulating the graphitization degree of expanded graphite. ACS Appl. Mater. Interfaces 16(27), 35381–35389 (2024). https://doi.org/10.1021/acsami.4c08270
- K. Song, J. Liu, P. He, Q. Zhang, 3D printing graphene lattice enabled smart silicate composites with piezoresistive and thermoelectric effects. Carbon 234, 120026 (2025). https://doi.org/10.1016/j.carbon.2025.120026
- L. Tzounis, M. Liebscher, R. Fuge, A. Leonhardt, V. Mechtcherine, P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: demonstration of a structural thermoelectric generator. Energy Build. 191, 151–163 (2019). https://doi.org/10.1016/j.enbuild.2019.03.027
- J. Wei, M. Zhang, Y. Wang, S. Qiao, H. Zhang et al., Synergistic optimization of thermoelectric performance in cementitious composites by lithium carbonate and carbon nanotubes. Int. J. Energy Res. 45(2), 2460–2473 (2021). https://doi.org/10.1002/er.5940
- I. Vareli, L. Tzounis, K. Tsirka, I.E. Kavvadias, K. Tsongas et al., High-performance cement/SWCNT thermoelectric nanocomposites and a structural thermoelectric generator device towards large-scale thermal energy harvesting. J. Mater. Chem. C 9(40), 14421–14438 (2021). https://doi.org/10.1039/D1TC03495B
- J. Wei, Z. Miao, Y. Wang, Y. Zhou, D. Gao et al., Boosting power factor of thermoelectric cementitious composites by a unique CNT pretreatment process with low carbon content. Energy Build. 254, 111617 (2022). https://doi.org/10.1016/j.enbuild.2021.111617
- J. Wei, T. Wang, J. Hui, X. Li, H. Zhang et al., Thermoelectric power factor of boron-doped carbon nanotubes reinforced cementitious composites. Energy Technol. 11(10), 2300404 (2023). https://doi.org/10.1002/ente.202300404
- S. Wen, D.D.L. Chung, Seebeck effect in steel fiber reinforced cement. Cem. Concr. Res. 30(4), 661–664 (2000). https://doi.org/10.1016/S0008-8846(00)00205-2
- K. Guo, G. Chen, M. Chang, C. Chen, E. Tang, Thermoelectric properties of cement mortar doped with steel fiber under heating conditions. Int. J. Heat Fluid Flow 106, 109274 (2024). https://doi.org/10.1016/j.ijheatfluidflow.2023.109274
- T. Ji, X. Zhang, X. Zhang, Y. Zhang, W. Li, Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites. J. Mater. Civ. Eng. 30(9), 04018224 (2018). https://doi.org/10.1061/(asce)mt.1943-5533.0002401
- T. Ji, S. Zhang, Y. He, X. Zhang, W. Li, Enhanced thermoelectric efficiency of cement-based materials with cuprous oxide for sustainable buildings. Adv. Mater. Sci. Eng. 2022(1), 6403756 (2022). https://doi.org/10.1155/2022/6403756
- H.Y. Cao, W. Yao, J.J. Qin, Seebeck effect in graphite-carbon fiber cement based composite. Adv. Mater. Res. 177, 566–569 (2010). https://doi.org/10.4028/www.scientific.net/amr.177.566
- J. Wei, X. Li, Y. Wang, B. Chen, S. Qiao et al., Record high thermoelectric performance of expanded graphite/carbon fiber cement composites enhanced by ionic liquid 1-butyl-3-methylimidazolium bromide for building energy harvesting. J. Mater. Chem. C 9(10), 3682–3691 (2021). https://doi.org/10.1039/D0TC05595F
- I. Vareli, A. Gkaravela, S. Polyviou, N.-M. Barkoula, A.S. Paipetis, Structural carbon-enhanced cementitious thermoelectric generators (TEGs): optimal energy filtering and TEG design for outstanding energy harvesting. ACS Appl. Electron. Mater. 6(5), 2851–2861 (2024). https://doi.org/10.1021/acsaelm.3c00465
- X. Liu, G. Liao, J. Zuo, Enhanced thermoelectric properties of carbon fiber-reinforced cement composites (CFRCs) utilizing Bi2Te3 with three doping methods. Fuller. Nanotub. Carbon Nanostruct. 29(4), 295–303 (2021). https://doi.org/10.1080/1536383X.2020.1839425
- J. Wei, Y. Wang, X. Li, Z. Jia, S. Qiao et al., Dramatically improved thermoelectric properties by defect engineering in cement-based composites. ACS Appl. Mater. Interfaces 13(3), 3919–3929 (2021). https://doi.org/10.1021/acsami.0c18863
- X. Liu, M. Qu, A.P.T. Nguyen, N.R. Dilley, K. Yazawa, Characteristics of new cement-based thermoelectric composites for low-temperature applications. Constr. Build. Mater. 304, 124635 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124635
- T. Ji, S. Zhang, Y. He, X. Zhang, X. Zhang et al., Enhanced thermoelectric property of cement-based materials with the synthesized MnO2/carbon fiber composite. J. Build. Eng. 43, 103190 (2021). https://doi.org/10.1016/j.jobe.2021.103190
- H. Zhou, H. Liu, G. Qian, P. Xu, H. Yu et al., Enhanced thermoelectric performances of CNTs-reinforced cement composites with Bi0.5Sb1.5Te3 for pavement energy harvesting. Nanomaterials 12(21), 3883 (2022). https://doi.org/10.3390/nano12213883
- Y. Wang, J. Wei, Z. Miao, Y. Zhou, Y. Guo et al., Excellent thermoelectric properties of P-type cement-based composites through a universal defect engineering approach for large-scale energy harvesting. Constr. Build. Mater. 351, 128967 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128967
- T. Ji, X. Liao, S. Zhang, Y. He, X. Zhang et al., Cement-based thermoelectric device for protection of carbon steel in alkaline chloride solution. Materials 15(13), 4461 (2022). https://doi.org/10.3390/ma15134461
- Y. Wan, S. Tan, L. Li, H. Zhou, L. Zhao et al., Fabrication and thermoelectric property of the nano Fe2O3/carbon fiber/cement-based composites for potential energy harvesting application. Constr. Build. Mater. 365, 130021 (2023). https://doi.org/10.1016/j.conbuildmat.2022.130021
- D. Huo, F. Song, Y. Wang, X.-C. Liu, Carrier type control in cement-based thermoelectric composites with carbon nanotube and SrTiO3 nanops. Mater. Today Commun. 37, 106973 (2023). https://doi.org/10.1016/j.mtcomm.2023.106973
- D. Wu, X. Xiong, J. Ma, L. Lv, J. Huang, Enhanced thermoelectric and compressive performance of MnO2 coated carbon fiber/cement composites by microwave electrodeposition/microwave alkali treatment. Ceram. Int. 49(23), 37535–37548 (2023). https://doi.org/10.1016/j.ceramint.2023.09.080
- R. Piao, Z. Cui, T. Oh, S. Kim, J.-W. Jeong et al., Synergistic effect of nickel and graphite powders on the thermoelectric properties of ultra-high-performance concrete containing steel fibers and MWCNTs. Cem. Concr. Compos. 154, 105778 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105778
- Y.-F. Song, X.-B. Xiong, J. Ma, J. Huang, MnO2 with/without Ni doped films on carbon fibers by for enhancing compression and thermoelectric performances of cement. J. Build. Eng. 95, 110154 (2024). https://doi.org/10.1016/j.jobe.2024.110154
- J. Zhang, C. Feng, Y. Fan, J. Yang, Z. Ni et al., Improved thermoelectric properties of graphene reinforced multiphase cement composites: experiments and modeling. J. Sustain. Cem. Based Mater. 13(10), 1452–1469 (2024). https://doi.org/10.1080/21650373.2024.2390595
- R. Piao, Z. Cui, J.-W. Jeong, D.-Y. Yoo, Optimal multi-walled carbon nanotube dosage for improving the mechanical and thermoelectric characteristics of ultra-high-performance fiber-reinforced concrete. Constr. Build. Mater. 462, 139927 (2025). https://doi.org/10.1016/j.conbuildmat.2025.139927
- L. Xia, B. Jia, J. Zeng, J. Xu, Wear and mechanical properties of carbon fiber reinforced copper alloy composites. Mater Charact 60(5), 363–369 (2009). https://doi.org/10.1016/j.matchar.2008.10.008
- S. Chand, Review carbon fibers for composites. J. Mater. Sci. 35(6), 1303–1313 (2000). https://doi.org/10.1023/A:1004780301489
- M. Sun, Z. Li, Q. Mao, D. Shen, Thermoelectric percolation phenomena in carbon fiber-reinforced concrete. Cem. Concr. Res. 28(12), 1707–1712 (1998). https://doi.org/10.1016/S0008-8846(98)00161-6
- P. Zhang, Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions. Sci. Rep. 5, 9826 (2015). https://doi.org/10.1038/srep09826
- I.N.R. Prudente, H.C. dos Santos, J.L. Fonseca, Y.A. de Almeida, I. de Fátima Gimenez et al., Graphene family (GFMs), carbon nanotubes (CNTs) and carbon black (CB) on smart materials for civil construction: Self-cleaning, self-sensing and self-heating. J. Build. Eng. 95, 110175 (2024). https://doi.org/10.1016/j.jobe.2024.110175
- Z. Wei, F. Yang, K. Bi, J. Yang, Y. Chen, Tuning the interfacial thermal conductance via the anisotropic elastic properties of graphite. Carbon 144, 109–115 (2019). https://doi.org/10.1016/j.carbon.2018.12.024
- N. Zhou, Q. Wang, J. Yu, X. Li, M. Li et al., Expandable graphite optimized carbon-fiber/carbon-aerogel composites with enhanced mechanical property for thermal insulation under extreme environments. Mater. Today Energy 49, 101852 (2025). https://doi.org/10.1016/j.mtener.2025.101852
- B. Yesudhas Jayakumari, E. Nattanmai Swaminathan, P. Partheeban, A review on characteristics studies on carbon nanotubes-based cement concrete. Constr. Build. Mater. 367, 130344 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130344
- C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32(36), 2206083 (2022). https://doi.org/10.1002/adfm.202206083
- Y. Zhang, Q. Zhang, G. Chen, Carbon and carbon composites for thermoelectric applications. Carbon Energy 2(3), 408–436 (2020). https://doi.org/10.1002/cey2.68
- J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30(11), 1704386 (2018). https://doi.org/10.1002/adma.201704386
- J. Liang, R. Cui, X. Zhang, K. Koumoto, C. Wan, Polymer/carbon composites with versatile interfacial interactions for high performance carbon-based thermoelectrics: principles and applications. Adv. Funct. Mater. 33(9), 2208813 (2023). https://doi.org/10.1002/adfm.202208813
- S. Wen, D.D.L. Chung, Origin of the thermoelectric behavior of steel fiber cement paste. Cem. Concr. Res. 32(5), 821–823 (2002). https://doi.org/10.1016/S0008-8846(01)00754-2
- J. Liu, Q. Li, S. Xu, Influence of nanops on fluidity and mechanical properties of cement mortar. Constr. Build. Mater. 101, 892–901 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.149
- J. Sun, L. Tian, Z. Yu, Y. Zhang, C. Li et al., Studies on the size effects of nano-TiO2 on Portland cement hydration with different water to solid ratios. Constr. Build. Mater. 259, 120390 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120390
- S. He, S. Lehmann, A. Bahrami, K. Nielsch, Current state-of-the-art in the interface/surface modification of thermoelectric materials. Adv. Energy Mater. 11(37), 2101877 (2021). https://doi.org/10.1002/aenm.202101877
- J. Kang, X. Yang, Q. Hu, Z. Cai, L.-M. Liu et al., Recent progress of amorphous nanomaterials. Chem. Rev. 123(13), 8859–8941 (2023). https://doi.org/10.1021/acs.chemrev.3c00229
- G.M. Kim, S.M. Park, G.U. Ryu, H.K. Lee, Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cem. Concr. Compos. 82, 165–175 (2017). https://doi.org/10.1016/j.cemconcomp.2017.06.004
- B. Xu, T. Feng, Z. Li, S.T. Pantelides, Y. Wu, Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 18(6), 4034–4039 (2018). https://doi.org/10.1021/acs.nanolett.8b01691
- J. Wei, L. Hao, G. He, C. Yang, Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface. Ceram. Int. 40(6), 8261–8263 (2014). https://doi.org/10.1016/j.ceramint.2014.01.024
- J. Wei, L. Hao, G. He, C. Yang, Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca3Co4O9, in China Functional Materials Technology and Industry Forum. ed. by G. Zhao, L. Lu, B. Long, Z. Nie (Trans Tech Publications Ltd, Durnten-Zurich, 2013), pp. 354–357. https://doi.org/10.4028/www.scientific.net/AMM.320.354
- Y. Wang, J. Wei, Y. Zhou, Z. Miao, Y. Guo et al., Defect engineering treatment of indium tin oxide significantly enhances the thermoelectric properties of cement-based composites for large-scale energy harvesting. J. Build. Eng. 68, 106082 (2023). https://doi.org/10.1016/j.jobe.2023.106082
- A. Kumar, T.J. Saravanan, K. Bisht, K.I. Syed Ahmed Kabeer, A review on the utilization of red mud for the production of geopolymer and alkali activated concrete. Constr. Build. Mater. 302, 124170 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124170
- Y. Wu, B. Lu, T. Bai, H. Wang, F. Du et al., Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 224, 930–949 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.112
- M.B. Ali, R. Saidur, M.S. Hossain, A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 15(5), 2252–2261 (2011). https://doi.org/10.1016/j.rser.2011.02.014
- D.N. Huntzinger, T.D. Eatmon, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J. Clean. Prod. 17(7), 668–675 (2009). https://doi.org/10.1016/j.jclepro.2008.04.007
- Á. Palomo, S. Alonso, A. Fernandez-Jiménez, I. Sobrados, J. Sanz, Alkaline activation of fly ashes: NMR study of the reaction products. J. Am. Ceram. Soc. 87(6), 1141–1145 (2004). https://doi.org/10.1111/j.1551-2916.2004.01141.x
- F. Puertas, M. Palacios, H. Manzano, J.S. Dolado, A. Rico et al., A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.036
- H.M. Park, S. Park, I.-J. Shon, G.M. Kim, S. Hwang et al., Influence of Portland cement and alkali-activated slag binder on the thermoelectric properties of the p-type composites with MWCNT. Constr. Build. Mater. 292, 123393 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123393
- M. Davoodabadi, I. Vareli, M. Liebscher, L. Tzounis, M. Sgarzi et al., Thermoelectric energy harvesting from single-walled carbon nanotube alkali-activated nanocomposites produced from industrial waste materials. Nanomaterials 11(5), 1095 (2021). https://doi.org/10.3390/nano11051095
- J. Li, B.W.Y. Tay, J. Lei, E.-H. Yang, Experimental investigation of Seebeck effect in metakaolin-based geopolymer. Constr. Build. Mater. 272, 121615 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121615
- J. Cai, X. Li, Thermoelectric properties of geopolymers with the addition of nano-silicon carbide (SiC) powder. Ceram. Int. 47(14), 19752–19759 (2021). https://doi.org/10.1016/j.ceramint.2021.03.313
- J. Cai, Y. Yuan, X. Xi, N. Ukrainczyk, L. Pan et al., Unveiling the remarkable potential of geopolymer-based materials by harnessing manganese dioxide incorporation. Small 20(5), 2305360 (2024). https://doi.org/10.1002/smll.202305360
- M. Barzegar, G. Goracci, P. Martauz, J.S. Dolado, Sustainable geopolymer concrete for thermoelectric energy harvesting. Constr. Build. Mater. 411, 134398 (2024). https://doi.org/10.1016/j.conbuildmat.2023.134398
- A. Santos, S. Andrejkovičová, F. Almeida, F. Rocha, Thermoelectric properties of geopolymers with iron ore mine waste: a case study for energy management. Ceram. Int. 50(19), 36112–36125 (2024). https://doi.org/10.1016/j.ceramint.2024.06.424
- G. Karalis, M. Liebscher, J. Mersch, J. Zhao, K.H. Ly et al., Carbon nanotube fibers as efficient p- and n-type thermoelements within geopolymers: a route for large-scale thermal energy harvesting from building structures. Cem. Concr. Compos. 153, 105699 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105699
- L.-P. Guo, B.-C. Lyu, J.-O. He, J.-T. Lu, B. Chen, Mechanical and thermoelectric properties of high ductility geopolymer composites with nano zinc oxide and red mud. Constr. Build. Mater. 455, 139173 (2024). https://doi.org/10.1016/j.conbuildmat.2024.139173
- J. Cai, Y. Yuan, L. Pan, Z. Pei, Y. Zhang et al., Intelligent thermoelectric sensing with sustainable strain-hardening geopolymeric composites. Small Sci. 5(3), 2400520 (2025). https://doi.org/10.1002/smsc.202400520
- Y. Yuan, J. Cai, X. Xi, N. Ukrainczyk, Y. Wang et al., Advancing the mechanical and thermoelectric properties of geopolymers for sustainable architecture. Small (2025). https://doi.org/10.1002/smll.202408048
- P. Cong, R. Du, H. Gao, Z. Chen, Comparison and assessment of carbon dioxide emissions between alkali-activated materials and OPC cement concrete. J. Traffic Transp. Eng. Engl. Ed. 11(5), 918–938 (2024). https://doi.org/10.1016/j.jtte.2023.07.011
- T. Luukkonen, Alkali-activated materials in environmental technology: introduction, in Alkali-Activated Materials in Environmental Technology Applications (Elsevier, 2022), pp. 1–12. https://doi.org/10.1016/b978-0-323-88438-9.00011-9
- S. Ghosh, B.B. Saha, Estimation of energy harvesting by thermoelectric cement composites with nanostructured graphene and metallic oxides. J. Compos. Sci. 7(5), 207 (2023). https://doi.org/10.3390/jcs7050207
- W. Pichór, M. Frąc, Electric and thermoelectric properties of cement composites with expanded graphite, in Brittle Matrix Composites, vol. 10 (Elsevier, 2012), pp. 43–50. https://doi.org/10.1533/9780857099891.43
- Z. Wang, Z. Wang, M. Ning, S. Tang, Y. He, Electro-thermal properties and Seebeck effect of conductive mortar and its use in self-heating and self-sensing system. Ceram. Int. 43(12), 8685–8693 (2017). https://doi.org/10.1016/j.ceramint.2017.03.202
- Y. Wang, Y. Zheng, W. Li, S. Xiao, S. Chen et al., Bio-inspired thermoelectric cement with interfacial selective immobilization towards self-powered buildings. Sci. Bull. 70(12), 1994–2003 (2025). https://doi.org/10.1016/j.scib.2025.03.032
- N. Van Nong, N. Pryds, S. Linderoth, M. Ohtaki, Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv. Mater. 23(21), 2484–2490 (2011). https://doi.org/10.1002/adma.201004782
- C. Wu, X.-L. Shi, L. Wang, W. Lyu, P. Yuan et al., Defect engineering advances thermoelectric materials. ACS Nano 18(46), 31660–31712 (2024). https://doi.org/10.1021/acsnano.4c11732
- C. Chen, Z. Liu, L. Guo, B. Huo, Q. Sun et al., High spatiotemporal resolution biomimetic thermoreceptors realizing by jointless p-n integration thermoelectric composites. Adv. Funct. Mater. 34(49), 2411490 (2024). https://doi.org/10.1002/adfm.202411490
- L. Deng, G. Chen, Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance. Nano Energy 80, 105448 (2021). https://doi.org/10.1016/j.nanoen.2020.105448
- E. Orisakwe, C. Johnston, R. Jani, X. Liu, L. Stella et al., Thermoelectric properties of cement composite analogues from first principles calculations. Mater. Res. Express 10(9), 095505 (2023). https://doi.org/10.1088/2053-1591/acf6fb
- R.O. Agbaoye, A. Ayuela, J.S. Dolado, Refractory and thermoelectric properties of stabilized Tricalcium aluminate allotrope: a first-principles calculation approach. Mater. Today Commun. 39, 108757 (2024). https://doi.org/10.1016/j.mtcomm.2024.108757
- L. Li, J. Chen, X. Tan, Y. Zhou, Y. Zhang et al., 3D face-centered-cubic cement-based hybrid composites reinforced by tension-resistant polymeric truss network. Autom. Constr. 120, 103380 (2020). https://doi.org/10.1016/j.autcon.2020.103380
- A.K. Tiwari, P.P. Pratapa, M. Santhanam, Lattice concrete: 3D printed periodic cellular structures through selective cement hydration. J. Build. Eng. 86, 108946 (2024). https://doi.org/10.1016/j.jobe.2024.108946
- X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
- X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen, Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 90, 106577 (2021). https://doi.org/10.1016/j.nanoen.2021.106577
- P. Thissen, A. Bogner, F. Dehn, Surface treatments on concrete: an overview on organic, inorganic and nano-based coatings and an outlook about surface modification by rare-earth oxides. RSC Sustain. 2(8), 2092–2124 (2024). https://doi.org/10.1039/D3SU00482A
- B. Yin, C. Wu, D. Hou, S. Li, Z. Jin et al., Research and application progress of nano-modified coating in improving the durability of cement-based materials. Prog. Org. Coat. 161, 106529 (2021). https://doi.org/10.1016/j.porgcoat.2021.106529
- X. Meng, Y. Jiang, B. Chen, L. Wang, Modification of magnesium phosphate cement with steel slag powder and ground blast furnace slag: mechanism of hydration and electrical conductivity. Constr. Build. Mater. 438, 137305 (2024). https://doi.org/10.1016/j.conbuildmat.2024.137305
- Z. Ren, J. Sun, X. Zeng, X. Chen, Y. Wang et al., Research on the electrical conductivity and mechanical properties of copper slag multiphase nano-modified electrically conductive cementitious composite. Constr. Build. Mater. 339, 127650 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127650
- A. Ślosarczyk, I. Klapiszewska, D. Skowrońska, M. Janczarek, T. Jesionowski et al., A comprehensive review of building materials modified with metal and metal oxide nanops against microbial multiplication and growth. Chem. Eng. J. 466, 143276 (2023). https://doi.org/10.1016/j.cej.2023.143276
References
S. Zhang, H. Wang, J. Fu, G. Chen, Flexible films of poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate)/single-walled carbon nanotube/MXene thermoelectric composites and their devices. Energy Mater. Adv. 6, 0143 (2025). https://doi.org/10.34133/energymatadv.0143
H. Qin, S. Ding, A. Ashour, Q. Zheng, B. Han, Revolutionizing infrastructure: the evolving landscape of electricity-based multifunctional concrete from concept to practice. Prog. Mater. Sci. 145, 101310 (2024). https://doi.org/10.1016/j.pmatsci.2024.101310
B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials. Cem. Concr. Res. 41(12), 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001
Z. Wang, T. Shao, H. Zhang, J. Huo, J. Liu et al., Principles, properties and applications of smart conductive cement-based composites: a state-of-the-art review. Constr. Build. Mater. 408, 133569 (2023). https://doi.org/10.1016/j.conbuildmat.2023.133569
T.-C. Hou, K.-H. Tai, Y.-M. Su, Study on temperature and damage sensing capability of Portland cement paste through the thermoelectric measurements, in Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017 (SPIE, Portland, Oregon, USA 2017). https://doi.org/10.1117/12.2258596
M. Sun, Z. Li, Q. Mao, D. Shen, Study on the hole conduction phenomenon in carbon fiber-reinforced concrete. Cem. Concr. Res. 28(4), 549–554 (1998). https://doi.org/10.1016/S0008-8846(98)00011-8
D.D.L. Chung, Cement reinforced with short carbon fibers: a multifunctional material. Compos. Part B Eng. 31(6–7), 511–526 (2000). https://doi.org/10.1016/S1359-8368(99)00071-2
S. Wen, D.D.L. Chung, Cement-based thermocouples. Cem. Concr. Res. 31(3), 507–510 (2001). https://doi.org/10.1016/S0008-8846(00)00391-4
J. Wei, Y. Fan, L. Zhao, F. Xue, L. Hao et al., Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear. Ceram. Int. 44(6), 5829–5833 (2018). https://doi.org/10.1016/j.ceramint.2018.01.074
S. Ghosh, S. Harish, K.A. Rocky, M. Ohtaki, B.B. Saha, Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting. Energy Build. 202, 109419 (2019). https://doi.org/10.1016/j.enbuild.2019.109419
T. Ji, X. Zhang, W. Li, Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings. Constr. Build. Mater. 115, 576–581 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.035
S. Ghahari, E. Ghafari, N. Lu, Effect of ZnO nanops on thermoelectric properties of cement composite for waste heat harvesting. Constr. Build. Mater. 146, 755–763 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.165
J. Wei, Q. Zhang, L. Zhao, L. Hao, Z. Nie, Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites. Ceram. Int. 43(14), 10763–10769 (2017). https://doi.org/10.1016/j.ceramint.2017.05.088
J. Zuo, W. Yao, K. Wu, Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites. Fuller. Nanotub. Carbon Nanostruct. 23(5), 383–391 (2015). https://doi.org/10.1080/1536383X.2013.863760
J. Wei, Q. Zhang, L. Zhao, L. Hao, C. Yang, Enhanced thermoelectric properties of carbon fiber reinforced cement composites. Ceram. Int. 42(10), 11568–11573 (2016). https://doi.org/10.1016/j.ceramint.2016.04.014
J. Cai, J. Tan, X. Li, Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Constr. Build. Mater. 237, 117757 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117757
Y. Cui, Y. Wei, Mixed “ionic-electronic” thermoelectric effect of reduced graphene oxide reinforced cement-based composites. Cem. Concr. Compos. 128, 104442 (2022). https://doi.org/10.1016/j.cemconcomp.2022.104442
J. Wei, Y. Zhou, Y. Wang, Z. Miao, Y. Guo et al., A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing. Energy 265, 126398 (2023). https://doi.org/10.1016/j.energy.2022.126398
X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
Q. Xiong, G. Han, G. Wang, X. Lu, X. Zhou, The doping strategies for modulation of transport properties in thermoelectric materials. Adv. Funct. Mater. 34(52), 2411304 (2024). https://doi.org/10.1002/adfm.202411304
R.O. Agbaoye, J. Janovec, A. Ayuela, J.S. Dolado, Thermoelectric properties of the main species present in Portland cement pastes. Cem. Concr. Res. 183, 107587 (2024). https://doi.org/10.1016/j.cemconres.2024.107587
Y. Wei, Y. Cui, Y. Wang, Ionic thermoelectric effect of pure cement paste and its temperature sensing performance. Constr. Build. Mater. 364, 129898 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129898
L. Liu, J. Chen, L. Liang, L. Deng, G. Chen, A PEDOT: PSS thermoelectric fiber generator. Nano Energy 102, 107678 (2022). https://doi.org/10.1016/j.nanoen.2022.107678
Q. Zhou, H. Li, C. Du, Z. Ye, L. Liang et al., High-performance flexible thermoelectric generators with tunable in-plane and out-of-plane architectures. Nano Energy 118, 109007 (2023). https://doi.org/10.1016/j.nanoen.2023.109007
J. Fu, S. Zhang, G. Chen, Poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate)-based thermoelectric composite films. Compos. Commun. 51, 102069 (2024). https://doi.org/10.1016/j.coco.2024.102069
M. Kong, Q. Jiang, W. Zhong, Z. Wang, Y. Ma et al., Unraveling the correlation between reduced thickness and enhanced electrical conductivity in HNO3-treated PEDOT: PSS ultrathin nanofilms. Mater. Today Nano 29, 100574 (2025). https://doi.org/10.1016/j.mtnano.2025.100574
P.C. Aïtcin, 3-Portland cement, in Science and Technology of Concrete Admixtures. ed. by P.C. Aïtcin, R.J. Flatt (Woodhead Publishing, New Delhi, 2016), pp. 27–51. https://doi.org/10.1016/B978-0-08-100693-1.00003-5
S. Wen, D.D.L. Chung, Seebeck effect in carbon fiber-reinforced cement. Cem. Concr. Res. 29(12), 1989–1993 (1999). https://doi.org/10.1016/S0008-8846(99)00185-4
J. Wei, Y. Wang, X. Li, Z. Jia, S. Qiao et al., Effect of porosity and crack on the thermoelectric properties of expanded graphite/carbon fiber reinforced cement-based composites. Int. J. Energy Res. 44(8), 6885–6893 (2020). https://doi.org/10.1002/er.5437
I. Asadi, P. Shafigh, Z.F. Bin Abu Hassan, N.B. Mahyuddin, Thermal conductivity of concrete–a review. J. Build. Eng. 20, 81–93 (2018). https://doi.org/10.1016/j.jobe.2018.07.002
W. Zhang, H. Min, X. Gu, Y. Xi, Y. Xing, Mesoscale model for thermal conductivity of concrete. Constr. Build. Mater. 98, 8–16 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.106
A.H. Shin, U. Kodide, Thermal conductivity of ternary mixtures for concrete pavements. Cem. Concr. Compos. 34(4), 575–582 (2012). https://doi.org/10.1016/j.cemconcomp.2011.11.009
S. Sun, M. Li, X.-L. Shi, Z.-G. Chen, Advances in ionic thermoelectrics: from materials to devices. Adv. Energy Mater. 13(9), 2203692 (2023). https://doi.org/10.1002/aenm.202203692
Q. Qian, H. Cheng, H. Xie, Y. Wu, Y. Fang et al., A mixed ion/electron thermoelectric generator with ultrahigh steady thermopower by exploring both the hole tunneling and ion accumulations. Adv. Energy Mater. 15(20), 2404522 (2025). https://doi.org/10.1002/aenm.202404522
Z. Du, L. Li, G. Shen, An ultra-thin wearable thermoelectric paster based on structured organic ion gel electrolyte. Nano-Micro Lett. 17(1), 204 (2025). https://doi.org/10.1007/s40820-025-01721-4
Y. Cui, Y. Wei, Effect of pore structure on the ionic thermoelectric effect of pure cement paste. Ceram. Int. 50(15), 26558–26568 (2024). https://doi.org/10.1016/j.ceramint.2024.04.384
S. Wen, D.D.L. Chung, Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers. Cem. Concr. Res. 30(8), 1295–1298 (2000). https://doi.org/10.1016/S0008-8846(00)00341-0
J. Wei, Z. Nie, G. He, L. Hao, L. Zhao et al., Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites. RSC Adv. 4(89), 48128–48134 (2014). https://doi.org/10.1039/C4RA07864K
J.H. Kim, J.H. Han, J.H. Kim, C.-M. Yang, D.W. Kim et al., Enhancing thermoelectric performance in carbon fiber-reinforced cement composites through boron doping. Constr. Build. Mater. 392, 131983 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131983
Y. Guo, J. Wei, L. Zhao, L. Sheng, T. Wang et al., Record high ZT value of carbon fiber reinforced cementitious composites by changing the microcrystalline structure of carbon fibers for large-scale energy harvesting. Constr. Build. Mater. 470, 140669 (2025). https://doi.org/10.1016/j.conbuildmat.2025.140669
S. Wen, D.D.L. Chung, Thermoelectric behavior of carbon–cement composites. Carbon 40(13), 2495–2497 (2002). https://doi.org/10.1016/S0008-6223(02)00142-2
J. Wei, L. Zhao, Q. Zhang, Z. Nie, L. Hao, Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting. Energy Build. 159, 66–74 (2018). https://doi.org/10.1016/j.enbuild.2017.10.032
J. Wei, Z. Jia, Y. Wang, Y. Jiang, Z. Miao et al., Enhanced thermoelectric performance of low carbon cement-based composites by reduced graphene oxide. Energy Build. 250, 111279 (2021). https://doi.org/10.1016/j.enbuild.2021.111279
J. Wei, L. Sheng, E. Lv, Z. Jiang, W. Gao et al., Significant improvement in thermoelectric properties of carbon-reinforced cementitious composites achieved by regulating the graphitization degree of expanded graphite. ACS Appl. Mater. Interfaces 16(27), 35381–35389 (2024). https://doi.org/10.1021/acsami.4c08270
K. Song, J. Liu, P. He, Q. Zhang, 3D printing graphene lattice enabled smart silicate composites with piezoresistive and thermoelectric effects. Carbon 234, 120026 (2025). https://doi.org/10.1016/j.carbon.2025.120026
L. Tzounis, M. Liebscher, R. Fuge, A. Leonhardt, V. Mechtcherine, P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: demonstration of a structural thermoelectric generator. Energy Build. 191, 151–163 (2019). https://doi.org/10.1016/j.enbuild.2019.03.027
J. Wei, M. Zhang, Y. Wang, S. Qiao, H. Zhang et al., Synergistic optimization of thermoelectric performance in cementitious composites by lithium carbonate and carbon nanotubes. Int. J. Energy Res. 45(2), 2460–2473 (2021). https://doi.org/10.1002/er.5940
I. Vareli, L. Tzounis, K. Tsirka, I.E. Kavvadias, K. Tsongas et al., High-performance cement/SWCNT thermoelectric nanocomposites and a structural thermoelectric generator device towards large-scale thermal energy harvesting. J. Mater. Chem. C 9(40), 14421–14438 (2021). https://doi.org/10.1039/D1TC03495B
J. Wei, Z. Miao, Y. Wang, Y. Zhou, D. Gao et al., Boosting power factor of thermoelectric cementitious composites by a unique CNT pretreatment process with low carbon content. Energy Build. 254, 111617 (2022). https://doi.org/10.1016/j.enbuild.2021.111617
J. Wei, T. Wang, J. Hui, X. Li, H. Zhang et al., Thermoelectric power factor of boron-doped carbon nanotubes reinforced cementitious composites. Energy Technol. 11(10), 2300404 (2023). https://doi.org/10.1002/ente.202300404
S. Wen, D.D.L. Chung, Seebeck effect in steel fiber reinforced cement. Cem. Concr. Res. 30(4), 661–664 (2000). https://doi.org/10.1016/S0008-8846(00)00205-2
K. Guo, G. Chen, M. Chang, C. Chen, E. Tang, Thermoelectric properties of cement mortar doped with steel fiber under heating conditions. Int. J. Heat Fluid Flow 106, 109274 (2024). https://doi.org/10.1016/j.ijheatfluidflow.2023.109274
T. Ji, X. Zhang, X. Zhang, Y. Zhang, W. Li, Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites. J. Mater. Civ. Eng. 30(9), 04018224 (2018). https://doi.org/10.1061/(asce)mt.1943-5533.0002401
T. Ji, S. Zhang, Y. He, X. Zhang, W. Li, Enhanced thermoelectric efficiency of cement-based materials with cuprous oxide for sustainable buildings. Adv. Mater. Sci. Eng. 2022(1), 6403756 (2022). https://doi.org/10.1155/2022/6403756
H.Y. Cao, W. Yao, J.J. Qin, Seebeck effect in graphite-carbon fiber cement based composite. Adv. Mater. Res. 177, 566–569 (2010). https://doi.org/10.4028/www.scientific.net/amr.177.566
J. Wei, X. Li, Y. Wang, B. Chen, S. Qiao et al., Record high thermoelectric performance of expanded graphite/carbon fiber cement composites enhanced by ionic liquid 1-butyl-3-methylimidazolium bromide for building energy harvesting. J. Mater. Chem. C 9(10), 3682–3691 (2021). https://doi.org/10.1039/D0TC05595F
I. Vareli, A. Gkaravela, S. Polyviou, N.-M. Barkoula, A.S. Paipetis, Structural carbon-enhanced cementitious thermoelectric generators (TEGs): optimal energy filtering and TEG design for outstanding energy harvesting. ACS Appl. Electron. Mater. 6(5), 2851–2861 (2024). https://doi.org/10.1021/acsaelm.3c00465
X. Liu, G. Liao, J. Zuo, Enhanced thermoelectric properties of carbon fiber-reinforced cement composites (CFRCs) utilizing Bi2Te3 with three doping methods. Fuller. Nanotub. Carbon Nanostruct. 29(4), 295–303 (2021). https://doi.org/10.1080/1536383X.2020.1839425
J. Wei, Y. Wang, X. Li, Z. Jia, S. Qiao et al., Dramatically improved thermoelectric properties by defect engineering in cement-based composites. ACS Appl. Mater. Interfaces 13(3), 3919–3929 (2021). https://doi.org/10.1021/acsami.0c18863
X. Liu, M. Qu, A.P.T. Nguyen, N.R. Dilley, K. Yazawa, Characteristics of new cement-based thermoelectric composites for low-temperature applications. Constr. Build. Mater. 304, 124635 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124635
T. Ji, S. Zhang, Y. He, X. Zhang, X. Zhang et al., Enhanced thermoelectric property of cement-based materials with the synthesized MnO2/carbon fiber composite. J. Build. Eng. 43, 103190 (2021). https://doi.org/10.1016/j.jobe.2021.103190
H. Zhou, H. Liu, G. Qian, P. Xu, H. Yu et al., Enhanced thermoelectric performances of CNTs-reinforced cement composites with Bi0.5Sb1.5Te3 for pavement energy harvesting. Nanomaterials 12(21), 3883 (2022). https://doi.org/10.3390/nano12213883
Y. Wang, J. Wei, Z. Miao, Y. Zhou, Y. Guo et al., Excellent thermoelectric properties of P-type cement-based composites through a universal defect engineering approach for large-scale energy harvesting. Constr. Build. Mater. 351, 128967 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128967
T. Ji, X. Liao, S. Zhang, Y. He, X. Zhang et al., Cement-based thermoelectric device for protection of carbon steel in alkaline chloride solution. Materials 15(13), 4461 (2022). https://doi.org/10.3390/ma15134461
Y. Wan, S. Tan, L. Li, H. Zhou, L. Zhao et al., Fabrication and thermoelectric property of the nano Fe2O3/carbon fiber/cement-based composites for potential energy harvesting application. Constr. Build. Mater. 365, 130021 (2023). https://doi.org/10.1016/j.conbuildmat.2022.130021
D. Huo, F. Song, Y. Wang, X.-C. Liu, Carrier type control in cement-based thermoelectric composites with carbon nanotube and SrTiO3 nanops. Mater. Today Commun. 37, 106973 (2023). https://doi.org/10.1016/j.mtcomm.2023.106973
D. Wu, X. Xiong, J. Ma, L. Lv, J. Huang, Enhanced thermoelectric and compressive performance of MnO2 coated carbon fiber/cement composites by microwave electrodeposition/microwave alkali treatment. Ceram. Int. 49(23), 37535–37548 (2023). https://doi.org/10.1016/j.ceramint.2023.09.080
R. Piao, Z. Cui, T. Oh, S. Kim, J.-W. Jeong et al., Synergistic effect of nickel and graphite powders on the thermoelectric properties of ultra-high-performance concrete containing steel fibers and MWCNTs. Cem. Concr. Compos. 154, 105778 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105778
Y.-F. Song, X.-B. Xiong, J. Ma, J. Huang, MnO2 with/without Ni doped films on carbon fibers by for enhancing compression and thermoelectric performances of cement. J. Build. Eng. 95, 110154 (2024). https://doi.org/10.1016/j.jobe.2024.110154
J. Zhang, C. Feng, Y. Fan, J. Yang, Z. Ni et al., Improved thermoelectric properties of graphene reinforced multiphase cement composites: experiments and modeling. J. Sustain. Cem. Based Mater. 13(10), 1452–1469 (2024). https://doi.org/10.1080/21650373.2024.2390595
R. Piao, Z. Cui, J.-W. Jeong, D.-Y. Yoo, Optimal multi-walled carbon nanotube dosage for improving the mechanical and thermoelectric characteristics of ultra-high-performance fiber-reinforced concrete. Constr. Build. Mater. 462, 139927 (2025). https://doi.org/10.1016/j.conbuildmat.2025.139927
L. Xia, B. Jia, J. Zeng, J. Xu, Wear and mechanical properties of carbon fiber reinforced copper alloy composites. Mater Charact 60(5), 363–369 (2009). https://doi.org/10.1016/j.matchar.2008.10.008
S. Chand, Review carbon fibers for composites. J. Mater. Sci. 35(6), 1303–1313 (2000). https://doi.org/10.1023/A:1004780301489
M. Sun, Z. Li, Q. Mao, D. Shen, Thermoelectric percolation phenomena in carbon fiber-reinforced concrete. Cem. Concr. Res. 28(12), 1707–1712 (1998). https://doi.org/10.1016/S0008-8846(98)00161-6
P. Zhang, Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions. Sci. Rep. 5, 9826 (2015). https://doi.org/10.1038/srep09826
I.N.R. Prudente, H.C. dos Santos, J.L. Fonseca, Y.A. de Almeida, I. de Fátima Gimenez et al., Graphene family (GFMs), carbon nanotubes (CNTs) and carbon black (CB) on smart materials for civil construction: Self-cleaning, self-sensing and self-heating. J. Build. Eng. 95, 110175 (2024). https://doi.org/10.1016/j.jobe.2024.110175
Z. Wei, F. Yang, K. Bi, J. Yang, Y. Chen, Tuning the interfacial thermal conductance via the anisotropic elastic properties of graphite. Carbon 144, 109–115 (2019). https://doi.org/10.1016/j.carbon.2018.12.024
N. Zhou, Q. Wang, J. Yu, X. Li, M. Li et al., Expandable graphite optimized carbon-fiber/carbon-aerogel composites with enhanced mechanical property for thermal insulation under extreme environments. Mater. Today Energy 49, 101852 (2025). https://doi.org/10.1016/j.mtener.2025.101852
B. Yesudhas Jayakumari, E. Nattanmai Swaminathan, P. Partheeban, A review on characteristics studies on carbon nanotubes-based cement concrete. Constr. Build. Mater. 367, 130344 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130344
C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32(36), 2206083 (2022). https://doi.org/10.1002/adfm.202206083
Y. Zhang, Q. Zhang, G. Chen, Carbon and carbon composites for thermoelectric applications. Carbon Energy 2(3), 408–436 (2020). https://doi.org/10.1002/cey2.68
J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30(11), 1704386 (2018). https://doi.org/10.1002/adma.201704386
J. Liang, R. Cui, X. Zhang, K. Koumoto, C. Wan, Polymer/carbon composites with versatile interfacial interactions for high performance carbon-based thermoelectrics: principles and applications. Adv. Funct. Mater. 33(9), 2208813 (2023). https://doi.org/10.1002/adfm.202208813
S. Wen, D.D.L. Chung, Origin of the thermoelectric behavior of steel fiber cement paste. Cem. Concr. Res. 32(5), 821–823 (2002). https://doi.org/10.1016/S0008-8846(01)00754-2
J. Liu, Q. Li, S. Xu, Influence of nanops on fluidity and mechanical properties of cement mortar. Constr. Build. Mater. 101, 892–901 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.149
J. Sun, L. Tian, Z. Yu, Y. Zhang, C. Li et al., Studies on the size effects of nano-TiO2 on Portland cement hydration with different water to solid ratios. Constr. Build. Mater. 259, 120390 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120390
S. He, S. Lehmann, A. Bahrami, K. Nielsch, Current state-of-the-art in the interface/surface modification of thermoelectric materials. Adv. Energy Mater. 11(37), 2101877 (2021). https://doi.org/10.1002/aenm.202101877
J. Kang, X. Yang, Q. Hu, Z. Cai, L.-M. Liu et al., Recent progress of amorphous nanomaterials. Chem. Rev. 123(13), 8859–8941 (2023). https://doi.org/10.1021/acs.chemrev.3c00229
G.M. Kim, S.M. Park, G.U. Ryu, H.K. Lee, Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cem. Concr. Compos. 82, 165–175 (2017). https://doi.org/10.1016/j.cemconcomp.2017.06.004
B. Xu, T. Feng, Z. Li, S.T. Pantelides, Y. Wu, Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 18(6), 4034–4039 (2018). https://doi.org/10.1021/acs.nanolett.8b01691
J. Wei, L. Hao, G. He, C. Yang, Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface. Ceram. Int. 40(6), 8261–8263 (2014). https://doi.org/10.1016/j.ceramint.2014.01.024
J. Wei, L. Hao, G. He, C. Yang, Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca3Co4O9, in China Functional Materials Technology and Industry Forum. ed. by G. Zhao, L. Lu, B. Long, Z. Nie (Trans Tech Publications Ltd, Durnten-Zurich, 2013), pp. 354–357. https://doi.org/10.4028/www.scientific.net/AMM.320.354
Y. Wang, J. Wei, Y. Zhou, Z. Miao, Y. Guo et al., Defect engineering treatment of indium tin oxide significantly enhances the thermoelectric properties of cement-based composites for large-scale energy harvesting. J. Build. Eng. 68, 106082 (2023). https://doi.org/10.1016/j.jobe.2023.106082
A. Kumar, T.J. Saravanan, K. Bisht, K.I. Syed Ahmed Kabeer, A review on the utilization of red mud for the production of geopolymer and alkali activated concrete. Constr. Build. Mater. 302, 124170 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124170
Y. Wu, B. Lu, T. Bai, H. Wang, F. Du et al., Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 224, 930–949 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.112
M.B. Ali, R. Saidur, M.S. Hossain, A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 15(5), 2252–2261 (2011). https://doi.org/10.1016/j.rser.2011.02.014
D.N. Huntzinger, T.D. Eatmon, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J. Clean. Prod. 17(7), 668–675 (2009). https://doi.org/10.1016/j.jclepro.2008.04.007
Á. Palomo, S. Alonso, A. Fernandez-Jiménez, I. Sobrados, J. Sanz, Alkaline activation of fly ashes: NMR study of the reaction products. J. Am. Ceram. Soc. 87(6), 1141–1145 (2004). https://doi.org/10.1111/j.1551-2916.2004.01141.x
F. Puertas, M. Palacios, H. Manzano, J.S. Dolado, A. Rico et al., A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.036
H.M. Park, S. Park, I.-J. Shon, G.M. Kim, S. Hwang et al., Influence of Portland cement and alkali-activated slag binder on the thermoelectric properties of the p-type composites with MWCNT. Constr. Build. Mater. 292, 123393 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123393
M. Davoodabadi, I. Vareli, M. Liebscher, L. Tzounis, M. Sgarzi et al., Thermoelectric energy harvesting from single-walled carbon nanotube alkali-activated nanocomposites produced from industrial waste materials. Nanomaterials 11(5), 1095 (2021). https://doi.org/10.3390/nano11051095
J. Li, B.W.Y. Tay, J. Lei, E.-H. Yang, Experimental investigation of Seebeck effect in metakaolin-based geopolymer. Constr. Build. Mater. 272, 121615 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121615
J. Cai, X. Li, Thermoelectric properties of geopolymers with the addition of nano-silicon carbide (SiC) powder. Ceram. Int. 47(14), 19752–19759 (2021). https://doi.org/10.1016/j.ceramint.2021.03.313
J. Cai, Y. Yuan, X. Xi, N. Ukrainczyk, L. Pan et al., Unveiling the remarkable potential of geopolymer-based materials by harnessing manganese dioxide incorporation. Small 20(5), 2305360 (2024). https://doi.org/10.1002/smll.202305360
M. Barzegar, G. Goracci, P. Martauz, J.S. Dolado, Sustainable geopolymer concrete for thermoelectric energy harvesting. Constr. Build. Mater. 411, 134398 (2024). https://doi.org/10.1016/j.conbuildmat.2023.134398
A. Santos, S. Andrejkovičová, F. Almeida, F. Rocha, Thermoelectric properties of geopolymers with iron ore mine waste: a case study for energy management. Ceram. Int. 50(19), 36112–36125 (2024). https://doi.org/10.1016/j.ceramint.2024.06.424
G. Karalis, M. Liebscher, J. Mersch, J. Zhao, K.H. Ly et al., Carbon nanotube fibers as efficient p- and n-type thermoelements within geopolymers: a route for large-scale thermal energy harvesting from building structures. Cem. Concr. Compos. 153, 105699 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105699
L.-P. Guo, B.-C. Lyu, J.-O. He, J.-T. Lu, B. Chen, Mechanical and thermoelectric properties of high ductility geopolymer composites with nano zinc oxide and red mud. Constr. Build. Mater. 455, 139173 (2024). https://doi.org/10.1016/j.conbuildmat.2024.139173
J. Cai, Y. Yuan, L. Pan, Z. Pei, Y. Zhang et al., Intelligent thermoelectric sensing with sustainable strain-hardening geopolymeric composites. Small Sci. 5(3), 2400520 (2025). https://doi.org/10.1002/smsc.202400520
Y. Yuan, J. Cai, X. Xi, N. Ukrainczyk, Y. Wang et al., Advancing the mechanical and thermoelectric properties of geopolymers for sustainable architecture. Small (2025). https://doi.org/10.1002/smll.202408048
P. Cong, R. Du, H. Gao, Z. Chen, Comparison and assessment of carbon dioxide emissions between alkali-activated materials and OPC cement concrete. J. Traffic Transp. Eng. Engl. Ed. 11(5), 918–938 (2024). https://doi.org/10.1016/j.jtte.2023.07.011
T. Luukkonen, Alkali-activated materials in environmental technology: introduction, in Alkali-Activated Materials in Environmental Technology Applications (Elsevier, 2022), pp. 1–12. https://doi.org/10.1016/b978-0-323-88438-9.00011-9
S. Ghosh, B.B. Saha, Estimation of energy harvesting by thermoelectric cement composites with nanostructured graphene and metallic oxides. J. Compos. Sci. 7(5), 207 (2023). https://doi.org/10.3390/jcs7050207
W. Pichór, M. Frąc, Electric and thermoelectric properties of cement composites with expanded graphite, in Brittle Matrix Composites, vol. 10 (Elsevier, 2012), pp. 43–50. https://doi.org/10.1533/9780857099891.43
Z. Wang, Z. Wang, M. Ning, S. Tang, Y. He, Electro-thermal properties and Seebeck effect of conductive mortar and its use in self-heating and self-sensing system. Ceram. Int. 43(12), 8685–8693 (2017). https://doi.org/10.1016/j.ceramint.2017.03.202
Y. Wang, Y. Zheng, W. Li, S. Xiao, S. Chen et al., Bio-inspired thermoelectric cement with interfacial selective immobilization towards self-powered buildings. Sci. Bull. 70(12), 1994–2003 (2025). https://doi.org/10.1016/j.scib.2025.03.032
N. Van Nong, N. Pryds, S. Linderoth, M. Ohtaki, Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv. Mater. 23(21), 2484–2490 (2011). https://doi.org/10.1002/adma.201004782
C. Wu, X.-L. Shi, L. Wang, W. Lyu, P. Yuan et al., Defect engineering advances thermoelectric materials. ACS Nano 18(46), 31660–31712 (2024). https://doi.org/10.1021/acsnano.4c11732
C. Chen, Z. Liu, L. Guo, B. Huo, Q. Sun et al., High spatiotemporal resolution biomimetic thermoreceptors realizing by jointless p-n integration thermoelectric composites. Adv. Funct. Mater. 34(49), 2411490 (2024). https://doi.org/10.1002/adfm.202411490
L. Deng, G. Chen, Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance. Nano Energy 80, 105448 (2021). https://doi.org/10.1016/j.nanoen.2020.105448
E. Orisakwe, C. Johnston, R. Jani, X. Liu, L. Stella et al., Thermoelectric properties of cement composite analogues from first principles calculations. Mater. Res. Express 10(9), 095505 (2023). https://doi.org/10.1088/2053-1591/acf6fb
R.O. Agbaoye, A. Ayuela, J.S. Dolado, Refractory and thermoelectric properties of stabilized Tricalcium aluminate allotrope: a first-principles calculation approach. Mater. Today Commun. 39, 108757 (2024). https://doi.org/10.1016/j.mtcomm.2024.108757
L. Li, J. Chen, X. Tan, Y. Zhou, Y. Zhang et al., 3D face-centered-cubic cement-based hybrid composites reinforced by tension-resistant polymeric truss network. Autom. Constr. 120, 103380 (2020). https://doi.org/10.1016/j.autcon.2020.103380
A.K. Tiwari, P.P. Pratapa, M. Santhanam, Lattice concrete: 3D printed periodic cellular structures through selective cement hydration. J. Build. Eng. 86, 108946 (2024). https://doi.org/10.1016/j.jobe.2024.108946
X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen, Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 90, 106577 (2021). https://doi.org/10.1016/j.nanoen.2021.106577
P. Thissen, A. Bogner, F. Dehn, Surface treatments on concrete: an overview on organic, inorganic and nano-based coatings and an outlook about surface modification by rare-earth oxides. RSC Sustain. 2(8), 2092–2124 (2024). https://doi.org/10.1039/D3SU00482A
B. Yin, C. Wu, D. Hou, S. Li, Z. Jin et al., Research and application progress of nano-modified coating in improving the durability of cement-based materials. Prog. Org. Coat. 161, 106529 (2021). https://doi.org/10.1016/j.porgcoat.2021.106529
X. Meng, Y. Jiang, B. Chen, L. Wang, Modification of magnesium phosphate cement with steel slag powder and ground blast furnace slag: mechanism of hydration and electrical conductivity. Constr. Build. Mater. 438, 137305 (2024). https://doi.org/10.1016/j.conbuildmat.2024.137305
Z. Ren, J. Sun, X. Zeng, X. Chen, Y. Wang et al., Research on the electrical conductivity and mechanical properties of copper slag multiphase nano-modified electrically conductive cementitious composite. Constr. Build. Mater. 339, 127650 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127650
A. Ślosarczyk, I. Klapiszewska, D. Skowrońska, M. Janczarek, T. Jesionowski et al., A comprehensive review of building materials modified with metal and metal oxide nanops against microbial multiplication and growth. Chem. Eng. J. 466, 143276 (2023). https://doi.org/10.1016/j.cej.2023.143276