An Emerging Liquid-Crystalline Conducting Polymer Thermoelectrics: Opportunities and Challenges
Corresponding Author: Guangming Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 82
Abstract
Thermoelectric (TE) materials, being capable of converting waste heat into electricity, are pivotal for sustainable energy solutions. Among emerging TE materials, organic TE materials, particularly conjugated polymers, are gaining prominence due to their unique combination of mechanical flexibility, environmental compatibility, and solution-processable fabrication. A notable candidate in this field is poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), a liquid-crystalline conjugated polymer, with high charge carrier mobility and adaptability to melt-processing techniques. Recent advancements have propelled PBTTT’s figure of merit from below 0.1 to a remarkable 1.28 at 368 K, showcasing its potential for practical applications. This review systematically examines strategies to enhance PBTTT’s TE performance through doping (solution, vapor, and anion exchange doping), composite engineering, and aggregation state controlling. Recent key breakthroughs include ion exchange doping for stable charge modulation, multi-heterojunction architectures reducing thermal conductivity, and proton-coupled electron transfer doping for precise Fermi-level tuning. Despite great progress, challenges still persist in enhancing TE conversion efficiency, balancing or decoupling electrical conductivity, Seebeck coefficient and thermal conductivity, and leveraging melt-processing scalability of PBTTT. By bridging fundamental insights with applied research, this work provides a roadmap for advancing PBTTT-based TE materials toward efficient energy harvesting and wearable electronics.
Highlights:
1 Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) synthesis and main strategies to enhance its thermoelectric performance (including doping, composite engineering and aggregation state controlling) are comprehensively reviewed.
2 The thermoelectric performances of PBTTT-related materials are systematically summarized and compared.
3 Future opportunities of PBTTT thermoelectric performance enhancement and effective utilization of its unique melt processibility in multiscale regulation, composite and hybrid, and processing technology innovation are outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
- Q. Yan, M.G. Kanatzidis, High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21(5), 503–513 (2022). https://doi.org/10.1038/s41563-021-01109-w
- Q. Tang, B. Jiang, K. Wang, W. Wang, B. Jia et al., High-entropy thermoelectric materials. Joule 8(6), 1641–1666 (2024). https://doi.org/10.1016/j.joule.2024.04.012
- Y. Lu, Y. Zhou, W. Wang, M. Hu, X. Huang et al., Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance. Nat. Nanotechnol. 18(11), 1281–1288 (2023). https://doi.org/10.1038/s41565-023-01457-5
- Y. Xiao, L.-D. Zhao, Charge and phonon transport in PbTe-based thermoelectric materials. NPJ Quantum Mater. 3, 55 (2018). https://doi.org/10.1038/s41535-018-0127-y
- K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang et al., Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ. Sci. 9(2), 454–460 (2016). https://doi.org/10.1039/C5EE03366G
- O. Caballero-Calero, J.R. Ares, M. Martín-González, Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the Earth. Adv. Sustain. Syst. 5(11), 2100095 (2021). https://doi.org/10.1002/adsu.202100095
- Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. Cui, The cradle to gate life-cycle assessment of thermoelectric materials: a comparison of inorganic, organic and hybrid types. Sustain. Energy Technol. Assess. 44, 101073 (2021). https://doi.org/10.1016/j.seta.2021.101073
- B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1(10), 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
- L. Deng, Y. Liu, Y. Zhang, S. Wang, P. Gao, Organic thermoelectric materials: niche harvester of thermal energy. Adv. Funct. Mater. 33(3), 2210770 (2023). https://doi.org/10.1002/adfm.202210770
- X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
- H. He, J. Ouyang, Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT: PSS for flexible electronics applications. Acc. Mater. Res. 1(2), 146–157 (2020). https://doi.org/10.1021/accountsmr.0c00021
- K.M. Reza, A. Gurung, B. Bahrami, S. Mabrouk, H. Elbohy et al., Tailored PEDOT: PSS hole transport layer for higher performance in perovskite solar cells: enhancement of electrical and optical properties with improved morphology. J. Energy Chem. 44, 41–50 (2020). https://doi.org/10.1016/j.jechem.2019.09.014
- B. Chen, M. Wu, S. Fang, Y. Cao, L. Pei et al., Liquid metal-tailored PEDOT: PSS for noncontact flexible electronics with high spatial resolution. ACS Nano 16(11), 19305–19318 (2022). https://doi.org/10.1021/acsnano.2c08760
- W. Jeong, G. Gwon, J.-H. Ha, D. Kim, K.-J. Eom et al., Enhancing the conductivity of PEDOT: PSS films for biomedical applications via hydrothermal treatment. Biosens. Bioelectron. 171, 112717 (2021). https://doi.org/10.1016/j.bios.2020.112717
- I. Paulraj, T.F. Liang, T.S. Yang, C.H. Wang, J.L. Chen et al., High performance of post-treated PEDOT: PSS thin films for thermoelectric power generation applications. ACS Appl. Mater. Interfaces 13(36), 42977–42990 (2021). https://doi.org/10.1021/acsami.1c13968
- M. Mooney, A. Nyayachavadi, S. Rondeau-Gagné, Eco-friendly semiconducting polymers: from greener synthesis to greener processability. J. Mater. Chem. C 8(42), 14645–14664 (2020). https://doi.org/10.1039/d0tc04085a
- C. Dai, B. Liu, Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 13(1), 24–52 (2020). https://doi.org/10.1039/c9ee01935a
- C. Chen, Z. Liu, L. Guo, B. Huo, Q. Sun et al., High spatiotemporal resolution biomimetic thermoreceptors realizing by jointless p-n integration thermoelectric composites. Adv. Funct. Mater. 34(49), 2411490 (2024). https://doi.org/10.1002/adfm.202411490
- C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32(36), 2206083 (2022). https://doi.org/10.1002/adfm.202206083
- Z. Ding, C. Du, W. Long, C.-F. Cao, L. Liang et al., Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 68(24), 3261–3277 (2023). https://doi.org/10.1016/j.scib.2023.08.057
- Z. Ding, G. Li, Y. Wang, C. Du, Z. Ye et al., Ultrafast response and threshold adjustable intelligent thermoelectric systems for next-generation self-powered remote IoT fire warning. Nano-Micro Lett. 16(1), 242 (2024). https://doi.org/10.1007/s40820-024-01453-x
- G. Li, Y. Hu, J. Chen, L. Liang, Z. Liu et al., Thermoelectric and photoelectric dual modulated sensors for human Internet of Things application in accurate fire recognition and warning. Adv. Funct. Mater. 33(41), 2303861 (2023). https://doi.org/10.1002/adfm.202303861
- Q. Sun, C. Du, G. Chen, Thermoelectric materials and applications in buildings. Prog. Mater. Sci. 149, 101402 (2025). https://doi.org/10.1016/j.pmatsci.2024.101402
- Z. Liu, C. Chen, J. Liu, Q. Sun, B. Huo et al., All-day solar power generation enabled by photo/thermoelectric conversion and thermal energy storage. Sci. China Chem. 68(5), 2035–2043 (2025). https://doi.org/10.1007/s11426-024-2336-1
- H. Lv, L. Liang, Y. Zhang, L. Deng, Z. Chen et al., A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88, 106260 (2021). https://doi.org/10.1016/j.nanoen.2021.106260
- H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16(1), 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
- X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
- S. Wang, G. Zuo, J. Kim, H. Sirringhaus, Progress of conjugated polymers as emerging thermoelectric materials. Prog. Polym. Sci. 129, 101548 (2022). https://doi.org/10.1016/j.progpolymsci.2022.101548
- Z. Qiu, B.A.G. Hammer, K. Müllen, Conjugated polymers–problems and promises. Prog. Polym. Sci. 100, 101179 (2020). https://doi.org/10.1016/j.progpolymsci.2019.101179
- A. Pron, P. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27(1), 135–190 (2002). https://doi.org/10.1016/S0079-6700(01)00043-0
- J.F. Ponder Jr., S.A. Gregory, A. Atassi, A.K. Menon, A.W. Lang et al., Significant enhancement of the electrical conductivity of conjugated polymers by post-processing side chain removal. J. Am. Chem. Soc. 144(3), 1351–1360 (2022). https://doi.org/10.1021/jacs.1c11558
- A. Moliton, R.C. Hiorns, Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym. Int. 53(10), 1397–1412 (2004). https://doi.org/10.1002/pi.1587
- C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa et al., Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977). https://doi.org/10.1103/physrevlett.39.1098
- C.I. Simionescu, V. Percec, Progress in polyacetylene chemistry. Prog. Polym. Sci. 8(1–2), 133–214 (1982). https://doi.org/10.1016/0079-6700(82)90009-0
- S. Deng, C. Dong, J. Liu, B. Meng, J. Hu et al., An n-type polythiophene derivative with excellent thermoelectric performance. Angew. Chem. Int. Ed. 62(18), e202216049 (2023). https://doi.org/10.1002/anie.202216049
- P.-S. Lin, S. Inagaki, J.-H. Liu, M.-C. Chen, T. Higashihara et al., The role of branched alkylthio side chain on dispersion and thermoelectric properties of regioregular polythiophene/carbon nanotubes nanocomposites. Chem. Eng. J. 458, 141366 (2023). https://doi.org/10.1016/j.cej.2023.141366
- S. Liu, H. Li, P. Li, Y. Liu, C. He, Recent advances in polyaniline-based thermoelectric composites. CCS Chem. 3(10), 2547–2560 (2021). https://doi.org/10.31635/ccschem.021.202101066
- H. Li, Y. Liu, P. Li, S. Liu, F. Du et al., Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering. ACS Appl. Mater. Interfaces 13(5), 6650–6658 (2021). https://doi.org/10.1021/acsami.0c20931
- A. Debnath, K. Deb, K. Sarkar, B. Saha, Low interfacial energy barrier and improved thermoelectric performance in Te-incorporated polypyrrole. J. Phys. Chem. C 125(1), 168–177 (2021). https://doi.org/10.1021/acs.jpcc.0c09100
- M. Almasoudi, M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, A. Alshahrie et al., Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance. Polymer 228, 123950 (2021). https://doi.org/10.1016/j.polymer.2021.123950
- L. Wu, H. Li, H. Chai, Q. Xu, Y. Chen et al., Anion-dependent molecular doping and charge transport in ferric salt-doped P3HT for thermoelectric application. ACS Appl. Electron. Mater. 3(3), 1252–1259 (2021). https://doi.org/10.1021/acsaelm.0c01067
- V. Untilova, T. Biskup, L. Biniek, V. Vijayakumar, M. Brinkmann, Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT: F4TCNQ films. Macromolecules 53(7), 2441–2453 (2020). https://doi.org/10.1021/acs.macromol.9b02389
- M.N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, J.-P. Simonato, Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Prog. Mater. Sci. 108, 100616 (2020). https://doi.org/10.1016/j.pmatsci.2019.100616
- L. Liu, J. Chen, L. Liang, L. Deng, G. Chen, A PEDOT: PSS thermoelectric fiber generator. Nano Energy 102, 107678 (2022). https://doi.org/10.1016/j.nanoen.2022.107678
- Y. Li, Y. Pang, L. Wang, Q. Li, B. Liu et al., Boosting the performance of PEDOT: PSS based electronics via ionic liquids. Adv. Mater. 36(13), 2310973 (2024). https://doi.org/10.1002/adma.202310973
- N. Wen, Z. Fan, S. Yang, Y. Zhao, T. Cong et al., Highly conductive, ultra-flexible and continuously processable PEDOT: PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy 78, 105361 (2020). https://doi.org/10.1016/j.nanoen.2020.105361
- I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald et al., Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5(4), 328–333 (2006). https://doi.org/10.1038/nmat1612
- J.G. Sutjianto, S.H. Yoo, C.R. Westerman, T.N. Jackson, J.J. Wilker et al., Blends of conjugated and adhesive polymers for sticky organic thin-film transistors. Adv. Electron. Mater. 9(12), 2300422 (2023). https://doi.org/10.1002/aelm.202300422
- P.-A. Chen, J. Guo, H. Wei, J. Xia, C. Chen et al., Achieving unipolar organic transistors for complementary circuits by selective usage of doped organic semiconductor film electrodes. Adv. Funct. Mater. 35(3), 2413880 (2025). https://doi.org/10.1002/adfm.202413880
- J. Vanderspikken, Q. Liu, Z. Liu, T. Vandermeeren, T. Cardeynaels et al., Tuning electronic and morphological properties for high-performance wavelength-selective organic near-infrared cavity photodetectors. Adv. Funct. Mater. 32(9), 2108146 (2022). https://doi.org/10.1002/adfm.202108146
- S. Gupta, B.N. Pal, R. Prakash, Improved ammonia sensitivity and broadband photodetection by using PBTTT-C14/WS2-QDs nano-heterojunction based thin film transistor. Sens. Actuators B Chem. 414, 135872 (2024). https://doi.org/10.1016/j.snb.2024.135872
- L.-H. Li, O.Y. Kontsevoi, S.H. Rhim, A.J. Freeman, Structural, electronic, and linear optical properties of organic photovoltaic PBTTT-C14 crystal. J. Chem. Phys. 138(16), 164503 (2013). https://doi.org/10.1063/1.4802033
- D.W. Gehrig, I.A. Howard, S. Sweetnam, T.M. Burke, M.D. McGehee et al., The impact of donor–acceptor phase separation on the charge carrier dynamics in pBTTT: PCBM photovoltaic blends. Macromol. Rapid Commun. 36(11), 1054–1060 (2015). https://doi.org/10.1002/marc.201500112
- M.U. Chaudhry, K. Muhieddine, R. Wawrzinek, J. Sobus, K. Tandy et al., Organic light-emitting transistors: advances and perspectives. Adv. Funct. Mater. 30(20), 1905282 (2020). https://doi.org/10.1002/adfm.201905282
- F.-C. Wu, P.-R. Li, B.-R. Lin, R.-J. Wu, H.-L. Cheng et al., Ultraviolet light-activated charge modulation heterojunction for versatile organic thin film transistors. ACS Appl. Mater. Interfaces 13(38), 45822–45832 (2021). https://doi.org/10.1021/acsami.1c12390
- S.A. Gregory, A. Atassi, J.F. Ponder Jr., G. Freychet, G.M. Su et al., Quantifying charge carrier localization in PBTTT using thermoelectric and spectroscopic techniques. J. Phys. Chem. C 127(25), 12206–12217 (2023). https://doi.org/10.1021/acs.jpcc.3c01152
- J. Min, D. Kim, S.G. Han, C. Park, H. Lim et al., Position-induced efficient doping for highly doped organic thermoelectric materials. Adv. Electron. Mater. 8(3), 2101142 (2022). https://doi.org/10.1002/aelm.202101142
- D. Wang, J. Ding, Y. Ma, C. Xu, Z. Li et al., Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 632(8025), 528–535 (2024). https://doi.org/10.1038/s41586-024-07724-2
- V. Raja, Z. Hu, G. Chen, Progress in poly(2, 5-bis(3-alkylthiophen-2-yl)thieno [3, 2-b] thiophene) composites for thermoelectric application. Compos. Commun. 27, 100886 (2021). https://doi.org/10.1016/j.coco.2021.100886
- S. Tierney, M. Heeney, I. McCulloch, Microwave-assisted synthesis of polythiophenes via the Stille coupling. Synth. Met. 148(2), 195–198 (2005). https://doi.org/10.1016/j.synthmet.2004.09.015
- Z. Bao, W. Chan, L. Yu, Synthesis of conjugated polymer by the stille coupling reaction. Chem. Mater. 5(1), 2–3 (1993). https://doi.org/10.1021/cm00025a001
- J.-P. Lère-Porte, J.J.E. Moreau, C. Torreilles, Highly conjugated poly(thiophene)s—synthesis of regioregular 3-alkylthiophene polymers and 3-alkylthiophene/thiophene copolymers. Eur. J. Org. Chem. 2001(7), 1249–1258 (2001). https://doi.org/10.1002/1099-0690(200104)2001:7%3c1249::AID-EJOC1249%3e3.0.CO;2-F
- P. Durand, H. Zeng, B. Jismy, O. Boyron, B. Heinrich et al., Controlling conjugated polymer morphology by precise oxygen position in single-ether side chains. Mater. Horiz. 11(19), 4737–4746 (2024). https://doi.org/10.1039/D4MH00492B
- T. Kurosawa, Y. Yamashita, Y. Kobayashi, C.P. Yu, S. Kumagai et al., Employment of alkoxy sidechains in semicrystalline semiconducting polymers for ambient-stable p-doped conjugated polymers. Macromolecules 57(1), 328–338 (2024). https://doi.org/10.1021/acs.macromol.3c00211
- P.-J. Yu, Y.-C. Lin, C.-Y. Lin, W.-C. Chen, Enhanced mobility preservation of polythiophenes in stretched states utilizing thienyl-ester conjugated side chain. Polymer 264, 125575 (2023). https://doi.org/10.1016/j.polymer.2022.125575
- J. Vanderspikken, Z. Liu, X. Wu, O. Beckers, S. Moro et al., On the importance of chemical precision in organic electronics: fullerene intercalation in perfectly alternating conjugated polymers. Adv. Funct. Mater. 33(52), 2309403 (2023). https://doi.org/10.1002/adfm.202309403
- Z. Liu, J. Vanderspikken, P. Mantegazza, S. Moro, M. Hamid et al., Removing homocoupling defects in alkoxy/alkyl-PBTTT enhances polymer: fullerene co-crystal formation and stability. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202413647
- Y. Fan, J. Liu, P.-A. Chen, D. Xia, J. Wang et al., Doping regulation of highly conductive PBTTT films. Cell Rep. Phys. Sci. 5(9), 102197 (2024). https://doi.org/10.1016/j.xcrp.2024.102197
- F. Zhang, C.-A. Di, N. Berdunov, Y. Hu, Y. Hu et al., Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv. Mater. 25(10), 1401–1407 (2013). https://doi.org/10.1002/adma.201204075
- A.M. Glaudell, J.E. Cochran, S.N. Patel, M.L. Chabinyc, Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5(4), 1401072 (2015). https://doi.org/10.1002/aenm.201401072
- X. Mu, W. Wang, C. Sun, D. Zhao, C. Ma et al., Greatly increased electrical conductivity of PBTTT-C14 thin film via controllable single precursor vapor phase infiltration. Nanotechnology 34(1), 015709 (2023). https://doi.org/10.1088/1361-6528/ac96fa
- J. Kim, D. Ju, S. Kim, K. Cho, Disorder-controlled efficient doping of conjugated polymers for high-performance organic thermoelectrics. Adv. Funct. Mater. 34(6), 2309156 (2024). https://doi.org/10.1002/adfm.202309156
- O. Zapata-Arteaga, S. Marina, G. Zuo, K. Xu, B. Dörling et al., Design rules for polymer blends with high thermoelectric performance. Adv. Energy Mater. 12(19), 2104076 (2022). https://doi.org/10.1002/aenm.202104076
- V. Vijayakumar, Y. Zhong, V. Untilova, M. Bahri, L. Herrmann et al., Bringing conducting polymers to high order: toward conductivities beyond 105 S cm−1 and thermoelectric power factors of 2 mW m−1 K−2. Adv. Energy Mater. 9(24), 1900266 (2019). https://doi.org/10.1002/aenm.201900266
- M. Pandey, S.S. Pandey, S. Nagamatsu, S. Hayase, W. Takashima, Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: role of macroscopic orientation. Org. Electron. 43, 240–246 (2017). https://doi.org/10.1016/j.orgel.2017.01.031
- M. Pandey, J. Toyoda, S. Sharma, Y. Cho, H. Benten et al., The role of solvents in the microstructure and charge transport of semiconducting polymer films prepared at the air–liquid interface. J. Mater. Chem. C 11(36), 12364–12373 (2023). https://doi.org/10.1039/D3TC02282J
- A. Dauendorffer, S. Miyajima, S. Nagamatsu, W. Takashima, S. Hayase et al., One-step deposition of self-oriented β-phase polyfluorene thin films for polarized polymer light-emitting diodes. Appl. Phys. Express 5(9), 092101 (2012). https://doi.org/10.1143/apex.5.092101
- M. Ito, Y. Yamashita, T. Mori, M. Chiba, T. Futae et al., Hyper 100 ℃ Langmuir–blodgett (Langmuir–schaefer) technique for organized ultrathin film of polymeric semiconductors. Langmuir 38(17), 5237–5247 (2022). https://doi.org/10.1021/acs.langmuir.1c02596
- Y.-S. Kim, H. Kim, T. Yoon, M.-J. Kim, J. Lee et al., Latent and controllable doping of stimuli-activated molecular dopants for flexible and printable organic thermoelectric generators. Chem. Eng. J. 470, 144129 (2023). https://doi.org/10.1016/j.cej.2023.144129
- N. Yousefi, R.D. Pettipas, T.L. Kelly, L.G. Kaake, Self-assembly of PBTTT–C14 thin films in supercritical fluids. Mater. Adv. 3(5), 2515–2523 (2022). https://doi.org/10.1039/d1ma00847a
- H. Zeng, P. Durand, S. Guchait, L. Herrmann, C. Kiefer et al., Optimizing chain alignment and preserving the pristine structure of single-ether based PBTTT helps improve thermoelectric properties in sequentially doped thin films. J. Mater. Chem. C 10(42), 15883–15896 (2022). https://doi.org/10.1039/D2TC03600B
- P. Limelette, N. Leclerc, M. Brinkmann, Heterogeneous oriented structure model of thermoelectric transport in conducting polymers. Sci. Rep. 13(1), 21161 (2023). https://doi.org/10.1038/s41598-023-48353-5
- S.N. Patel, A.M. Glaudell, K.A. Peterson, E.M. Thomas, K.A. O’Hara et al., Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 3(6), e1700434 (2017). https://doi.org/10.1126/sciadv.1700434
- Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai et al., Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572(7771), 634–638 (2019). https://doi.org/10.1038/s41586-019-1504-9
- B. Yurash, D.X. Cao, V.V. Brus, D. Leifert, M. Wang et al., Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 18(12), 1327–1334 (2019). https://doi.org/10.1038/s41563-019-0479-0
- N. Chen, T. Mukhopadhyay, Y. Song, S. Griggs, C.J. Kousseff et al., Enhancing electrical conductivity and power factor in poly-glycol-bithienylthienothiophene with oligoethylene glycol side chains through tris (pentafluorophenyl) borane doping. Adv. Funct. Mater. 34(33), 2400469 (2024). https://doi.org/10.1002/adfm.202400469
- A. Dash, S. Guchait, D. Scheunemann, V. Vijayakumar, N. Leclerc et al., Spontaneous modulation doping in semi-crystalline conjugated polymers leads to high conductivity at low doping concentration. Adv. Mater. 36(13), 2311303 (2024). https://doi.org/10.1002/adma.202311303
- N.J. Pataki, S. Guchait, B. Jismy, N. Leclerc, A. Kyndiah et al., A label-like monolithic organic thermoelectric generator enabled by local inkjet doping of aligned polymer films (Adv. Energy Mater. 15/2025). Adv. Energy Mater. 15(15), 2570076 (2025). https://doi.org/10.1002/aenm.202570076
- S. Guchait, S. Oummouch, P. Durand, N. Kamatham, B. Jismy et al., Impact of side chain chemical structure on doping and thermoelectric properties of oriented PBTTT thin films. Small 21(6), 2410073 (2025). https://doi.org/10.1002/smll.202410073
- X.-Y. Deng, Z. Zhang, T. Lei, Integrated materials design and process engineering for n-type polymer thermoelectrics. JACS Au 4(11), 4066–4083 (2024). https://doi.org/10.1021/jacsau.4c00638
- H. Tanaka, S.-I. Ito, T. Matsui, T. Takenobu, Facile and controllable chemical doping of conducting polymers with an ionic liquid dopant. Appl. Phys. Express 17(3), 031002 (2024). https://doi.org/10.35848/1882-0786/ad2f66
- I.E. Jacobs, Y. Lin, Y. Huang, X. Ren, D. Simatos et al., High-efficiency ion-exchange doping of conducting polymers. Adv. Mater. 34(22), 2102988 (2022). https://doi.org/10.1002/adma.202102988
- C. Chen, I.E. Jacobs, K. Kang, Y. Lin, C. Jellett et al., Observation of weak counterion size dependence of thermoelectric transport in ion exchange doped conducting polymers across a wide range of conductivities. Adv. Energy Mater. 13(9), 2202797 (2023). https://doi.org/10.1002/aenm.202202797
- W. Jin, C.-Y. Yang, R. Pau, Q. Wang, E.K. Tekelenburg et al., Photocatalytic doping of organic semiconductors. Nature 630(8015), 96–101 (2024). https://doi.org/10.1038/s41586-024-07400-5
- V. Vijayakumar, P. Durand, H. Zeng, V. Untilova, L. Herrmann et al., Influence of dopant size and doping method on the structure and thermoelectric properties of PBTTT films doped with F6TCNQ and F4TCNQ. J. Mater. Chem. C 8(46), 16470–16482 (2020). https://doi.org/10.1039/D0TC02828B
- V. Vijayakumar, E. Zaborova, L. Biniek, H. Zeng, L. Herrmann et al., Effect of alkyl side chain length on doping kinetics, thermopower, and charge transport properties in highly oriented F4TCNQ-doped PBTTT films. ACS Appl. Mater. Interfaces 11(5), 4942–4953 (2019). https://doi.org/10.1021/acsami.8b17594
- Z. Jia, W. Wang, C. Ma, X. Zhang, R. Yan et al., Efficiently tuning the electrical performance of PBTTT-C14 thin film viainsitucontrollable multiple precursors (Al2O3: ZnO) vapor phase infiltration. Nanotechnology (2024). https://doi.org/10.1088/1361-6528/ad375c
- C.Z. Leng, M.D. Losego, Vapor phase infiltration (VPI) for transforming polymers into organic–inorganic hybrid materials: a critical review of current progress and future challenges. Mater. Horiz. 4(5), 747–771 (2017). https://doi.org/10.1039/C7MH00196G
- I. Azpitarte, M. Knez, Vapor phase infiltration: from a bioinspired process to technologic application, a prospective review. MRS Commun. 8(3), 727–741 (2018). https://doi.org/10.1557/mrc.2018.126
- I.E. Jacobs, A.J. Moulé, Controlling molecular doping in organic semiconductors. Adv. Mater. 29(42), 1703063 (2017). https://doi.org/10.1002/adma.201703063
- I. Salzmann, G. Heimel, M. Oehzelt, S. Winkler, N. Koch, Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res. 49(3), 370–378 (2016). https://doi.org/10.1021/acs.accounts.5b00438
- Y. Li, C.-Y. Gao, X.-H. Fan, L.-M. Yang, In-situ pulse electropolymerization of pyrrole on single-walled carbon nanotubes for thermoelectric composite materials. Chem. Eng. J. 443, 136536 (2022). https://doi.org/10.1016/j.cej.2022.136536
- Y. Bao, Y. Sun, F. Jiao, W. Hu, Recent advances in multicomponent organic composite thermoelectric materials. Adv. Electron. Mater. 9(5), 2201310 (2023). https://doi.org/10.1002/aelm.202201310
- J. Liu, J. Moo-Young, M. McInnis, M.A. Pasquinelli, L. Zhai, Conjugated polymer assemblies on carbon nanotubes. Macromolecules 47(2), 705–712 (2014). https://doi.org/10.1021/ma401609q
- S.H. Kim, S. Jeong, D. Kim, C.Y. Son, K. Cho, Effects of connecting polymer structure and morphology at inter-tube junctions on the thermoelectric properties of conjugated polymer/carbon nanotube composites. Adv. Electron. Mater. 9(7), 2201293 (2023). https://doi.org/10.1002/aelm.202201293
- P.K. Sahu, R.K. Pandey, R. Dwivedi, V.N. Mishra, R. Prakash, Polymer/Graphene oxide nanocomposite thin film for NO2 sensor: an in situ investigation of electronic, morphological, structural, and spectroscopic properties. Sci. Rep. 10, 2981 (2020). https://doi.org/10.1038/s41598-020-59726-5
- O. Zapata-Arteaga, A. Perevedentsev, S. Marina, J. Martin, J.S. Reparaz et al., Reduction of the lattice thermal conductivity of polymer semiconductors by molecular doping. ACS Energy Lett. 5(9), 2972–2978 (2020). https://doi.org/10.1021/acsenergylett.0c01410
- X. Rodríguez-Martínez, F. Saiz, B. Dörling, S. Marina, J. Guo et al., On the thermal conductivity of conjugated polymers for thermoelectrics. Adv. Energy Mater. 14(35), 2401705 (2024). https://doi.org/10.1002/aenm.202401705
- Z.-F. Yao, J.-Y. Wang, J. Pei, Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog. Polym. Sci. 136, 101626 (2023). https://doi.org/10.1016/j.progpolymsci.2022.101626
- L. Xu, H. Zhang, Y. Lu, L. An, T. Shi, The effects of solvent polarity on the crystallization behavior of thin π-conjugated polymer film in solvent mixtures investigated by grazing incident X-ray diffraction. Polymer 190, 122259 (2020). https://doi.org/10.1016/j.polymer.2020.122259
- J. Zhou, Y. Wang, X. Hao, C. Ma, Y. Wang et al., Controllable conformation transfer of conjugated polymer toward high photoelectrical performance: the role of solvent in induced-crystallization route. J. Phys. Chem. C 122(2), 1037–1043 (2018). https://doi.org/10.1021/acs.jpcc.7b09324
- L.-H. Zhao, R.-Q. Png, J.-M. Zhuo, L.-Y. Wong, J.-C. Tang et al., Role of borderline solvents to induce pronounced extended-chain lamellar order in π-stackable polymers. Macromolecules 44(24), 9692–9702 (2011). https://doi.org/10.1021/ma201165y
- A.M. Gaikwad, Y. Khan, A.E. Ostfeld, S. Pandya, S. Abraham et al., Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016). https://doi.org/10.1016/j.orgel.2015.12.008
- H.L. Yi, C.H. Wu, C.I. Wang, C.C. Hua, Solvent-regulated mesoscale aggregation properties of dilute PBTTT-C14 solutions. Macromolecules 50(14), 5498–5509 (2017). https://doi.org/10.1021/acs.macromol.7b00790
- C. Liu, W. Yang, H. Jiang, B. Zhang, G. Liu et al., Chain conformation and liquid-crystalline structures of a poly(thieno)thiophene. Macromolecules 55(7), 2892–2903 (2022). https://doi.org/10.1021/acs.macromol.2c00143
- A.K. Diallo, A.K. Diallo, R. Ndioukane, N.C.Y. Fall, A. Tall et al., Influence of solvents on the electrical parameters of poly(2, 5-bis(3-alkylthiophen-2-yl)thieno [3, 2-b] thiophene) (PBTTT) field effect transistor. MRS Adv. 8(13), 723–728 (2023). https://doi.org/10.1557/s43580-023-00577-3
- G. Ma, Z. Li, L. Fang, W. Xia, X. Gu, Effect of solvent quality and sidechain architecture on conjugated polymer chain conformation in solution. Nanoscale 16(13), 6495–6506 (2024). https://doi.org/10.1039/D3NR05721F
- A. Gasperini, K. Sivula, Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly(thieno)thiophene. Macromolecules 46(23), 9349–9358 (2013). https://doi.org/10.1021/ma402027v
- Q. Zhao, H. Zheng, D. Li, J. Peng, Interrogating cocrystallization and microphase segregation in meticulously engineered rod–rod poly(thieno)thiophene-based block copolymers for organic field-effect transistors. Macromolecules 57(10), 4782–4792 (2024). https://doi.org/10.1021/acs.macromol.4c00632
- Q. Zhao, D. Li, J. Peng, Interrogating polymorphism in conjugated poly(thieno)thiophene thin films for field-effect transistors. Macromolecules 56(2), 490–500 (2023). https://doi.org/10.1021/acs.macromol.2c02289
- W. Zhu, X. Qiu, J.E.M. Laulainen, H.-L. Un, X. Ren et al., Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporation. Adv. Mater. 36(28), 2310480 (2024). https://doi.org/10.1002/adma.202310480
- C.-H. Tsai, Y.-C. Lin, W.-N. Wu, S.-H. Tung, W.-C. Chen et al., Optimizing the doping efficiency and thermoelectric properties of isoindigo-based conjugated polymers using side chain engineering. J. Mater. Chem. C 11(21), 6874–6883 (2023). https://doi.org/10.1039/D3TC00883E
- S.E. Yoon, S.J. Shin, S.Y. Lee, G.G. Jeon, H. Kang et al., Strategic side-chain engineering approach for optimizing thermoelectric properties of isoindigo-based conjugated polymers. ACS Appl. Polym. Mater. 2(7), 2729–2735 (2020). https://doi.org/10.1021/acsapm.0c00332
- E.H. Suh, M.-K. Jeong, K. Lee, W. Jeong, Y.J. Jeong et al., Understanding the solution-state doping of donor–acceptor polymers through tailored side chain engineering for thermoelectrics. Adv. Funct. Mater. 32(51), 2207886 (2022). https://doi.org/10.1002/adfm.202207886
- Q. Zhao, D. Li, J. Peng, Meticulous molecular engineering of crystal orientation and morphology in conjugated polymer thin films for field-effect transistors. ACS Appl. Mater. Interfaces 16(7), 9098–9107 (2024). https://doi.org/10.1021/acsami.3c16192
- P. Durand, H. Zeng, T. Biskup, V. Vijayakumar, V. Untilova et al., Single ether-based side chains in conjugated polymers: toward power factors of 2.9 mW m−1 K−2. Adv. Energy Mater. 12(2), 2103049 (2022). https://doi.org/10.1002/aenm.202103049
- K.G. Cho, D.Z. Adrahtas, K.H. Lee, C.D. Frisbie, Sub-band filling and hole transport in polythiophene-based electrolyte-gated transistors: effect of side-chain length and density. Adv. Funct. Mater. 33(37), 2303700 (2023). https://doi.org/10.1002/adfm.202303700
- L. Zhang, H. Li, K. Zhao, T. Zhang, D. Liu et al., Improving crystallinity and ordering of PBTTT by inhibiting nematic to smectic phase transition via rapid cooling. Polymer 256, 125178 (2022). https://doi.org/10.1016/j.polymer.2022.125178
- T. Qu, Y. Li, L. Li, C. Zhang, X. Wang et al., Monitoring molecular ordering of a conjugated polymer: PBTTT during conformational evolution. Macromolecules 56(16), 6407–6418 (2023). https://doi.org/10.1021/acs.macromol.3c00709
- V. Pirela, A.J. Müller, J. Martín, Crystallization kinetics of semiconducting poly(2, 5-bis(3-alkylthiophen-2-yl)-thieno-[3, 2-b] thiophene) (PBTTT) from its different liquid phases. J. Mater. Chem. C 12(11), 4005–4012 (2024). https://doi.org/10.1039/d3tc03850e
- M. Ishii, Y. Yamashita, S. Watanabe, K. Ariga, J. Takeya, Doping of molecular semiconductors through proton-coupled electron transfer. Nature 622(7982), 285–291 (2023). https://doi.org/10.1038/s41586-023-06504-8
- L. Xiang, Z. He, C. Yan, Y. Zhao, Z. Li et al., Nanoscale doping of polymeric semiconductors with confined electrochemical ion implantation. Nat. Nanotechnol. 19(8), 1122–1129 (2024). https://doi.org/10.1038/s41565-024-01653-x
- Q. Zhang, Y. Sun, F. Jiao, J. Zhang, W. Xu et al., Effects of structural order in the pristine state on the thermoelectric power-factor of doped PBTTT films. Synth. Met. 162(9–10), 788–793 (2012). https://doi.org/10.1016/j.synthmet.2012.03.003
- Q. Zhang, Y. Sun, W. Xu, D. Zhu, What to expect from conducting polymers on the playground of thermoelectricity: lessons learned from four high-mobility polymeric semiconductors. Macromolecules 47(2), 609–615 (2014). https://doi.org/10.1021/ma4020406
- H. Li, E. Plunkett, Z. Cai, B. Qiu, T. Wei et al., Dopant-dependent increase in seebeck coefficient and electrical conductivity in blended polymers with offset carrier energies. Adv. Electron. Mater. 5(11), 1800618 (2019). https://doi.org/10.1002/aelm.201800618
- X. Chen, J. Jin, S. Sun, H. Xiao, L. Wang et al., Thickness-dependent thermoelectric properties of ultrathin polymer film on self-assembled monolayers. Appl. Phys. Lett. 124(8), 083903 (2024). https://doi.org/10.1063/5.0192020
- C. Chen, H. Ma, K. Lu, X. Zhang, B. Yue et al., Boosting thermoelectric performance of semicrystalline conducting polymers by simply adding nucleating agent. Adv. Mater. 37(9), 2417594 (2025). https://doi.org/10.1002/adma.202417594
- M. Cutler, N.F. Mott, Observation of anderson localization in an electron gas. Phys. Rev. 181(3), 1336–1340 (1969). https://doi.org/10.1103/physrev.181.1336
- X. Guan, W. Feng, X. Wang, R. Venkatesh, J. Ouyang, Significant enhancement in the seebeck coefficient and power factor of p-type poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) through the incorporation of n-type MXene. ACS Appl. Mater. Interfaces 12(11), 13013–13020 (2020). https://doi.org/10.1021/acsami.9b21185
- D. Kim, J. Kim, S. Chung, K. Cho, Quantum-dot-induced energy filtering effect in organic thermoelectric nanocomposites. Adv. Electron. Mater. 10(9), 2300814 (2024). https://doi.org/10.1002/aelm.202300814
- G. Yang, B.-Y. Cao, Three-sensor 3ω-2ω method for the simultaneous measurement of thermal conductivity and thermal boundary resistance in film-on-substrate heterostructures. J. Appl. Phys. 133(4), 045104 (2023). https://doi.org/10.1063/5.0120284
- G. Yang, B.-Y. Cao, Three-sensor 2ω method with multi-directional layout: a general methodology for measuring thermal conductivity of solid materials. Int. J. Heat Mass Transf. 219, 124878 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124878
- K. Takayama, G. Ito, S. Kanazawa, R. Ikkatai, K. Noda, Cross-plane thermal transport in acceptor-doped thiophene-based polymer thin films investigated by the 3-omega method. Phys. Status Solidi A 220(24), 2300110 (2023). https://doi.org/10.1002/pssa.202300110
- Y. Zhang, R. Xu, Y. Liu, Q. Jiang, Q. Li et al., Anisotropic thermal diffusivity measurement of thin films: from a few to hundreds of microns. Int. J. Heat Mass Transf. 227, 125536 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125536
References
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
Q. Yan, M.G. Kanatzidis, High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21(5), 503–513 (2022). https://doi.org/10.1038/s41563-021-01109-w
Q. Tang, B. Jiang, K. Wang, W. Wang, B. Jia et al., High-entropy thermoelectric materials. Joule 8(6), 1641–1666 (2024). https://doi.org/10.1016/j.joule.2024.04.012
Y. Lu, Y. Zhou, W. Wang, M. Hu, X. Huang et al., Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance. Nat. Nanotechnol. 18(11), 1281–1288 (2023). https://doi.org/10.1038/s41565-023-01457-5
Y. Xiao, L.-D. Zhao, Charge and phonon transport in PbTe-based thermoelectric materials. NPJ Quantum Mater. 3, 55 (2018). https://doi.org/10.1038/s41535-018-0127-y
K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang et al., Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ. Sci. 9(2), 454–460 (2016). https://doi.org/10.1039/C5EE03366G
O. Caballero-Calero, J.R. Ares, M. Martín-González, Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the Earth. Adv. Sustain. Syst. 5(11), 2100095 (2021). https://doi.org/10.1002/adsu.202100095
Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. Cui, The cradle to gate life-cycle assessment of thermoelectric materials: a comparison of inorganic, organic and hybrid types. Sustain. Energy Technol. Assess. 44, 101073 (2021). https://doi.org/10.1016/j.seta.2021.101073
B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1(10), 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
L. Deng, Y. Liu, Y. Zhang, S. Wang, P. Gao, Organic thermoelectric materials: niche harvester of thermal energy. Adv. Funct. Mater. 33(3), 2210770 (2023). https://doi.org/10.1002/adfm.202210770
X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
H. He, J. Ouyang, Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT: PSS for flexible electronics applications. Acc. Mater. Res. 1(2), 146–157 (2020). https://doi.org/10.1021/accountsmr.0c00021
K.M. Reza, A. Gurung, B. Bahrami, S. Mabrouk, H. Elbohy et al., Tailored PEDOT: PSS hole transport layer for higher performance in perovskite solar cells: enhancement of electrical and optical properties with improved morphology. J. Energy Chem. 44, 41–50 (2020). https://doi.org/10.1016/j.jechem.2019.09.014
B. Chen, M. Wu, S. Fang, Y. Cao, L. Pei et al., Liquid metal-tailored PEDOT: PSS for noncontact flexible electronics with high spatial resolution. ACS Nano 16(11), 19305–19318 (2022). https://doi.org/10.1021/acsnano.2c08760
W. Jeong, G. Gwon, J.-H. Ha, D. Kim, K.-J. Eom et al., Enhancing the conductivity of PEDOT: PSS films for biomedical applications via hydrothermal treatment. Biosens. Bioelectron. 171, 112717 (2021). https://doi.org/10.1016/j.bios.2020.112717
I. Paulraj, T.F. Liang, T.S. Yang, C.H. Wang, J.L. Chen et al., High performance of post-treated PEDOT: PSS thin films for thermoelectric power generation applications. ACS Appl. Mater. Interfaces 13(36), 42977–42990 (2021). https://doi.org/10.1021/acsami.1c13968
M. Mooney, A. Nyayachavadi, S. Rondeau-Gagné, Eco-friendly semiconducting polymers: from greener synthesis to greener processability. J. Mater. Chem. C 8(42), 14645–14664 (2020). https://doi.org/10.1039/d0tc04085a
C. Dai, B. Liu, Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 13(1), 24–52 (2020). https://doi.org/10.1039/c9ee01935a
C. Chen, Z. Liu, L. Guo, B. Huo, Q. Sun et al., High spatiotemporal resolution biomimetic thermoreceptors realizing by jointless p-n integration thermoelectric composites. Adv. Funct. Mater. 34(49), 2411490 (2024). https://doi.org/10.1002/adfm.202411490
C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32(36), 2206083 (2022). https://doi.org/10.1002/adfm.202206083
Z. Ding, C. Du, W. Long, C.-F. Cao, L. Liang et al., Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 68(24), 3261–3277 (2023). https://doi.org/10.1016/j.scib.2023.08.057
Z. Ding, G. Li, Y. Wang, C. Du, Z. Ye et al., Ultrafast response and threshold adjustable intelligent thermoelectric systems for next-generation self-powered remote IoT fire warning. Nano-Micro Lett. 16(1), 242 (2024). https://doi.org/10.1007/s40820-024-01453-x
G. Li, Y. Hu, J. Chen, L. Liang, Z. Liu et al., Thermoelectric and photoelectric dual modulated sensors for human Internet of Things application in accurate fire recognition and warning. Adv. Funct. Mater. 33(41), 2303861 (2023). https://doi.org/10.1002/adfm.202303861
Q. Sun, C. Du, G. Chen, Thermoelectric materials and applications in buildings. Prog. Mater. Sci. 149, 101402 (2025). https://doi.org/10.1016/j.pmatsci.2024.101402
Z. Liu, C. Chen, J. Liu, Q. Sun, B. Huo et al., All-day solar power generation enabled by photo/thermoelectric conversion and thermal energy storage. Sci. China Chem. 68(5), 2035–2043 (2025). https://doi.org/10.1007/s11426-024-2336-1
H. Lv, L. Liang, Y. Zhang, L. Deng, Z. Chen et al., A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88, 106260 (2021). https://doi.org/10.1016/j.nanoen.2021.106260
H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16(1), 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
X. Lu, Z. Mo, Z. Liu, Y. Hu, C. Du et al., Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. 63(29), e202405357 (2024). https://doi.org/10.1002/anie.202405357
S. Wang, G. Zuo, J. Kim, H. Sirringhaus, Progress of conjugated polymers as emerging thermoelectric materials. Prog. Polym. Sci. 129, 101548 (2022). https://doi.org/10.1016/j.progpolymsci.2022.101548
Z. Qiu, B.A.G. Hammer, K. Müllen, Conjugated polymers–problems and promises. Prog. Polym. Sci. 100, 101179 (2020). https://doi.org/10.1016/j.progpolymsci.2019.101179
A. Pron, P. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27(1), 135–190 (2002). https://doi.org/10.1016/S0079-6700(01)00043-0
J.F. Ponder Jr., S.A. Gregory, A. Atassi, A.K. Menon, A.W. Lang et al., Significant enhancement of the electrical conductivity of conjugated polymers by post-processing side chain removal. J. Am. Chem. Soc. 144(3), 1351–1360 (2022). https://doi.org/10.1021/jacs.1c11558
A. Moliton, R.C. Hiorns, Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym. Int. 53(10), 1397–1412 (2004). https://doi.org/10.1002/pi.1587
C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa et al., Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977). https://doi.org/10.1103/physrevlett.39.1098
C.I. Simionescu, V. Percec, Progress in polyacetylene chemistry. Prog. Polym. Sci. 8(1–2), 133–214 (1982). https://doi.org/10.1016/0079-6700(82)90009-0
S. Deng, C. Dong, J. Liu, B. Meng, J. Hu et al., An n-type polythiophene derivative with excellent thermoelectric performance. Angew. Chem. Int. Ed. 62(18), e202216049 (2023). https://doi.org/10.1002/anie.202216049
P.-S. Lin, S. Inagaki, J.-H. Liu, M.-C. Chen, T. Higashihara et al., The role of branched alkylthio side chain on dispersion and thermoelectric properties of regioregular polythiophene/carbon nanotubes nanocomposites. Chem. Eng. J. 458, 141366 (2023). https://doi.org/10.1016/j.cej.2023.141366
S. Liu, H. Li, P. Li, Y. Liu, C. He, Recent advances in polyaniline-based thermoelectric composites. CCS Chem. 3(10), 2547–2560 (2021). https://doi.org/10.31635/ccschem.021.202101066
H. Li, Y. Liu, P. Li, S. Liu, F. Du et al., Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering. ACS Appl. Mater. Interfaces 13(5), 6650–6658 (2021). https://doi.org/10.1021/acsami.0c20931
A. Debnath, K. Deb, K. Sarkar, B. Saha, Low interfacial energy barrier and improved thermoelectric performance in Te-incorporated polypyrrole. J. Phys. Chem. C 125(1), 168–177 (2021). https://doi.org/10.1021/acs.jpcc.0c09100
M. Almasoudi, M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, A. Alshahrie et al., Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance. Polymer 228, 123950 (2021). https://doi.org/10.1016/j.polymer.2021.123950
L. Wu, H. Li, H. Chai, Q. Xu, Y. Chen et al., Anion-dependent molecular doping and charge transport in ferric salt-doped P3HT for thermoelectric application. ACS Appl. Electron. Mater. 3(3), 1252–1259 (2021). https://doi.org/10.1021/acsaelm.0c01067
V. Untilova, T. Biskup, L. Biniek, V. Vijayakumar, M. Brinkmann, Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT: F4TCNQ films. Macromolecules 53(7), 2441–2453 (2020). https://doi.org/10.1021/acs.macromol.9b02389
M.N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, J.-P. Simonato, Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Prog. Mater. Sci. 108, 100616 (2020). https://doi.org/10.1016/j.pmatsci.2019.100616
L. Liu, J. Chen, L. Liang, L. Deng, G. Chen, A PEDOT: PSS thermoelectric fiber generator. Nano Energy 102, 107678 (2022). https://doi.org/10.1016/j.nanoen.2022.107678
Y. Li, Y. Pang, L. Wang, Q. Li, B. Liu et al., Boosting the performance of PEDOT: PSS based electronics via ionic liquids. Adv. Mater. 36(13), 2310973 (2024). https://doi.org/10.1002/adma.202310973
N. Wen, Z. Fan, S. Yang, Y. Zhao, T. Cong et al., Highly conductive, ultra-flexible and continuously processable PEDOT: PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy 78, 105361 (2020). https://doi.org/10.1016/j.nanoen.2020.105361
I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald et al., Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5(4), 328–333 (2006). https://doi.org/10.1038/nmat1612
J.G. Sutjianto, S.H. Yoo, C.R. Westerman, T.N. Jackson, J.J. Wilker et al., Blends of conjugated and adhesive polymers for sticky organic thin-film transistors. Adv. Electron. Mater. 9(12), 2300422 (2023). https://doi.org/10.1002/aelm.202300422
P.-A. Chen, J. Guo, H. Wei, J. Xia, C. Chen et al., Achieving unipolar organic transistors for complementary circuits by selective usage of doped organic semiconductor film electrodes. Adv. Funct. Mater. 35(3), 2413880 (2025). https://doi.org/10.1002/adfm.202413880
J. Vanderspikken, Q. Liu, Z. Liu, T. Vandermeeren, T. Cardeynaels et al., Tuning electronic and morphological properties for high-performance wavelength-selective organic near-infrared cavity photodetectors. Adv. Funct. Mater. 32(9), 2108146 (2022). https://doi.org/10.1002/adfm.202108146
S. Gupta, B.N. Pal, R. Prakash, Improved ammonia sensitivity and broadband photodetection by using PBTTT-C14/WS2-QDs nano-heterojunction based thin film transistor. Sens. Actuators B Chem. 414, 135872 (2024). https://doi.org/10.1016/j.snb.2024.135872
L.-H. Li, O.Y. Kontsevoi, S.H. Rhim, A.J. Freeman, Structural, electronic, and linear optical properties of organic photovoltaic PBTTT-C14 crystal. J. Chem. Phys. 138(16), 164503 (2013). https://doi.org/10.1063/1.4802033
D.W. Gehrig, I.A. Howard, S. Sweetnam, T.M. Burke, M.D. McGehee et al., The impact of donor–acceptor phase separation on the charge carrier dynamics in pBTTT: PCBM photovoltaic blends. Macromol. Rapid Commun. 36(11), 1054–1060 (2015). https://doi.org/10.1002/marc.201500112
M.U. Chaudhry, K. Muhieddine, R. Wawrzinek, J. Sobus, K. Tandy et al., Organic light-emitting transistors: advances and perspectives. Adv. Funct. Mater. 30(20), 1905282 (2020). https://doi.org/10.1002/adfm.201905282
F.-C. Wu, P.-R. Li, B.-R. Lin, R.-J. Wu, H.-L. Cheng et al., Ultraviolet light-activated charge modulation heterojunction for versatile organic thin film transistors. ACS Appl. Mater. Interfaces 13(38), 45822–45832 (2021). https://doi.org/10.1021/acsami.1c12390
S.A. Gregory, A. Atassi, J.F. Ponder Jr., G. Freychet, G.M. Su et al., Quantifying charge carrier localization in PBTTT using thermoelectric and spectroscopic techniques. J. Phys. Chem. C 127(25), 12206–12217 (2023). https://doi.org/10.1021/acs.jpcc.3c01152
J. Min, D. Kim, S.G. Han, C. Park, H. Lim et al., Position-induced efficient doping for highly doped organic thermoelectric materials. Adv. Electron. Mater. 8(3), 2101142 (2022). https://doi.org/10.1002/aelm.202101142
D. Wang, J. Ding, Y. Ma, C. Xu, Z. Li et al., Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 632(8025), 528–535 (2024). https://doi.org/10.1038/s41586-024-07724-2
V. Raja, Z. Hu, G. Chen, Progress in poly(2, 5-bis(3-alkylthiophen-2-yl)thieno [3, 2-b] thiophene) composites for thermoelectric application. Compos. Commun. 27, 100886 (2021). https://doi.org/10.1016/j.coco.2021.100886
S. Tierney, M. Heeney, I. McCulloch, Microwave-assisted synthesis of polythiophenes via the Stille coupling. Synth. Met. 148(2), 195–198 (2005). https://doi.org/10.1016/j.synthmet.2004.09.015
Z. Bao, W. Chan, L. Yu, Synthesis of conjugated polymer by the stille coupling reaction. Chem. Mater. 5(1), 2–3 (1993). https://doi.org/10.1021/cm00025a001
J.-P. Lère-Porte, J.J.E. Moreau, C. Torreilles, Highly conjugated poly(thiophene)s—synthesis of regioregular 3-alkylthiophene polymers and 3-alkylthiophene/thiophene copolymers. Eur. J. Org. Chem. 2001(7), 1249–1258 (2001). https://doi.org/10.1002/1099-0690(200104)2001:7%3c1249::AID-EJOC1249%3e3.0.CO;2-F
P. Durand, H. Zeng, B. Jismy, O. Boyron, B. Heinrich et al., Controlling conjugated polymer morphology by precise oxygen position in single-ether side chains. Mater. Horiz. 11(19), 4737–4746 (2024). https://doi.org/10.1039/D4MH00492B
T. Kurosawa, Y. Yamashita, Y. Kobayashi, C.P. Yu, S. Kumagai et al., Employment of alkoxy sidechains in semicrystalline semiconducting polymers for ambient-stable p-doped conjugated polymers. Macromolecules 57(1), 328–338 (2024). https://doi.org/10.1021/acs.macromol.3c00211
P.-J. Yu, Y.-C. Lin, C.-Y. Lin, W.-C. Chen, Enhanced mobility preservation of polythiophenes in stretched states utilizing thienyl-ester conjugated side chain. Polymer 264, 125575 (2023). https://doi.org/10.1016/j.polymer.2022.125575
J. Vanderspikken, Z. Liu, X. Wu, O. Beckers, S. Moro et al., On the importance of chemical precision in organic electronics: fullerene intercalation in perfectly alternating conjugated polymers. Adv. Funct. Mater. 33(52), 2309403 (2023). https://doi.org/10.1002/adfm.202309403
Z. Liu, J. Vanderspikken, P. Mantegazza, S. Moro, M. Hamid et al., Removing homocoupling defects in alkoxy/alkyl-PBTTT enhances polymer: fullerene co-crystal formation and stability. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202413647
Y. Fan, J. Liu, P.-A. Chen, D. Xia, J. Wang et al., Doping regulation of highly conductive PBTTT films. Cell Rep. Phys. Sci. 5(9), 102197 (2024). https://doi.org/10.1016/j.xcrp.2024.102197
F. Zhang, C.-A. Di, N. Berdunov, Y. Hu, Y. Hu et al., Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv. Mater. 25(10), 1401–1407 (2013). https://doi.org/10.1002/adma.201204075
A.M. Glaudell, J.E. Cochran, S.N. Patel, M.L. Chabinyc, Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5(4), 1401072 (2015). https://doi.org/10.1002/aenm.201401072
X. Mu, W. Wang, C. Sun, D. Zhao, C. Ma et al., Greatly increased electrical conductivity of PBTTT-C14 thin film via controllable single precursor vapor phase infiltration. Nanotechnology 34(1), 015709 (2023). https://doi.org/10.1088/1361-6528/ac96fa
J. Kim, D. Ju, S. Kim, K. Cho, Disorder-controlled efficient doping of conjugated polymers for high-performance organic thermoelectrics. Adv. Funct. Mater. 34(6), 2309156 (2024). https://doi.org/10.1002/adfm.202309156
O. Zapata-Arteaga, S. Marina, G. Zuo, K. Xu, B. Dörling et al., Design rules for polymer blends with high thermoelectric performance. Adv. Energy Mater. 12(19), 2104076 (2022). https://doi.org/10.1002/aenm.202104076
V. Vijayakumar, Y. Zhong, V. Untilova, M. Bahri, L. Herrmann et al., Bringing conducting polymers to high order: toward conductivities beyond 105 S cm−1 and thermoelectric power factors of 2 mW m−1 K−2. Adv. Energy Mater. 9(24), 1900266 (2019). https://doi.org/10.1002/aenm.201900266
M. Pandey, S.S. Pandey, S. Nagamatsu, S. Hayase, W. Takashima, Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: role of macroscopic orientation. Org. Electron. 43, 240–246 (2017). https://doi.org/10.1016/j.orgel.2017.01.031
M. Pandey, J. Toyoda, S. Sharma, Y. Cho, H. Benten et al., The role of solvents in the microstructure and charge transport of semiconducting polymer films prepared at the air–liquid interface. J. Mater. Chem. C 11(36), 12364–12373 (2023). https://doi.org/10.1039/D3TC02282J
A. Dauendorffer, S. Miyajima, S. Nagamatsu, W. Takashima, S. Hayase et al., One-step deposition of self-oriented β-phase polyfluorene thin films for polarized polymer light-emitting diodes. Appl. Phys. Express 5(9), 092101 (2012). https://doi.org/10.1143/apex.5.092101
M. Ito, Y. Yamashita, T. Mori, M. Chiba, T. Futae et al., Hyper 100 ℃ Langmuir–blodgett (Langmuir–schaefer) technique for organized ultrathin film of polymeric semiconductors. Langmuir 38(17), 5237–5247 (2022). https://doi.org/10.1021/acs.langmuir.1c02596
Y.-S. Kim, H. Kim, T. Yoon, M.-J. Kim, J. Lee et al., Latent and controllable doping of stimuli-activated molecular dopants for flexible and printable organic thermoelectric generators. Chem. Eng. J. 470, 144129 (2023). https://doi.org/10.1016/j.cej.2023.144129
N. Yousefi, R.D. Pettipas, T.L. Kelly, L.G. Kaake, Self-assembly of PBTTT–C14 thin films in supercritical fluids. Mater. Adv. 3(5), 2515–2523 (2022). https://doi.org/10.1039/d1ma00847a
H. Zeng, P. Durand, S. Guchait, L. Herrmann, C. Kiefer et al., Optimizing chain alignment and preserving the pristine structure of single-ether based PBTTT helps improve thermoelectric properties in sequentially doped thin films. J. Mater. Chem. C 10(42), 15883–15896 (2022). https://doi.org/10.1039/D2TC03600B
P. Limelette, N. Leclerc, M. Brinkmann, Heterogeneous oriented structure model of thermoelectric transport in conducting polymers. Sci. Rep. 13(1), 21161 (2023). https://doi.org/10.1038/s41598-023-48353-5
S.N. Patel, A.M. Glaudell, K.A. Peterson, E.M. Thomas, K.A. O’Hara et al., Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 3(6), e1700434 (2017). https://doi.org/10.1126/sciadv.1700434
Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai et al., Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572(7771), 634–638 (2019). https://doi.org/10.1038/s41586-019-1504-9
B. Yurash, D.X. Cao, V.V. Brus, D. Leifert, M. Wang et al., Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 18(12), 1327–1334 (2019). https://doi.org/10.1038/s41563-019-0479-0
N. Chen, T. Mukhopadhyay, Y. Song, S. Griggs, C.J. Kousseff et al., Enhancing electrical conductivity and power factor in poly-glycol-bithienylthienothiophene with oligoethylene glycol side chains through tris (pentafluorophenyl) borane doping. Adv. Funct. Mater. 34(33), 2400469 (2024). https://doi.org/10.1002/adfm.202400469
A. Dash, S. Guchait, D. Scheunemann, V. Vijayakumar, N. Leclerc et al., Spontaneous modulation doping in semi-crystalline conjugated polymers leads to high conductivity at low doping concentration. Adv. Mater. 36(13), 2311303 (2024). https://doi.org/10.1002/adma.202311303
N.J. Pataki, S. Guchait, B. Jismy, N. Leclerc, A. Kyndiah et al., A label-like monolithic organic thermoelectric generator enabled by local inkjet doping of aligned polymer films (Adv. Energy Mater. 15/2025). Adv. Energy Mater. 15(15), 2570076 (2025). https://doi.org/10.1002/aenm.202570076
S. Guchait, S. Oummouch, P. Durand, N. Kamatham, B. Jismy et al., Impact of side chain chemical structure on doping and thermoelectric properties of oriented PBTTT thin films. Small 21(6), 2410073 (2025). https://doi.org/10.1002/smll.202410073
X.-Y. Deng, Z. Zhang, T. Lei, Integrated materials design and process engineering for n-type polymer thermoelectrics. JACS Au 4(11), 4066–4083 (2024). https://doi.org/10.1021/jacsau.4c00638
H. Tanaka, S.-I. Ito, T. Matsui, T. Takenobu, Facile and controllable chemical doping of conducting polymers with an ionic liquid dopant. Appl. Phys. Express 17(3), 031002 (2024). https://doi.org/10.35848/1882-0786/ad2f66
I.E. Jacobs, Y. Lin, Y. Huang, X. Ren, D. Simatos et al., High-efficiency ion-exchange doping of conducting polymers. Adv. Mater. 34(22), 2102988 (2022). https://doi.org/10.1002/adma.202102988
C. Chen, I.E. Jacobs, K. Kang, Y. Lin, C. Jellett et al., Observation of weak counterion size dependence of thermoelectric transport in ion exchange doped conducting polymers across a wide range of conductivities. Adv. Energy Mater. 13(9), 2202797 (2023). https://doi.org/10.1002/aenm.202202797
W. Jin, C.-Y. Yang, R. Pau, Q. Wang, E.K. Tekelenburg et al., Photocatalytic doping of organic semiconductors. Nature 630(8015), 96–101 (2024). https://doi.org/10.1038/s41586-024-07400-5
V. Vijayakumar, P. Durand, H. Zeng, V. Untilova, L. Herrmann et al., Influence of dopant size and doping method on the structure and thermoelectric properties of PBTTT films doped with F6TCNQ and F4TCNQ. J. Mater. Chem. C 8(46), 16470–16482 (2020). https://doi.org/10.1039/D0TC02828B
V. Vijayakumar, E. Zaborova, L. Biniek, H. Zeng, L. Herrmann et al., Effect of alkyl side chain length on doping kinetics, thermopower, and charge transport properties in highly oriented F4TCNQ-doped PBTTT films. ACS Appl. Mater. Interfaces 11(5), 4942–4953 (2019). https://doi.org/10.1021/acsami.8b17594
Z. Jia, W. Wang, C. Ma, X. Zhang, R. Yan et al., Efficiently tuning the electrical performance of PBTTT-C14 thin film viainsitucontrollable multiple precursors (Al2O3: ZnO) vapor phase infiltration. Nanotechnology (2024). https://doi.org/10.1088/1361-6528/ad375c
C.Z. Leng, M.D. Losego, Vapor phase infiltration (VPI) for transforming polymers into organic–inorganic hybrid materials: a critical review of current progress and future challenges. Mater. Horiz. 4(5), 747–771 (2017). https://doi.org/10.1039/C7MH00196G
I. Azpitarte, M. Knez, Vapor phase infiltration: from a bioinspired process to technologic application, a prospective review. MRS Commun. 8(3), 727–741 (2018). https://doi.org/10.1557/mrc.2018.126
I.E. Jacobs, A.J. Moulé, Controlling molecular doping in organic semiconductors. Adv. Mater. 29(42), 1703063 (2017). https://doi.org/10.1002/adma.201703063
I. Salzmann, G. Heimel, M. Oehzelt, S. Winkler, N. Koch, Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res. 49(3), 370–378 (2016). https://doi.org/10.1021/acs.accounts.5b00438
Y. Li, C.-Y. Gao, X.-H. Fan, L.-M. Yang, In-situ pulse electropolymerization of pyrrole on single-walled carbon nanotubes for thermoelectric composite materials. Chem. Eng. J. 443, 136536 (2022). https://doi.org/10.1016/j.cej.2022.136536
Y. Bao, Y. Sun, F. Jiao, W. Hu, Recent advances in multicomponent organic composite thermoelectric materials. Adv. Electron. Mater. 9(5), 2201310 (2023). https://doi.org/10.1002/aelm.202201310
J. Liu, J. Moo-Young, M. McInnis, M.A. Pasquinelli, L. Zhai, Conjugated polymer assemblies on carbon nanotubes. Macromolecules 47(2), 705–712 (2014). https://doi.org/10.1021/ma401609q
S.H. Kim, S. Jeong, D. Kim, C.Y. Son, K. Cho, Effects of connecting polymer structure and morphology at inter-tube junctions on the thermoelectric properties of conjugated polymer/carbon nanotube composites. Adv. Electron. Mater. 9(7), 2201293 (2023). https://doi.org/10.1002/aelm.202201293
P.K. Sahu, R.K. Pandey, R. Dwivedi, V.N. Mishra, R. Prakash, Polymer/Graphene oxide nanocomposite thin film for NO2 sensor: an in situ investigation of electronic, morphological, structural, and spectroscopic properties. Sci. Rep. 10, 2981 (2020). https://doi.org/10.1038/s41598-020-59726-5
O. Zapata-Arteaga, A. Perevedentsev, S. Marina, J. Martin, J.S. Reparaz et al., Reduction of the lattice thermal conductivity of polymer semiconductors by molecular doping. ACS Energy Lett. 5(9), 2972–2978 (2020). https://doi.org/10.1021/acsenergylett.0c01410
X. Rodríguez-Martínez, F. Saiz, B. Dörling, S. Marina, J. Guo et al., On the thermal conductivity of conjugated polymers for thermoelectrics. Adv. Energy Mater. 14(35), 2401705 (2024). https://doi.org/10.1002/aenm.202401705
Z.-F. Yao, J.-Y. Wang, J. Pei, Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog. Polym. Sci. 136, 101626 (2023). https://doi.org/10.1016/j.progpolymsci.2022.101626
L. Xu, H. Zhang, Y. Lu, L. An, T. Shi, The effects of solvent polarity on the crystallization behavior of thin π-conjugated polymer film in solvent mixtures investigated by grazing incident X-ray diffraction. Polymer 190, 122259 (2020). https://doi.org/10.1016/j.polymer.2020.122259
J. Zhou, Y. Wang, X. Hao, C. Ma, Y. Wang et al., Controllable conformation transfer of conjugated polymer toward high photoelectrical performance: the role of solvent in induced-crystallization route. J. Phys. Chem. C 122(2), 1037–1043 (2018). https://doi.org/10.1021/acs.jpcc.7b09324
L.-H. Zhao, R.-Q. Png, J.-M. Zhuo, L.-Y. Wong, J.-C. Tang et al., Role of borderline solvents to induce pronounced extended-chain lamellar order in π-stackable polymers. Macromolecules 44(24), 9692–9702 (2011). https://doi.org/10.1021/ma201165y
A.M. Gaikwad, Y. Khan, A.E. Ostfeld, S. Pandya, S. Abraham et al., Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016). https://doi.org/10.1016/j.orgel.2015.12.008
H.L. Yi, C.H. Wu, C.I. Wang, C.C. Hua, Solvent-regulated mesoscale aggregation properties of dilute PBTTT-C14 solutions. Macromolecules 50(14), 5498–5509 (2017). https://doi.org/10.1021/acs.macromol.7b00790
C. Liu, W. Yang, H. Jiang, B. Zhang, G. Liu et al., Chain conformation and liquid-crystalline structures of a poly(thieno)thiophene. Macromolecules 55(7), 2892–2903 (2022). https://doi.org/10.1021/acs.macromol.2c00143
A.K. Diallo, A.K. Diallo, R. Ndioukane, N.C.Y. Fall, A. Tall et al., Influence of solvents on the electrical parameters of poly(2, 5-bis(3-alkylthiophen-2-yl)thieno [3, 2-b] thiophene) (PBTTT) field effect transistor. MRS Adv. 8(13), 723–728 (2023). https://doi.org/10.1557/s43580-023-00577-3
G. Ma, Z. Li, L. Fang, W. Xia, X. Gu, Effect of solvent quality and sidechain architecture on conjugated polymer chain conformation in solution. Nanoscale 16(13), 6495–6506 (2024). https://doi.org/10.1039/D3NR05721F
A. Gasperini, K. Sivula, Effects of molecular weight on microstructure and carrier transport in a semicrystalline poly(thieno)thiophene. Macromolecules 46(23), 9349–9358 (2013). https://doi.org/10.1021/ma402027v
Q. Zhao, H. Zheng, D. Li, J. Peng, Interrogating cocrystallization and microphase segregation in meticulously engineered rod–rod poly(thieno)thiophene-based block copolymers for organic field-effect transistors. Macromolecules 57(10), 4782–4792 (2024). https://doi.org/10.1021/acs.macromol.4c00632
Q. Zhao, D. Li, J. Peng, Interrogating polymorphism in conjugated poly(thieno)thiophene thin films for field-effect transistors. Macromolecules 56(2), 490–500 (2023). https://doi.org/10.1021/acs.macromol.2c02289
W. Zhu, X. Qiu, J.E.M. Laulainen, H.-L. Un, X. Ren et al., Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporation. Adv. Mater. 36(28), 2310480 (2024). https://doi.org/10.1002/adma.202310480
C.-H. Tsai, Y.-C. Lin, W.-N. Wu, S.-H. Tung, W.-C. Chen et al., Optimizing the doping efficiency and thermoelectric properties of isoindigo-based conjugated polymers using side chain engineering. J. Mater. Chem. C 11(21), 6874–6883 (2023). https://doi.org/10.1039/D3TC00883E
S.E. Yoon, S.J. Shin, S.Y. Lee, G.G. Jeon, H. Kang et al., Strategic side-chain engineering approach for optimizing thermoelectric properties of isoindigo-based conjugated polymers. ACS Appl. Polym. Mater. 2(7), 2729–2735 (2020). https://doi.org/10.1021/acsapm.0c00332
E.H. Suh, M.-K. Jeong, K. Lee, W. Jeong, Y.J. Jeong et al., Understanding the solution-state doping of donor–acceptor polymers through tailored side chain engineering for thermoelectrics. Adv. Funct. Mater. 32(51), 2207886 (2022). https://doi.org/10.1002/adfm.202207886
Q. Zhao, D. Li, J. Peng, Meticulous molecular engineering of crystal orientation and morphology in conjugated polymer thin films for field-effect transistors. ACS Appl. Mater. Interfaces 16(7), 9098–9107 (2024). https://doi.org/10.1021/acsami.3c16192
P. Durand, H. Zeng, T. Biskup, V. Vijayakumar, V. Untilova et al., Single ether-based side chains in conjugated polymers: toward power factors of 2.9 mW m−1 K−2. Adv. Energy Mater. 12(2), 2103049 (2022). https://doi.org/10.1002/aenm.202103049
K.G. Cho, D.Z. Adrahtas, K.H. Lee, C.D. Frisbie, Sub-band filling and hole transport in polythiophene-based electrolyte-gated transistors: effect of side-chain length and density. Adv. Funct. Mater. 33(37), 2303700 (2023). https://doi.org/10.1002/adfm.202303700
L. Zhang, H. Li, K. Zhao, T. Zhang, D. Liu et al., Improving crystallinity and ordering of PBTTT by inhibiting nematic to smectic phase transition via rapid cooling. Polymer 256, 125178 (2022). https://doi.org/10.1016/j.polymer.2022.125178
T. Qu, Y. Li, L. Li, C. Zhang, X. Wang et al., Monitoring molecular ordering of a conjugated polymer: PBTTT during conformational evolution. Macromolecules 56(16), 6407–6418 (2023). https://doi.org/10.1021/acs.macromol.3c00709
V. Pirela, A.J. Müller, J. Martín, Crystallization kinetics of semiconducting poly(2, 5-bis(3-alkylthiophen-2-yl)-thieno-[3, 2-b] thiophene) (PBTTT) from its different liquid phases. J. Mater. Chem. C 12(11), 4005–4012 (2024). https://doi.org/10.1039/d3tc03850e
M. Ishii, Y. Yamashita, S. Watanabe, K. Ariga, J. Takeya, Doping of molecular semiconductors through proton-coupled electron transfer. Nature 622(7982), 285–291 (2023). https://doi.org/10.1038/s41586-023-06504-8
L. Xiang, Z. He, C. Yan, Y. Zhao, Z. Li et al., Nanoscale doping of polymeric semiconductors with confined electrochemical ion implantation. Nat. Nanotechnol. 19(8), 1122–1129 (2024). https://doi.org/10.1038/s41565-024-01653-x
Q. Zhang, Y. Sun, F. Jiao, J. Zhang, W. Xu et al., Effects of structural order in the pristine state on the thermoelectric power-factor of doped PBTTT films. Synth. Met. 162(9–10), 788–793 (2012). https://doi.org/10.1016/j.synthmet.2012.03.003
Q. Zhang, Y. Sun, W. Xu, D. Zhu, What to expect from conducting polymers on the playground of thermoelectricity: lessons learned from four high-mobility polymeric semiconductors. Macromolecules 47(2), 609–615 (2014). https://doi.org/10.1021/ma4020406
H. Li, E. Plunkett, Z. Cai, B. Qiu, T. Wei et al., Dopant-dependent increase in seebeck coefficient and electrical conductivity in blended polymers with offset carrier energies. Adv. Electron. Mater. 5(11), 1800618 (2019). https://doi.org/10.1002/aelm.201800618
X. Chen, J. Jin, S. Sun, H. Xiao, L. Wang et al., Thickness-dependent thermoelectric properties of ultrathin polymer film on self-assembled monolayers. Appl. Phys. Lett. 124(8), 083903 (2024). https://doi.org/10.1063/5.0192020
C. Chen, H. Ma, K. Lu, X. Zhang, B. Yue et al., Boosting thermoelectric performance of semicrystalline conducting polymers by simply adding nucleating agent. Adv. Mater. 37(9), 2417594 (2025). https://doi.org/10.1002/adma.202417594
M. Cutler, N.F. Mott, Observation of anderson localization in an electron gas. Phys. Rev. 181(3), 1336–1340 (1969). https://doi.org/10.1103/physrev.181.1336
X. Guan, W. Feng, X. Wang, R. Venkatesh, J. Ouyang, Significant enhancement in the seebeck coefficient and power factor of p-type poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) through the incorporation of n-type MXene. ACS Appl. Mater. Interfaces 12(11), 13013–13020 (2020). https://doi.org/10.1021/acsami.9b21185
D. Kim, J. Kim, S. Chung, K. Cho, Quantum-dot-induced energy filtering effect in organic thermoelectric nanocomposites. Adv. Electron. Mater. 10(9), 2300814 (2024). https://doi.org/10.1002/aelm.202300814
G. Yang, B.-Y. Cao, Three-sensor 3ω-2ω method for the simultaneous measurement of thermal conductivity and thermal boundary resistance in film-on-substrate heterostructures. J. Appl. Phys. 133(4), 045104 (2023). https://doi.org/10.1063/5.0120284
G. Yang, B.-Y. Cao, Three-sensor 2ω method with multi-directional layout: a general methodology for measuring thermal conductivity of solid materials. Int. J. Heat Mass Transf. 219, 124878 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124878
K. Takayama, G. Ito, S. Kanazawa, R. Ikkatai, K. Noda, Cross-plane thermal transport in acceptor-doped thiophene-based polymer thin films investigated by the 3-omega method. Phys. Status Solidi A 220(24), 2300110 (2023). https://doi.org/10.1002/pssa.202300110
Y. Zhang, R. Xu, Y. Liu, Q. Jiang, Q. Li et al., Anisotropic thermal diffusivity measurement of thin films: from a few to hundreds of microns. Int. J. Heat Mass Transf. 227, 125536 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125536