Down-Top Strategy Engineered Large-Scale Fluorographene/PBO Nanofibers Composite Papers with Excellent Wave-Transparent Performance and Thermal Conductivity
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 35
Abstract
With the miniaturization and high-frequency evolution of antennas in 5G/6G communications, aerospace, and transportation, polymer composite papers integrating superior wave-transparent performance and thermal conductivity for radar antenna systems are urgently needed. Herein, a down-top strategy was employed to synthesize poly(p-phenylene benzobisoxazole) precursor nanofibers (prePNF). The prePNF was then uniformly mixed with fluorinated graphene (FG) to fabricate FG/PNF composite papers through consecutively suction filtration, hot-pressing, and thermal annealing. The hydroxyl and amino groups in prePNF enhanced the stability of FG/prePNF dispersion, while the increased π-π interactions between PNF and FG after annealing improved their compatibility. The preparation time and cost of PNF paper was significantly reduced when applying this strategy, which enabled its large-scale production. Furthermore, the prepared FG/PNF composite papers exhibited excellent wave-transparent performance and thermal conductivity. When the mass fraction of FG was 40 wt%, the FG/PNF composite paper prepared via the down-top strategy achieved the wave-transparent coefficient (|T|2) of 96.3% under 10 GHz, in-plane thermal conductivity (λ∥) of 7.13 W m−1 K−1, and through-plane thermal conductivity (λ⊥) of 0.67 W m−1 K−1, outperforming FG/PNF composite paper prepared by the top-down strategy (|T|2 = 95.9%, λ∥ = 5.52 W m−1 K−1, λ⊥ = 0.52 W m−1 K−1) and pure PNF paper (|T|2 = 94.7%, λ∥ = 3.04 W m−1 K−1, λ⊥ = 0.24 W m−1 K−1). Meanwhile, FG/PNF composite paper (with 40 wt% FG) through the down-top strategy also demonstrated outstanding mechanical properties with tensile strength and toughness reaching 197.4 MPa and 11.6 MJ m−3, respectively.
Highlights:
1 The down-top strategy enables large-scale production of poly(p-phenylene benzobisoxazole) nanofiber (PNF) paper with excellent intrinsic wave-transparent performance, thermal conductivity, and mechanical strength while significantly reduces the preparation time and cost.
2 Fluorinated graphene (FG)/PNF composite papers exhibit superior wave-transparent performance and thermal conductivity. When the mass fraction of FG is 40 wt%, its |T|² reaches 96.3% under 10 GHz while λ∥ and λ⊥ increase to 7.13 and 0.67 W m-1 K-1, respectively.
3 FG/PNF composite paper with 40 wt% of FG also displays excellent mechanical properties, with the tensile strength and toughness reaching 197.4 MPa and 11.6 MJ m-3, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.H. Kim, A. Basir, R. Avila, J. Lim, S.W. Hong et al., Strain-invariant stretchable radio-frequency electronics. Nature 629(8014), 1047–1054 (2024). https://doi.org/10.1038/s41586-024-07383-3
- J. Chen, Y. Zhou, X. Huang, C. Yu, D. Han et al., Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615(7950), 62–66 (2023). https://doi.org/10.1038/s41586-022-05671-4
- H. Ko, Y. Wi, J. Koo, M. Rim, J. Hyeong et al., Recyclable low dielectric polymers with high thermal conductivity for copper-clad laminated film for high-frequency applications. Adv. Funct. Mater. 35(26), 2422633 (2025). https://doi.org/10.1002/adfm.202422633
- X. Xie, J. Wu, Y. Ma, S. Li, J. Yan, Low dielectric and high thermal conductive phononic crystal nanofiber metamaterial film. Adv. Mater. (2025). https://doi.org/10.1002/adma.202502146
- D. Chen, J. Sha, X. Mei, A. Ye, Z. Zhao et al., Ultralow k covalent organic frameworks enabling high fidelity signal transmission and high temperature electromechanical sensing. Nat. Commun. 15(1), 10864 (2024). https://doi.org/10.1038/s41467-024-55191-0
- C. Cui, Z.-Y. Zhuang, H.-L. Gao, J. Pang, X.-F. Pan et al., 3D printing of ultrahigh filler content composites enabled by granular hydrogels. Adv. Mater. (2025). https://doi.org/10.1002/adma.202500782
- L. Tang, K. Ruan, X. Liu, Y. Tang, Y. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16(1), 38 (2023). https://doi.org/10.1007/s40820-023-01257-5
- X. Zhang, C. Wang, Y. Sun, H. Ling, G. Li et al., Synergistically enhanced interfacial and wave-transparent properties of PBO fiber composites: Constructing self-assembly interphase with different dimensional COF. Compos. Sci. Technol. 242, 110216 (2023). https://doi.org/10.1016/j.compscitech.2023.110216
- T. Sun, W. Cao, K. Zhao, X. Wang, Z. Wang et al., Bio-inspired robust and highly thermal conductive BNNS/PBO nanofiber composite films with excellent thermal stability, wear resistance, and adjustable photothermal properties. Chem. Eng. J. 474, 145916 (2023). https://doi.org/10.1016/j.cej.2023.145916
- L. Tang, J. Jiang, Q. Liu, Q. Li, Q. Hu et al., A bioinspired, robust mica/chitosan/PBO nanofiber paper with excellent dielectric insulation properties and high thermal conductivity. Ceram. Int. 51(19), 29752–29761 (2025). https://doi.org/10.1016/j.ceramint.2025.04.178
- Y. Liu, W. Zou, N. Zhao, J. Xu, Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat. Commun. 14, 5342 (2023). https://doi.org/10.1038/s41467-023-40707-x
- B. Yuan, B. Yang, P. Xu, M. Zhang, Poly(p-phenylene benzobisoxazole) nanofiber: a promising nanoscale building block toward extremely harsh conditions. ACS Nano 19(2), 1981–2012 (2025). https://doi.org/10.1021/acsnano.4c14912
- Y. Lin, X. Fan, L. Tang, Y. Tang, J. Gu, Polysilsesquioxane-PBO wave-transparent composite paper with excellent mechanical properties and ultraviolet aging resistance. Adv. Fiber Mater. 5(6), 2114–2126 (2023). https://doi.org/10.1007/s42765-023-00327-y
- Z. Zhang, L. Li, Y. Chen, J. Luo, H. Dai et al., From fiber to composite: in situ addition of graphene oxide driven structural and mechanical improvements in PBO. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202501401
- M.-G. Huangfu, D.-X. Shen, X.-X. Zhi, Y. Zhang, Y.-J. Jia et al., Preparation and characterization of electrospun fluoro-containing poly(imide-benzoxazole) nano-fibrous membranes with low dielectric constants and high thermal stability. Nanomaterials 11(2), 537 (2021). https://doi.org/10.3390/nano11020537
- Y. Gao, S. Wu, C. Li, Y. Xiao, J. Liu et al., Hydrogen-bond- and shear-field-induced self-assembly for the efficient preparation of polybenzoxazole nanofibers with excellent mechanical properties and heat resistance. Macromolecules 55(21), 9420–9430 (2022). https://doi.org/10.1021/acs.macromol.2c01482
- D. Ji, Y. Lin, X. Guo, B. Ramasubramanian, R. Wang et al., Electrospinning of nanofibres. Nat. Rev. Meth. Primers 4, 1 (2024). https://doi.org/10.1038/s43586-023-00278-z
- P. Hu, X. Hu, L. Liu, M. Li, Z. Zhao et al., Dimensional upgrading of 0D silica nanospheres to 3D networking toward robust aerogels for fire resistance and low-carbon applications. Mater. Sci. Eng. R. Rep. 161, 100842 (2024). https://doi.org/10.1016/j.mser.2024.100842
- X. Zhang, X. Lei, X. Jia, T. Sun, J. Luo et al., Carbon nanotube fibers with dynamic strength up to 14 GPa. Science 384(6702), 1318–1323 (2024). https://doi.org/10.1126/science.adj1082
- Y. Sun, T. Dong, Z. Chai, M. Li, L. Jiang et al., Flexible solid–liquid nanocomposite with high surface resistivity for effective electromagnetic interference shielding and heat dissipation. Mater. Horiz. 12(14), 5366–5379 (2025). https://doi.org/10.1039/d5mh00145e
- Y. Liu, W. Zou, M. Yang, H. Luo, S. Yang et al., Polymer films with metal-like thermal conductivity, excellent stability, and flame retardancy. Adv. Funct. Mater. 33(38), 2303561 (2023). https://doi.org/10.1002/adfm.202303561
- R. Duan, J. Zhou, X. Zheng, X. Ma, R. Zhai et al., High-strength, thin PBO nanofiber membrane with long-term stability for osmotic energy conversion. Adv. Funct. Mater. 34(12), 2311258 (2024). https://doi.org/10.1002/adfm.202311258
- B. Yang, B. Yuan, P. Xu, M. Zhang, Dual-network assembled nanopaper towards extremely harsh conditions. Adv. Funct. Mater. 34(46), 2407763 (2024). https://doi.org/10.1002/adfm.202407763
- L. Tang, M. Jia, M. He, Q. Liu, Y. Lin et al., Fabrication, applications, and prospects for poly(p-phenylene benzobisoxazole) nanofibers. SusMat 4(6), e245 (2024). https://doi.org/10.1002/sus2.245
- Y. Liu, N. Zhao, J. Xu, Mechanically strong and flame-retardant PBO/BN/MXene nanocomposite paper with LowThermal ExpansionCoefficient, for efficient EMI shielding and heat dissipation. Adv. Fiber Mater. 5(5), 1657–1670 (2023). https://doi.org/10.1007/s42765-023-00298-0
- Z. Peng, Q. Guo, L. Zhang, C. Li, High thermal conductivity and low dielectric polyimide nanocomposites using diamine-assisted mechanochemical exfoliation boron nitride and in-situ polymerization under pressure. Chem. Eng. J. 488, 150824 (2024). https://doi.org/10.1016/j.cej.2024.150824
- Z. Yu, S. Wu, C. Li, Y. Xiao, J. Liu et al., Mechanically robust fluorinated graphene/poly(p-phenylene benzobisoxazole) nanofiber films with low dielectric constant and enhanced thermal conductivity: implications for thermal management applications. ACS Appl. Nano Mater. 5(12), 18247–18255 (2022). https://doi.org/10.1021/acsanm.2c04137
- Z. Yu, S. Wu, C. Li, Y. Xiao, J. Liu et al., Structural regulation of Poly(benzoxazole imide)s and their composites with fluorinated graphene to construct high-performance low dielectric films. ACS Appl. Polym. Mater. 5(1), 711–719 (2023). https://doi.org/10.1021/acsapm.2c01729
- X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv. Mater. 34(40), 2206088 (2022). https://doi.org/10.1002/adma.202206088
- J. Jiang, Y. Zhou, C. Liu, C. Zhang, Branching a benzoxazole-g-PBO fiber/cyanate ester resin composite with excellent wave transmission at high temperatures. Chem. Eng. J. 504, 158840 (2025). https://doi.org/10.1016/j.cej.2024.158840
- R. Mo, Z. Liu, W. Guo, X. Wu, Q. Xu et al., Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos. Commun. 28, 100962 (2021). https://doi.org/10.1016/j.coco.2021.100962
- Y. Chen, H. Zhang, J. Chen, Y. Guo, P. Jiang et al., Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano 16(9), 14323–14333 (2022). https://doi.org/10.1021/acsnano.2c04534
- Y. Zhang, X. Liu, R. Yang, Q. Zhuang, Lightweight polybenzoxazole aerogels with high compressive strength, ultralow dielectric constants, and excellent thermal stability. Polym. Chem. 15(9), 924–936 (2024). https://doi.org/10.1039/D3PY01325A
- B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
- X. Xu, L. Xing, X. Liu, H. Du, Z. Men et al., Exploring the change of hydrogen bond evolution in NMP-H2O solution through 2D Raman-COS spectra analysis. J. Mol. Struct. 1297, 136927 (2024). https://doi.org/10.1016/j.molstruc.2023.136927
- Z.-M. Han, Y. Hou, H.-C. Liu et al., Fast and massive production of aramid nanofibers via molecule intercalation. J. Am. Chem. Soc. 147(9), 7939–7949 (2025). https://doi.org/10.1021/jacs.4c18620
- Y. Lu, J. Liu, X. Xie, D.G. Cahill, Thermal conductivity in the radial direction of deformed polymer fibers. ACS Macro Lett. 5(6), 646–650 (2016). https://doi.org/10.1021/acsmacrolett.6b00048
- R. Tu, H.C. Kim, O.A.H. Baabdullah, H.A. Sodano, Alignment controlled aramid nanofiber-assembled films. Adv. Funct. Mater. 34(30), 2315422 (2024). https://doi.org/10.1002/adfm.202315422
- Y. Shi, T. Qiu, X. Tuo, The bottom-up synthesis for aramid nanofibers: The influence of copolymerization. J. Appl. Polym. Sci. 137(48), 49589 (2020). https://doi.org/10.1002/app.49589
- N. Jiang, Y.-Y. Song, L.-N. Wang, W.-W. Liu, L. Bai et al., Highly intrinsic thermal conductivity of aramid nanofiber films by manipulating intermolecular hydrogen bonding interactions. Adv. Funct. Mater. 35(9), 2416277 (2025). https://doi.org/10.1002/adfm.202416277
- C. Xie, Z.-X. Guo, T. Qiu, X. Tuo, Construction of aramid engineering materials via polymerization-induced para-aramid nanofiber hydrogel. Adv. Mater. 33(31), 2101280 (2021). https://doi.org/10.1002/adma.202101280
- S.-M. Chen, G.-Z. Wang, Y. Hou, X.-N. Yang, S.-C. Zhang et al., Hierarchical and reconfigurable interfibrous interface of bioinspired Bouligand structure enabled by moderate orderliness. Sci. Adv. 10(14), eadl884 (2024). https://doi.org/10.1126/sciadv.adl1884
- Y. Lin, L. Tang, L. Cheng, X. Zeng, J. Zhang et al., Mechanically strong PBO wave-transparent composite papers with excellent UV resistance and ultra-low dielectric constant. J. Mater. Sci. Technol. 225, 151–158 (2025). https://doi.org/10.1016/j.jmst.2024.12.006
- Z. Liu, X. Fan, M. Han, H. Li, J. Zhang et al., Branched fluorine/adamantane interfacial compatibilizer for PBO fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem. 41(8), 939–950 (2023). https://doi.org/10.1002/cjoc.202200749
- J. Jiang, P. Zhou, Y. Yi, D. Chen, G. Hu et al., Dual-crosslinked network structured polybenzoxazine/PBO nanofiber aerogel with thermal insulation, flame retardancy, and super-hydrophobicity. Polym. Degrad. Stab. 234, 111216 (2025). https://doi.org/10.1016/j.polymdegradstab.2025
- R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu et al., Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9(1), 1664 (2018). https://doi.org/10.1038/s41467-018-03978-3
- J. Zhang, C. Tang, Q. Kong, M. He, P. Lv et al., Strong and tough polyvinyl alcohol hydrogels with high intrinsic thermal conductivity. Soft Sci. 5(1), 9 (2025)
- P. Gong, S. Ji, J. Wang, D. Dai, F. Wang et al., Fluorescence-switchable ultrasmall fluorinated graphene oxide with high near-infrared absorption for controlled and targeted drug delivery. Chem. Eng. J. 348, 438–446 (2018). https://doi.org/10.1016/j.cej.2018.04.193
- F. Wang, Z. Liu, J. Li, J. Huang, L. Fang et al., Lateral heterostructure formed by highly thermally conductive fluorinated graphene for efficient device thermal management. Adv. Sci. (Weinh) 11(25), e2401586 (2024). https://doi.org/10.1002/advs.202401586
- Z. Yu, S. Wu, C. Li, Y. Xiao, L. Zheng et al., Ultra-low dielectric constant fluorinated graphene/polybenzoxazole composite films with excellent thermal stabilities and mechanical properties. Compos. Part. A-Appl. S 145, 106387 (2021). https://doi.org/10.1016/j.compositesa.2021.106387
- J. Huo, G. Zhang, X. Zhang, X. Yuan, S. Guo, Flexible fluorinated graphene/poly(vinyl alcohol) films toward high thermal management capability. ACS Appl. Mater. Interfaces 15(45), 52984–52992 (2023). https://doi.org/10.1021/acsami.3c12754
- R. Tian, X. Jia, Y. Bai, J. Yang, H. Song, Fluorinated graphene thermally conductive hydrogel with a solid–liquid interpenetrating heat conduction network. ACS Appl. Mater. Interfaces 16(1), 1451–1460 (2024). https://doi.org/10.1021/acsami.3c14478
- X. Wang, P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 11(24), 21946–21954 (2019). https://doi.org/10.1021/acsami.9b07377
- J. Zhou, Y. Ma, J. Chen, Z. Cai, L. Qi et al., Supramolecular scale hydrophilicity regulation enabling efficient dewatering and assembly of nanocellulose into dense and strong bulk materials as sustainable plastic substitutes. Adv. Mater. 37(9), e2415313 (2025). https://doi.org/10.1002/adma.202415313
- M.C. Vu, N.A. Thi Thieu, J.-H. Lim, W.-K. Choi, J. Chan Won et al., Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation. Carbon 157, 741–749 (2020). https://doi.org/10.1016/j.carbon.2019.10.079
- W.-Y. Hu, K.-X. Yu, Q.-N. Zheng, Q.-L. Hu, C.-F. Cao et al., Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane. J. Colloid Interface Sci. 647, 467–477 (2023). https://doi.org/10.1016/j.jcis.2023.05.119
- G. Xiao, K. Zhang, H. Li, H. Niu, Y. Yao, Bioinspired dual-network CNT/PBO composite films with superior strength-ductility and thermal conductivity for flexible electronics thermal management. Chem. Eng. J. 509, 161481 (2025). https://doi.org/10.1016/j.cej.2025.161481
- L. Tang, J. Jiang, M. He, Y. Zhang, Q. Hu et al., Lightweight PBO nanofiber@ZIF-67 derived carbon aerogel with superior electromagnetic wave absorption and thermal insulation. J. Mater. Sci. Technol. 244, 186–195 (2025). https://doi.org/10.1016/j.jmst.2025.05.023
- R. Wang, T. Xu, Y. Yang, M. Zhang, R. Xie et al., Tough polyurethane hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure prepared by in situ water-induced microphase separation. Adv. Mater. 37(6), 2412083 (2025). https://doi.org/10.1002/adma.202412083
- M. Rim, H.H. Pham, H. Lee, J. Hyeong, Y. Wi et al., Molecular-level interface engineering and additive-induced crystallinity tuning for high-performance thermally conductive polymer composites. Angew. Chem. Int. Ed. (2025). https://doi.org/10.1002/anie.202504825
- K. Ruan, M. Li, Y. Pang, M. He, H. Guo et al., Molecular brush-grafted liquid crystalline hetero-structured fillers for boosting thermal conductivity of polyimide composite films. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202506563
- Z. Meng, W. Zhong, D. Zhang, Q. Liu, Z. Wang et al., Ultra strong, tough and extreme environments resistant PBO papers with a nacre-like structure constructed by synergistic electrostatic interaction and interlayer entanglement. Chem. Eng. J. 495, 153599 (2024). https://doi.org/10.1016/j.cej.2024.153599
- Y. Wang, X. Zhang, X. Ding, P. Zhang, M. Shu et al., Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos. Part B-Eng. 199, 108267 (2020). https://doi.org/10.1016/j.compositesb.2020.108267
- H. Jiang, Y. Xie, M. He, J. Li, F. Wu et al., Highly thermally conductive and flame-retardant waterborne polyurethane composites with 3D BNNS bridging structures via magnetic field assistance. Nano-Micro Lett. 17(1), 138 (2025). https://doi.org/10.1007/s40820-025-01651-1
- W. Yang, H. Bai, B. Jiang, C. Wang, W. Ye et al., Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 15(11), 9926–9935 (2022). https://doi.org/10.1007/s12274-022-4414-3
- Y.-Y. Song, N. Jiang, S.-Z. Li, L.-N. Wang, L. Bai et al., Ultra-high thermally conductive graphite microplatelet/aramid nanofiber composites with reduced interfacial thermal resistances by engineered interface π–π interactions. Mater. Horiz. 12(12), 4260–4273 (2025). https://doi.org/10.1039/D5MH00070J
- Y. Liu, M. Lu, K. Wu, E. Jiao, L. Liang et al., Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy. Compos. Sci. Technol. 213, 108940 (2021). https://doi.org/10.1016/j.compscitech.2021.108940
- Y. Wang, X. Zhang, X. Ding, Y. Li, P. Zhang et al., Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy. Compos. Sci. Technol. 205, 108693 (2021). https://doi.org/10.1016/j.compscitech.2021.108693
- M. He, L. Zhang, K. Ruan, J. Zhang, H. Zhang et al., Functionalized aluminum nitride for improving hydrolysis resistances of highly thermally conductive polysiloxane composites. Nano-Micro Lett. 17(1), 134 (2025). https://doi.org/10.1007/s40820-025-01669-5
- Y. Guo, L. Zhang, K. Ruan, Y. Mu, M. He et al., Enhancing hydrolysis resistance and thermal conductivity of aluminum nitride/polysiloxane composites via block copolymer-modification. Polymer 323, 128189 (2025). https://doi.org/10.1016/j.polymer.2025.128189
- Z. Zhao, L. Zhang, H. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv. Mater. 34(43), 2205376 (2022). https://doi.org/10.1002/adma.202205376
- D. Ji, M. Zhang, H. Sun, Y. Lyu, S.L. Cormier et al., Nacre-inspired composite papers with enhanced mechanical and electrical insulating properties: Assembly of aramid papers with aramid nanofibers and basalt nanosheets. J. Mater. Sci. Technol. 215, 283–295 (2025). https://doi.org/10.1016/j.jmst.2024.07.044
- J. Zhang, C. Tang, Q. Kong, K. Ruan, Y. Guo et al., Mechanically strong functionalized-BNNS/PVA composite hydrogels with excellent thermal conductivities. Macromol. Rapid Commun. (2025). https://doi.org/10.1002/marc.202500416
- T.-H. Jeong, P.-J. Park, S. Anand, D. Mani, J.-B. Kim et al., Metal ion-crosslinked thermoconductive sugar-functionalized graphene fluoride-based cellulose papers with enhanced mechanical properties and electrical insulation. J. Mater. Sci. Technol. 214, 204–213 (2025). https://doi.org/10.1016/j.jmst.2024.07.007
- B. Du, N. Chen, Y. Mai, G. Zhang, Y. Zhao, Improving the hydrophobicity and insulation properties of epoxy resins by the self-assembly-induced coating of fluorinated graphene. ACS Appl. Mater. Interfaces 15(27), 32895–32902 (2023). https://doi.org/10.1021/acsami.3c04623
References
S.H. Kim, A. Basir, R. Avila, J. Lim, S.W. Hong et al., Strain-invariant stretchable radio-frequency electronics. Nature 629(8014), 1047–1054 (2024). https://doi.org/10.1038/s41586-024-07383-3
J. Chen, Y. Zhou, X. Huang, C. Yu, D. Han et al., Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615(7950), 62–66 (2023). https://doi.org/10.1038/s41586-022-05671-4
H. Ko, Y. Wi, J. Koo, M. Rim, J. Hyeong et al., Recyclable low dielectric polymers with high thermal conductivity for copper-clad laminated film for high-frequency applications. Adv. Funct. Mater. 35(26), 2422633 (2025). https://doi.org/10.1002/adfm.202422633
X. Xie, J. Wu, Y. Ma, S. Li, J. Yan, Low dielectric and high thermal conductive phononic crystal nanofiber metamaterial film. Adv. Mater. (2025). https://doi.org/10.1002/adma.202502146
D. Chen, J. Sha, X. Mei, A. Ye, Z. Zhao et al., Ultralow k covalent organic frameworks enabling high fidelity signal transmission and high temperature electromechanical sensing. Nat. Commun. 15(1), 10864 (2024). https://doi.org/10.1038/s41467-024-55191-0
C. Cui, Z.-Y. Zhuang, H.-L. Gao, J. Pang, X.-F. Pan et al., 3D printing of ultrahigh filler content composites enabled by granular hydrogels. Adv. Mater. (2025). https://doi.org/10.1002/adma.202500782
L. Tang, K. Ruan, X. Liu, Y. Tang, Y. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16(1), 38 (2023). https://doi.org/10.1007/s40820-023-01257-5
X. Zhang, C. Wang, Y. Sun, H. Ling, G. Li et al., Synergistically enhanced interfacial and wave-transparent properties of PBO fiber composites: Constructing self-assembly interphase with different dimensional COF. Compos. Sci. Technol. 242, 110216 (2023). https://doi.org/10.1016/j.compscitech.2023.110216
T. Sun, W. Cao, K. Zhao, X. Wang, Z. Wang et al., Bio-inspired robust and highly thermal conductive BNNS/PBO nanofiber composite films with excellent thermal stability, wear resistance, and adjustable photothermal properties. Chem. Eng. J. 474, 145916 (2023). https://doi.org/10.1016/j.cej.2023.145916
L. Tang, J. Jiang, Q. Liu, Q. Li, Q. Hu et al., A bioinspired, robust mica/chitosan/PBO nanofiber paper with excellent dielectric insulation properties and high thermal conductivity. Ceram. Int. 51(19), 29752–29761 (2025). https://doi.org/10.1016/j.ceramint.2025.04.178
Y. Liu, W. Zou, N. Zhao, J. Xu, Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat. Commun. 14, 5342 (2023). https://doi.org/10.1038/s41467-023-40707-x
B. Yuan, B. Yang, P. Xu, M. Zhang, Poly(p-phenylene benzobisoxazole) nanofiber: a promising nanoscale building block toward extremely harsh conditions. ACS Nano 19(2), 1981–2012 (2025). https://doi.org/10.1021/acsnano.4c14912
Y. Lin, X. Fan, L. Tang, Y. Tang, J. Gu, Polysilsesquioxane-PBO wave-transparent composite paper with excellent mechanical properties and ultraviolet aging resistance. Adv. Fiber Mater. 5(6), 2114–2126 (2023). https://doi.org/10.1007/s42765-023-00327-y
Z. Zhang, L. Li, Y. Chen, J. Luo, H. Dai et al., From fiber to composite: in situ addition of graphene oxide driven structural and mechanical improvements in PBO. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202501401
M.-G. Huangfu, D.-X. Shen, X.-X. Zhi, Y. Zhang, Y.-J. Jia et al., Preparation and characterization of electrospun fluoro-containing poly(imide-benzoxazole) nano-fibrous membranes with low dielectric constants and high thermal stability. Nanomaterials 11(2), 537 (2021). https://doi.org/10.3390/nano11020537
Y. Gao, S. Wu, C. Li, Y. Xiao, J. Liu et al., Hydrogen-bond- and shear-field-induced self-assembly for the efficient preparation of polybenzoxazole nanofibers with excellent mechanical properties and heat resistance. Macromolecules 55(21), 9420–9430 (2022). https://doi.org/10.1021/acs.macromol.2c01482
D. Ji, Y. Lin, X. Guo, B. Ramasubramanian, R. Wang et al., Electrospinning of nanofibres. Nat. Rev. Meth. Primers 4, 1 (2024). https://doi.org/10.1038/s43586-023-00278-z
P. Hu, X. Hu, L. Liu, M. Li, Z. Zhao et al., Dimensional upgrading of 0D silica nanospheres to 3D networking toward robust aerogels for fire resistance and low-carbon applications. Mater. Sci. Eng. R. Rep. 161, 100842 (2024). https://doi.org/10.1016/j.mser.2024.100842
X. Zhang, X. Lei, X. Jia, T. Sun, J. Luo et al., Carbon nanotube fibers with dynamic strength up to 14 GPa. Science 384(6702), 1318–1323 (2024). https://doi.org/10.1126/science.adj1082
Y. Sun, T. Dong, Z. Chai, M. Li, L. Jiang et al., Flexible solid–liquid nanocomposite with high surface resistivity for effective electromagnetic interference shielding and heat dissipation. Mater. Horiz. 12(14), 5366–5379 (2025). https://doi.org/10.1039/d5mh00145e
Y. Liu, W. Zou, M. Yang, H. Luo, S. Yang et al., Polymer films with metal-like thermal conductivity, excellent stability, and flame retardancy. Adv. Funct. Mater. 33(38), 2303561 (2023). https://doi.org/10.1002/adfm.202303561
R. Duan, J. Zhou, X. Zheng, X. Ma, R. Zhai et al., High-strength, thin PBO nanofiber membrane with long-term stability for osmotic energy conversion. Adv. Funct. Mater. 34(12), 2311258 (2024). https://doi.org/10.1002/adfm.202311258
B. Yang, B. Yuan, P. Xu, M. Zhang, Dual-network assembled nanopaper towards extremely harsh conditions. Adv. Funct. Mater. 34(46), 2407763 (2024). https://doi.org/10.1002/adfm.202407763
L. Tang, M. Jia, M. He, Q. Liu, Y. Lin et al., Fabrication, applications, and prospects for poly(p-phenylene benzobisoxazole) nanofibers. SusMat 4(6), e245 (2024). https://doi.org/10.1002/sus2.245
Y. Liu, N. Zhao, J. Xu, Mechanically strong and flame-retardant PBO/BN/MXene nanocomposite paper with LowThermal ExpansionCoefficient, for efficient EMI shielding and heat dissipation. Adv. Fiber Mater. 5(5), 1657–1670 (2023). https://doi.org/10.1007/s42765-023-00298-0
Z. Peng, Q. Guo, L. Zhang, C. Li, High thermal conductivity and low dielectric polyimide nanocomposites using diamine-assisted mechanochemical exfoliation boron nitride and in-situ polymerization under pressure. Chem. Eng. J. 488, 150824 (2024). https://doi.org/10.1016/j.cej.2024.150824
Z. Yu, S. Wu, C. Li, Y. Xiao, J. Liu et al., Mechanically robust fluorinated graphene/poly(p-phenylene benzobisoxazole) nanofiber films with low dielectric constant and enhanced thermal conductivity: implications for thermal management applications. ACS Appl. Nano Mater. 5(12), 18247–18255 (2022). https://doi.org/10.1021/acsanm.2c04137
Z. Yu, S. Wu, C. Li, Y. Xiao, J. Liu et al., Structural regulation of Poly(benzoxazole imide)s and their composites with fluorinated graphene to construct high-performance low dielectric films. ACS Appl. Polym. Mater. 5(1), 711–719 (2023). https://doi.org/10.1021/acsapm.2c01729
X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv. Mater. 34(40), 2206088 (2022). https://doi.org/10.1002/adma.202206088
J. Jiang, Y. Zhou, C. Liu, C. Zhang, Branching a benzoxazole-g-PBO fiber/cyanate ester resin composite with excellent wave transmission at high temperatures. Chem. Eng. J. 504, 158840 (2025). https://doi.org/10.1016/j.cej.2024.158840
R. Mo, Z. Liu, W. Guo, X. Wu, Q. Xu et al., Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos. Commun. 28, 100962 (2021). https://doi.org/10.1016/j.coco.2021.100962
Y. Chen, H. Zhang, J. Chen, Y. Guo, P. Jiang et al., Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano 16(9), 14323–14333 (2022). https://doi.org/10.1021/acsnano.2c04534
Y. Zhang, X. Liu, R. Yang, Q. Zhuang, Lightweight polybenzoxazole aerogels with high compressive strength, ultralow dielectric constants, and excellent thermal stability. Polym. Chem. 15(9), 924–936 (2024). https://doi.org/10.1039/D3PY01325A
B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
X. Xu, L. Xing, X. Liu, H. Du, Z. Men et al., Exploring the change of hydrogen bond evolution in NMP-H2O solution through 2D Raman-COS spectra analysis. J. Mol. Struct. 1297, 136927 (2024). https://doi.org/10.1016/j.molstruc.2023.136927
Z.-M. Han, Y. Hou, H.-C. Liu et al., Fast and massive production of aramid nanofibers via molecule intercalation. J. Am. Chem. Soc. 147(9), 7939–7949 (2025). https://doi.org/10.1021/jacs.4c18620
Y. Lu, J. Liu, X. Xie, D.G. Cahill, Thermal conductivity in the radial direction of deformed polymer fibers. ACS Macro Lett. 5(6), 646–650 (2016). https://doi.org/10.1021/acsmacrolett.6b00048
R. Tu, H.C. Kim, O.A.H. Baabdullah, H.A. Sodano, Alignment controlled aramid nanofiber-assembled films. Adv. Funct. Mater. 34(30), 2315422 (2024). https://doi.org/10.1002/adfm.202315422
Y. Shi, T. Qiu, X. Tuo, The bottom-up synthesis for aramid nanofibers: The influence of copolymerization. J. Appl. Polym. Sci. 137(48), 49589 (2020). https://doi.org/10.1002/app.49589
N. Jiang, Y.-Y. Song, L.-N. Wang, W.-W. Liu, L. Bai et al., Highly intrinsic thermal conductivity of aramid nanofiber films by manipulating intermolecular hydrogen bonding interactions. Adv. Funct. Mater. 35(9), 2416277 (2025). https://doi.org/10.1002/adfm.202416277
C. Xie, Z.-X. Guo, T. Qiu, X. Tuo, Construction of aramid engineering materials via polymerization-induced para-aramid nanofiber hydrogel. Adv. Mater. 33(31), 2101280 (2021). https://doi.org/10.1002/adma.202101280
S.-M. Chen, G.-Z. Wang, Y. Hou, X.-N. Yang, S.-C. Zhang et al., Hierarchical and reconfigurable interfibrous interface of bioinspired Bouligand structure enabled by moderate orderliness. Sci. Adv. 10(14), eadl884 (2024). https://doi.org/10.1126/sciadv.adl1884
Y. Lin, L. Tang, L. Cheng, X. Zeng, J. Zhang et al., Mechanically strong PBO wave-transparent composite papers with excellent UV resistance and ultra-low dielectric constant. J. Mater. Sci. Technol. 225, 151–158 (2025). https://doi.org/10.1016/j.jmst.2024.12.006
Z. Liu, X. Fan, M. Han, H. Li, J. Zhang et al., Branched fluorine/adamantane interfacial compatibilizer for PBO fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem. 41(8), 939–950 (2023). https://doi.org/10.1002/cjoc.202200749
J. Jiang, P. Zhou, Y. Yi, D. Chen, G. Hu et al., Dual-crosslinked network structured polybenzoxazine/PBO nanofiber aerogel with thermal insulation, flame retardancy, and super-hydrophobicity. Polym. Degrad. Stab. 234, 111216 (2025). https://doi.org/10.1016/j.polymdegradstab.2025
R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu et al., Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9(1), 1664 (2018). https://doi.org/10.1038/s41467-018-03978-3
J. Zhang, C. Tang, Q. Kong, M. He, P. Lv et al., Strong and tough polyvinyl alcohol hydrogels with high intrinsic thermal conductivity. Soft Sci. 5(1), 9 (2025)
P. Gong, S. Ji, J. Wang, D. Dai, F. Wang et al., Fluorescence-switchable ultrasmall fluorinated graphene oxide with high near-infrared absorption for controlled and targeted drug delivery. Chem. Eng. J. 348, 438–446 (2018). https://doi.org/10.1016/j.cej.2018.04.193
F. Wang, Z. Liu, J. Li, J. Huang, L. Fang et al., Lateral heterostructure formed by highly thermally conductive fluorinated graphene for efficient device thermal management. Adv. Sci. (Weinh) 11(25), e2401586 (2024). https://doi.org/10.1002/advs.202401586
Z. Yu, S. Wu, C. Li, Y. Xiao, L. Zheng et al., Ultra-low dielectric constant fluorinated graphene/polybenzoxazole composite films with excellent thermal stabilities and mechanical properties. Compos. Part. A-Appl. S 145, 106387 (2021). https://doi.org/10.1016/j.compositesa.2021.106387
J. Huo, G. Zhang, X. Zhang, X. Yuan, S. Guo, Flexible fluorinated graphene/poly(vinyl alcohol) films toward high thermal management capability. ACS Appl. Mater. Interfaces 15(45), 52984–52992 (2023). https://doi.org/10.1021/acsami.3c12754
R. Tian, X. Jia, Y. Bai, J. Yang, H. Song, Fluorinated graphene thermally conductive hydrogel with a solid–liquid interpenetrating heat conduction network. ACS Appl. Mater. Interfaces 16(1), 1451–1460 (2024). https://doi.org/10.1021/acsami.3c14478
X. Wang, P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 11(24), 21946–21954 (2019). https://doi.org/10.1021/acsami.9b07377
J. Zhou, Y. Ma, J. Chen, Z. Cai, L. Qi et al., Supramolecular scale hydrophilicity regulation enabling efficient dewatering and assembly of nanocellulose into dense and strong bulk materials as sustainable plastic substitutes. Adv. Mater. 37(9), e2415313 (2025). https://doi.org/10.1002/adma.202415313
M.C. Vu, N.A. Thi Thieu, J.-H. Lim, W.-K. Choi, J. Chan Won et al., Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation. Carbon 157, 741–749 (2020). https://doi.org/10.1016/j.carbon.2019.10.079
W.-Y. Hu, K.-X. Yu, Q.-N. Zheng, Q.-L. Hu, C.-F. Cao et al., Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane. J. Colloid Interface Sci. 647, 467–477 (2023). https://doi.org/10.1016/j.jcis.2023.05.119
G. Xiao, K. Zhang, H. Li, H. Niu, Y. Yao, Bioinspired dual-network CNT/PBO composite films with superior strength-ductility and thermal conductivity for flexible electronics thermal management. Chem. Eng. J. 509, 161481 (2025). https://doi.org/10.1016/j.cej.2025.161481
L. Tang, J. Jiang, M. He, Y. Zhang, Q. Hu et al., Lightweight PBO nanofiber@ZIF-67 derived carbon aerogel with superior electromagnetic wave absorption and thermal insulation. J. Mater. Sci. Technol. 244, 186–195 (2025). https://doi.org/10.1016/j.jmst.2025.05.023
R. Wang, T. Xu, Y. Yang, M. Zhang, R. Xie et al., Tough polyurethane hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure prepared by in situ water-induced microphase separation. Adv. Mater. 37(6), 2412083 (2025). https://doi.org/10.1002/adma.202412083
M. Rim, H.H. Pham, H. Lee, J. Hyeong, Y. Wi et al., Molecular-level interface engineering and additive-induced crystallinity tuning for high-performance thermally conductive polymer composites. Angew. Chem. Int. Ed. (2025). https://doi.org/10.1002/anie.202504825
K. Ruan, M. Li, Y. Pang, M. He, H. Guo et al., Molecular brush-grafted liquid crystalline hetero-structured fillers for boosting thermal conductivity of polyimide composite films. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202506563
Z. Meng, W. Zhong, D. Zhang, Q. Liu, Z. Wang et al., Ultra strong, tough and extreme environments resistant PBO papers with a nacre-like structure constructed by synergistic electrostatic interaction and interlayer entanglement. Chem. Eng. J. 495, 153599 (2024). https://doi.org/10.1016/j.cej.2024.153599
Y. Wang, X. Zhang, X. Ding, P. Zhang, M. Shu et al., Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos. Part B-Eng. 199, 108267 (2020). https://doi.org/10.1016/j.compositesb.2020.108267
H. Jiang, Y. Xie, M. He, J. Li, F. Wu et al., Highly thermally conductive and flame-retardant waterborne polyurethane composites with 3D BNNS bridging structures via magnetic field assistance. Nano-Micro Lett. 17(1), 138 (2025). https://doi.org/10.1007/s40820-025-01651-1
W. Yang, H. Bai, B. Jiang, C. Wang, W. Ye et al., Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 15(11), 9926–9935 (2022). https://doi.org/10.1007/s12274-022-4414-3
Y.-Y. Song, N. Jiang, S.-Z. Li, L.-N. Wang, L. Bai et al., Ultra-high thermally conductive graphite microplatelet/aramid nanofiber composites with reduced interfacial thermal resistances by engineered interface π–π interactions. Mater. Horiz. 12(12), 4260–4273 (2025). https://doi.org/10.1039/D5MH00070J
Y. Liu, M. Lu, K. Wu, E. Jiao, L. Liang et al., Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy. Compos. Sci. Technol. 213, 108940 (2021). https://doi.org/10.1016/j.compscitech.2021.108940
Y. Wang, X. Zhang, X. Ding, Y. Li, P. Zhang et al., Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy. Compos. Sci. Technol. 205, 108693 (2021). https://doi.org/10.1016/j.compscitech.2021.108693
M. He, L. Zhang, K. Ruan, J. Zhang, H. Zhang et al., Functionalized aluminum nitride for improving hydrolysis resistances of highly thermally conductive polysiloxane composites. Nano-Micro Lett. 17(1), 134 (2025). https://doi.org/10.1007/s40820-025-01669-5
Y. Guo, L. Zhang, K. Ruan, Y. Mu, M. He et al., Enhancing hydrolysis resistance and thermal conductivity of aluminum nitride/polysiloxane composites via block copolymer-modification. Polymer 323, 128189 (2025). https://doi.org/10.1016/j.polymer.2025.128189
Z. Zhao, L. Zhang, H. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv. Mater. 34(43), 2205376 (2022). https://doi.org/10.1002/adma.202205376
D. Ji, M. Zhang, H. Sun, Y. Lyu, S.L. Cormier et al., Nacre-inspired composite papers with enhanced mechanical and electrical insulating properties: Assembly of aramid papers with aramid nanofibers and basalt nanosheets. J. Mater. Sci. Technol. 215, 283–295 (2025). https://doi.org/10.1016/j.jmst.2024.07.044
J. Zhang, C. Tang, Q. Kong, K. Ruan, Y. Guo et al., Mechanically strong functionalized-BNNS/PVA composite hydrogels with excellent thermal conductivities. Macromol. Rapid Commun. (2025). https://doi.org/10.1002/marc.202500416
T.-H. Jeong, P.-J. Park, S. Anand, D. Mani, J.-B. Kim et al., Metal ion-crosslinked thermoconductive sugar-functionalized graphene fluoride-based cellulose papers with enhanced mechanical properties and electrical insulation. J. Mater. Sci. Technol. 214, 204–213 (2025). https://doi.org/10.1016/j.jmst.2024.07.007
B. Du, N. Chen, Y. Mai, G. Zhang, Y. Zhao, Improving the hydrophobicity and insulation properties of epoxy resins by the self-assembly-induced coating of fluorinated graphene. ACS Appl. Mater. Interfaces 15(27), 32895–32902 (2023). https://doi.org/10.1021/acsami.3c04623