Magnetic–Dielectric Synergy in One-Dimensional Metal Heterostructures for Enhanced Low-Frequency Microwave Absorption
Corresponding Author: ZhengMing Sun
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 155
Abstract
Microwave absorption (MA) materials often face poor synergy between impedance matching and attenuation in the low-frequency range. Balancing permittivity and permeability through magnetic–dielectric synergy is a promising strategy to address this issue. To realize the synergy, herein, Sn whiskers with an in situ oxide layer served as substrates for magnetic-loss-active CoNi nanosheet growth, forming a hierarchical CoNi@SnO2@Sn (CNS) heterostructure. The CNS absorber achieves a minimum reflection loss (RLmin) value of − 62.29 dB with an effective absorption bandwidth (EAB) of 2.2 GHz, covering the entire C-band with 70% absorption at only 2.61 mm thickness. The nanosheet design of CoNi enhances magnetic anisotropy to promote natural resonance, while the conductive Sn core and abundant Sn/SnO2 and CoNi/SnO2 heterointerfaces facilitate conduction loss and dielectric polarization. When composited into a thermoplastic polyurethane (TPU) matrix, the resulting CNS/TPU-2 film (20 wt% CNS) exhibits an RLmin value of -61.04 dB and a 2.5 GHz EAB. Its in-plane and through-plane thermal conductivities reach 2.41 and 0.51 W m−1 K−1, representing 4.1 and 2.6 times those of pure TPU films, respectively, facilitating heat dissipation from protected devices. This work provides valuable insights into magnetic–dielectric synergy for low-frequency MA of 1D metal-based materials, offering promising potential for 5G communications and flexible electronics.
Highlights:
1 The hierarchical structure of CoNi nanosheets wrapped on one-dimensional Sn whiskers enhances magnetic anisotropy and dielectric losses, enabling strong magnetic–dielectric synergy.
2 The CoNi@SnO2@Sn (CNS) filler achieves − 62.29 dB reflection loss and 2.2 GHz bandwidth, fully covering the C-band with > 70% absorption, outperforming most low-frequency absorbers.
3 A flexible CNS/TPU film exhibits superior low-frequency microwave absorption and thermal conductivity, expanding its potential applications in communication electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Han, D. Zhang, C.E. Shuck, B. McBride, T. Zhang et al., Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18(4), 373–379 (2023). https://doi.org/10.1038/s41565-022-01308-9
- H. Zhang, K. Kuang, Y. Zhang, C. Sun, T. Yuan et al., Multifunctional carbon foam with nanoscale chiral magnetic heterostructures for broadband microwave absorption in low frequency. Nano-Micro Lett. 17(1), 133 (2025). https://doi.org/10.1007/s40820-025-01658-8
- S. Wan, Y. Chen, C. Huang, Z. Huang, C. Liang et al., Scalable ultrastrong MXene films with superior osteogenesis. Nature 634(8036), 1103–1110 (2024). https://doi.org/10.1038/s41586-024-08067-8
- M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36(48), 2410186 (2024). https://doi.org/10.1002/adma.202410186
- X. Zhou, P. Min, Y. Liu, M. Jin, Z.-Z. Yu et al., Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 385(6714), 1205–1210 (2024). https://doi.org/10.1126/science.adp6581
- X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10(11), eadl6498 (2024). https://doi.org/10.1126/sciadv.adl6498
- S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15(1), 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
- F. Gu, W. Wang, H. Meng, Y. Liu, L. Zhuang et al., Lattice distortion boosted exceptional electromagnetic wave absorption in high-entropy diborides. Matter 8(3), 102004 (2025). https://doi.org/10.1016/j.matt.2025.102004
- G. Chen, R. Zhang, M. Yuan, S. Xue, Y. Liu et al., Visualizing nanoscale interlayer magnetic interactions and unconventional low-frequency behaviors in ferromagnetic multishelled structures. Adv. Mater. 36(24), 2313411 (2024). https://doi.org/10.1002/adma.202313411
- L. Rao, M. Huang, X. Wang, Y. Qian, Z. Yan et al., Atomic infusion induced reconstruction enhances multifunctional thermally conductive films for robust low-frequency electromagnetic absorption. Angew. Chem. Int. Ed. 64(6), e202418338 (2025). https://doi.org/10.1002/anie.202418338
- J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- Z. Zhang, T. Gao, R. Zhao, C. Hu, Y. Liao et al., High easy-plane anisotropy Y-Co intermetallic nanops for boosting gigahertz magnetic loss ability. Acta Mater. 272, 119947 (2024). https://doi.org/10.1016/j.actamat.2024.119947
- F. Hu, P. Ding, F. Wu, P. Zhang, W. Zheng et al., Novel cable-like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra-wideband electromagnetic wave absorption. Carbon Energy 6(12), e638 (2024). https://doi.org/10.1002/cey2.638
- L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 33(16), 2213258 (2023). https://doi.org/10.1002/adfm.202213258
- W. Li, J. Lv, X. Zhou, J. Zheng, Y. Ying et al., Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites. J. Magn. Magn. Mater. 426, 504–509 (2017). https://doi.org/10.1016/j.jmmm.2016.11.119
- Y. Han, H. Guo, H. Qiu, J. Hu, M. He et al., Multimechanism decoupling for low-frequency microwave absorption hierarchical Fe-doped co magnetic microchains. Adv. Funct. Mater. 35(39), 2506803 (2025). https://doi.org/10.1002/adfm.202506803
- M. Liu, G. Chen, G. Liang, Y. Qian, L. Yang et al., Asymmetric atomic diffusion-engineered magnetic nano-interfaces for enhanced low-frequency electromagnetic wave attenuation. Adv. Funct. Mater. 35(43), 2508174 (2025). https://doi.org/10.1002/adfm.202508174
- B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14(1), 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
- J. Wang, Z. Miao, K. Gao, Z. Li, X. Zhang et al., Integration of heterogeneous interfaces and multi-dimensional encapsulation structure in Fe2N@CNTs enabling highly efficient thermal management and microwave absorption. Adv. Funct. Mater. 34(48), 2408696 (2024). https://doi.org/10.1002/adfm.202408696
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 35(18), 2316691 (2025). https://doi.org/10.1002/adfm.202316691
- R. Yamamoto, D. Kowalski, R. Zhu, K. Wada, Y. Sato et al., Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity. Appl. Surf. Sci. 537, 147854 (2021). https://doi.org/10.1016/j.apsusc.2020.147854
- A. Wang, H. Bao, Size-dependent thermal transport properties of advanced metallic nanowire interconnects. Appl. Phys. Lett. 124(21), 212202 (2024). https://doi.org/10.1063/5.0206103
- Y. Feng, J. Song, G. Han, B. Zhou, C. Liu et al., Transparent and stretchable electromagnetic interference shielding film with fence-like aligned silver nanowire conductive network. Small Methods 7(7), 2201490 (2023). https://doi.org/10.1002/smtd.202201490
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- S. Li, H. Zhang, H. Ruan, Z. Cheng, Y. Yao et al., Programmable nucleation and growth of ultrathin tellurium nanowires via a pulsed physical vapor deposition design. Adv. Funct. Mater. 33(11), 2211527 (2023). https://doi.org/10.1002/adfm.202211527
- H.E. Lim, Y. Nakanishi, Z. Liu, J. Pu, M. Maruyama et al., Wafer-scale growth of one-dimensional transition-metal telluride nanowires. Nano Lett. 21(1), 243–249 (2021). https://doi.org/10.1021/acs.nanolett.0c03456
- Y. Zheng, N. Chen, C. Wang, X. Zhang, Z. Liu, Oleylamine-mediated hydrothermal growth of millimeter-long Cu nanowires and their electrocatalytic activity for reduction of nitrate. Nanomaterials 8(4), 192 (2018). https://doi.org/10.3390/nano8040192
- J.E. Graves, M.E.A. Bowker, A. Summer, A. Greenwood, C. de Ponce León et al., A new procedure for the template synthesis of metal nanowires. Electrochem. Commun. 87, 58–62 (2018). https://doi.org/10.1016/j.elecom.2017.11.022
- A. Kosinova, D. Wang, P. Schaaf, A. Sharma, L. Klinger et al., Whiskers growth in thin passivated Au films. Acta Mater. 149, 154–163 (2018). https://doi.org/10.1016/j.actamat.2018.02.041
- H. Tohmyoh, M. Yasuda, M. Saka, Controlling Ag whisker growth using very thin metallic films. Scr. Mater. 63(3), 289–292 (2010). https://doi.org/10.1016/j.scriptamat.2010.04.013
- Y. Kimura, Y. Cui, T. Suzuki, Y. Tanaka, T. Tanaka et al., Growth of metal nanowire forests controlled through stress fields induced by grain gradients. Science 385(6709), 641–646 (2024). https://doi.org/10.1126/science.adn9181
- M. Barsoum, L. Farber, Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. Science 284(5416), 937–939 (1999). https://doi.org/10.1126/science.284.5416.937
- H. Ding, Y. Li, M. Li, K. Chen, K. Liang et al., Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379(6637), 1130–1135 (2023). https://doi.org/10.1126/science.add5901
- C. Lu, Y. Liu, J. Fang, Y. Zhang, P. Zhang et al., Isotope study reveals atomic motion mechanism for the formation of metal whiskers in MAX phase. Acta Mater. 203, 116475 (2021). https://doi.org/10.1016/j.actamat.2020.11.017
- P. Ding, Y. Wang, F. Hu, J. Wu, Z. Tian et al., MAX phase-derived tin nano-/ micro-wires with controlled diameter through seeded growth. Mater. Today Commun. 40, 109957 (2024). https://doi.org/10.1016/j.mtcomm.2024.109957
- H. Tang, B. Yan, P. Zhang, X. Yin, Z. Tian et al., Controlling tin whisker growth via oxygen-mediated decomposition of Ti2SnC. J. Mater. Sci. 59(5), 1958–1967 (2024). https://doi.org/10.1007/s10853-023-09273-x
- Z. Ma, K. Yang, D. Li, H. Liu, S. Hui et al., The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 36(23), 2314233 (2024). https://doi.org/10.1002/adma.202314233
- Y. Liu, C. Lu, P. Zhang, J. Yu, Y. Zhang et al., Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics. Acta Mater. 185, 433–440 (2020). https://doi.org/10.1016/j.actamat.2019.12.027
- F. Hu, P. Zhang, F. Wu, Z. Tian, H. Tang et al., One-dimensional core-sheath Sn/SnOx derived from MAX phase for microwave absorption. J. Materiomics 10(3), 531–542 (2024). https://doi.org/10.1016/j.jmat.2023.07.014
- F. Hu, H. Tang, F. Wu, P. Ding, P. Zhang et al., Sn whiskers from Ti2SnC max phase: bridging dual-functionality in electromagnetic attenuation. Small Methods 8(9), e2301476 (2024). https://doi.org/10.1002/smtd.202301476
- Z. Tian, P. Zhang, Y. Zhang, J. Tang, Y. Liu et al., Tin whisker growth from titanium-tin intermetallic and the mechanism. J. Mater. Sci. Technol. 129, 79–86 (2022). https://doi.org/10.1016/j.jmst.2022.04.034
- X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14(1), 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
- H. Lv, C. Wu, J. Tang, H. Du, F. Qin et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 411, 128445 (2021). https://doi.org/10.1016/j.cej.2021.128445
- Z. Li, C. Zhang, J. Bu, L. Zhang, L. Cheng et al., Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability. Carbon 194, 197–206 (2022). https://doi.org/10.1016/j.carbon.2022.03.079
- X. Zeng, X. Jiang, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanops for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562–1576 (2023). https://doi.org/10.26599/jac.2023.9220772
- F. Hu, S. Xie, F. Wu, J. Liu, P. Zhang et al., Heterointerface engineering in Cr2GaC/C hybrids through bottom-up template synthesis for enhanced electromagnetic wave absorption. J. Mater. Chem. A 12(48), 33939–33947 (2024). https://doi.org/10.1039/D4TA07294D
- Z. Tian, F. Hu, P. Zhang, Y. Fan, A.S. Shamshirgar et al., High-entropy engineering of A-site in MAX phases toward superior microwave absorption properties. Matter (2025). https://doi.org/10.1016/j.matt.2025.102367
- W. Ma, X. Liu, T. Yang, J. Wang, Z. Qiu et al., Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra-broadband absorption with low-frequency compatibility. Adv. Funct. Mater. 35(18), 2314046 (2025). https://doi.org/10.1002/adfm.202314046
- B. Cai, L. Zhou, P.-Y. Zhao, H.-L. Peng, Z.-L. Hou et al., Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss. Nat. Commun. 15(1), 3299 (2024). https://doi.org/10.1038/s41467-024-47537-5
- S. Hui, X. Zhou, L. Zhang, H. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers. Adv. Sci. 11(6), 2307649 (2024). https://doi.org/10.1002/advs.202307649
- L. Song, F. Hu, Y. Chen, L. Guan, P. Zhang et al., Heterointerface-engineered SiC@SiO2@C nanofibers for simultaneous microwave absorption and corrosion resistance. Adv. Sci. 12(37), e09071 (2025). https://doi.org/10.1002/advs.202509071
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- J. Liu, Y. Du, B. Li, X. Zhou, M. Yuan et al., Engineering structural anisotropy for visualizing and controlling nanomagnetic interactions with high-frequency electromagnetic wave. Adv. Funct. Mater. 35(27), 2425148 (2025). https://doi.org/10.1002/adfm.202425148
- B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16(1), 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
- X. Yang, Z. Wu, K. Pei, Y. Qian, X. Lv et al., Confining magnetic response by the surface reorganization of buckling permalloy microspheres for boosting microwave absorption. ACS Nano 19(9), 9144–9155 (2025). https://doi.org/10.1021/acsnano.4c18320
- F. Wu, F. Hu, P. Hu, P. Zhang, B. Fan et al., Multifunctional carbon fiber@TiO2/C aerogels derived from MXene for pressure tunable microwave absorption. Carbon 230, 119644 (2024). https://doi.org/10.1016/j.carbon.2024.119644
- Y. Zhang, S.-H. Yang, Y. Xin, B. Cai, P.-F. Hu et al., Designing symmetric gradient honeycomb structures with carbon-coated iron-based composites for high-efficiency microwave absorption. Nano-Micro Lett. 16(1), 234 (2024). https://doi.org/10.1007/s40820-024-01435-z
- C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17(1), 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
- W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9(35), 2204165 (2022). https://doi.org/10.1002/advs.202204165
References
M. Han, D. Zhang, C.E. Shuck, B. McBride, T. Zhang et al., Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18(4), 373–379 (2023). https://doi.org/10.1038/s41565-022-01308-9
H. Zhang, K. Kuang, Y. Zhang, C. Sun, T. Yuan et al., Multifunctional carbon foam with nanoscale chiral magnetic heterostructures for broadband microwave absorption in low frequency. Nano-Micro Lett. 17(1), 133 (2025). https://doi.org/10.1007/s40820-025-01658-8
S. Wan, Y. Chen, C. Huang, Z. Huang, C. Liang et al., Scalable ultrastrong MXene films with superior osteogenesis. Nature 634(8036), 1103–1110 (2024). https://doi.org/10.1038/s41586-024-08067-8
M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36(48), 2410186 (2024). https://doi.org/10.1002/adma.202410186
X. Zhou, P. Min, Y. Liu, M. Jin, Z.-Z. Yu et al., Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 385(6714), 1205–1210 (2024). https://doi.org/10.1126/science.adp6581
X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10(11), eadl6498 (2024). https://doi.org/10.1126/sciadv.adl6498
S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15(1), 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
F. Gu, W. Wang, H. Meng, Y. Liu, L. Zhuang et al., Lattice distortion boosted exceptional electromagnetic wave absorption in high-entropy diborides. Matter 8(3), 102004 (2025). https://doi.org/10.1016/j.matt.2025.102004
G. Chen, R. Zhang, M. Yuan, S. Xue, Y. Liu et al., Visualizing nanoscale interlayer magnetic interactions and unconventional low-frequency behaviors in ferromagnetic multishelled structures. Adv. Mater. 36(24), 2313411 (2024). https://doi.org/10.1002/adma.202313411
L. Rao, M. Huang, X. Wang, Y. Qian, Z. Yan et al., Atomic infusion induced reconstruction enhances multifunctional thermally conductive films for robust low-frequency electromagnetic absorption. Angew. Chem. Int. Ed. 64(6), e202418338 (2025). https://doi.org/10.1002/anie.202418338
J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). https://doi.org/10.1002/adfm.202200123
Z. Zhang, T. Gao, R. Zhao, C. Hu, Y. Liao et al., High easy-plane anisotropy Y-Co intermetallic nanops for boosting gigahertz magnetic loss ability. Acta Mater. 272, 119947 (2024). https://doi.org/10.1016/j.actamat.2024.119947
F. Hu, P. Ding, F. Wu, P. Zhang, W. Zheng et al., Novel cable-like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra-wideband electromagnetic wave absorption. Carbon Energy 6(12), e638 (2024). https://doi.org/10.1002/cey2.638
L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 33(16), 2213258 (2023). https://doi.org/10.1002/adfm.202213258
W. Li, J. Lv, X. Zhou, J. Zheng, Y. Ying et al., Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites. J. Magn. Magn. Mater. 426, 504–509 (2017). https://doi.org/10.1016/j.jmmm.2016.11.119
Y. Han, H. Guo, H. Qiu, J. Hu, M. He et al., Multimechanism decoupling for low-frequency microwave absorption hierarchical Fe-doped co magnetic microchains. Adv. Funct. Mater. 35(39), 2506803 (2025). https://doi.org/10.1002/adfm.202506803
M. Liu, G. Chen, G. Liang, Y. Qian, L. Yang et al., Asymmetric atomic diffusion-engineered magnetic nano-interfaces for enhanced low-frequency electromagnetic wave attenuation. Adv. Funct. Mater. 35(43), 2508174 (2025). https://doi.org/10.1002/adfm.202508174
B. Yang, J. Fang, C. Xu, H. Cao, R. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14(1), 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
J. Wang, Z. Miao, K. Gao, Z. Li, X. Zhang et al., Integration of heterogeneous interfaces and multi-dimensional encapsulation structure in Fe2N@CNTs enabling highly efficient thermal management and microwave absorption. Adv. Funct. Mater. 34(48), 2408696 (2024). https://doi.org/10.1002/adfm.202408696
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 35(18), 2316691 (2025). https://doi.org/10.1002/adfm.202316691
R. Yamamoto, D. Kowalski, R. Zhu, K. Wada, Y. Sato et al., Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity. Appl. Surf. Sci. 537, 147854 (2021). https://doi.org/10.1016/j.apsusc.2020.147854
A. Wang, H. Bao, Size-dependent thermal transport properties of advanced metallic nanowire interconnects. Appl. Phys. Lett. 124(21), 212202 (2024). https://doi.org/10.1063/5.0206103
Y. Feng, J. Song, G. Han, B. Zhou, C. Liu et al., Transparent and stretchable electromagnetic interference shielding film with fence-like aligned silver nanowire conductive network. Small Methods 7(7), 2201490 (2023). https://doi.org/10.1002/smtd.202201490
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
S. Li, H. Zhang, H. Ruan, Z. Cheng, Y. Yao et al., Programmable nucleation and growth of ultrathin tellurium nanowires via a pulsed physical vapor deposition design. Adv. Funct. Mater. 33(11), 2211527 (2023). https://doi.org/10.1002/adfm.202211527
H.E. Lim, Y. Nakanishi, Z. Liu, J. Pu, M. Maruyama et al., Wafer-scale growth of one-dimensional transition-metal telluride nanowires. Nano Lett. 21(1), 243–249 (2021). https://doi.org/10.1021/acs.nanolett.0c03456
Y. Zheng, N. Chen, C. Wang, X. Zhang, Z. Liu, Oleylamine-mediated hydrothermal growth of millimeter-long Cu nanowires and their electrocatalytic activity for reduction of nitrate. Nanomaterials 8(4), 192 (2018). https://doi.org/10.3390/nano8040192
J.E. Graves, M.E.A. Bowker, A. Summer, A. Greenwood, C. de Ponce León et al., A new procedure for the template synthesis of metal nanowires. Electrochem. Commun. 87, 58–62 (2018). https://doi.org/10.1016/j.elecom.2017.11.022
A. Kosinova, D. Wang, P. Schaaf, A. Sharma, L. Klinger et al., Whiskers growth in thin passivated Au films. Acta Mater. 149, 154–163 (2018). https://doi.org/10.1016/j.actamat.2018.02.041
H. Tohmyoh, M. Yasuda, M. Saka, Controlling Ag whisker growth using very thin metallic films. Scr. Mater. 63(3), 289–292 (2010). https://doi.org/10.1016/j.scriptamat.2010.04.013
Y. Kimura, Y. Cui, T. Suzuki, Y. Tanaka, T. Tanaka et al., Growth of metal nanowire forests controlled through stress fields induced by grain gradients. Science 385(6709), 641–646 (2024). https://doi.org/10.1126/science.adn9181
M. Barsoum, L. Farber, Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. Science 284(5416), 937–939 (1999). https://doi.org/10.1126/science.284.5416.937
H. Ding, Y. Li, M. Li, K. Chen, K. Liang et al., Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379(6637), 1130–1135 (2023). https://doi.org/10.1126/science.add5901
C. Lu, Y. Liu, J. Fang, Y. Zhang, P. Zhang et al., Isotope study reveals atomic motion mechanism for the formation of metal whiskers in MAX phase. Acta Mater. 203, 116475 (2021). https://doi.org/10.1016/j.actamat.2020.11.017
P. Ding, Y. Wang, F. Hu, J. Wu, Z. Tian et al., MAX phase-derived tin nano-/ micro-wires with controlled diameter through seeded growth. Mater. Today Commun. 40, 109957 (2024). https://doi.org/10.1016/j.mtcomm.2024.109957
H. Tang, B. Yan, P. Zhang, X. Yin, Z. Tian et al., Controlling tin whisker growth via oxygen-mediated decomposition of Ti2SnC. J. Mater. Sci. 59(5), 1958–1967 (2024). https://doi.org/10.1007/s10853-023-09273-x
Z. Ma, K. Yang, D. Li, H. Liu, S. Hui et al., The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 36(23), 2314233 (2024). https://doi.org/10.1002/adma.202314233
Y. Liu, C. Lu, P. Zhang, J. Yu, Y. Zhang et al., Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics. Acta Mater. 185, 433–440 (2020). https://doi.org/10.1016/j.actamat.2019.12.027
F. Hu, P. Zhang, F. Wu, Z. Tian, H. Tang et al., One-dimensional core-sheath Sn/SnOx derived from MAX phase for microwave absorption. J. Materiomics 10(3), 531–542 (2024). https://doi.org/10.1016/j.jmat.2023.07.014
F. Hu, H. Tang, F. Wu, P. Ding, P. Zhang et al., Sn whiskers from Ti2SnC max phase: bridging dual-functionality in electromagnetic attenuation. Small Methods 8(9), e2301476 (2024). https://doi.org/10.1002/smtd.202301476
Z. Tian, P. Zhang, Y. Zhang, J. Tang, Y. Liu et al., Tin whisker growth from titanium-tin intermetallic and the mechanism. J. Mater. Sci. Technol. 129, 79–86 (2022). https://doi.org/10.1016/j.jmst.2022.04.034
X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14(1), 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
H. Lv, C. Wu, J. Tang, H. Du, F. Qin et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 411, 128445 (2021). https://doi.org/10.1016/j.cej.2021.128445
Z. Li, C. Zhang, J. Bu, L. Zhang, L. Cheng et al., Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability. Carbon 194, 197–206 (2022). https://doi.org/10.1016/j.carbon.2022.03.079
X. Zeng, X. Jiang, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanops for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562–1576 (2023). https://doi.org/10.26599/jac.2023.9220772
F. Hu, S. Xie, F. Wu, J. Liu, P. Zhang et al., Heterointerface engineering in Cr2GaC/C hybrids through bottom-up template synthesis for enhanced electromagnetic wave absorption. J. Mater. Chem. A 12(48), 33939–33947 (2024). https://doi.org/10.1039/D4TA07294D
Z. Tian, F. Hu, P. Zhang, Y. Fan, A.S. Shamshirgar et al., High-entropy engineering of A-site in MAX phases toward superior microwave absorption properties. Matter (2025). https://doi.org/10.1016/j.matt.2025.102367
W. Ma, X. Liu, T. Yang, J. Wang, Z. Qiu et al., Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra-broadband absorption with low-frequency compatibility. Adv. Funct. Mater. 35(18), 2314046 (2025). https://doi.org/10.1002/adfm.202314046
B. Cai, L. Zhou, P.-Y. Zhao, H.-L. Peng, Z.-L. Hou et al., Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss. Nat. Commun. 15(1), 3299 (2024). https://doi.org/10.1038/s41467-024-47537-5
S. Hui, X. Zhou, L. Zhang, H. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers. Adv. Sci. 11(6), 2307649 (2024). https://doi.org/10.1002/advs.202307649
L. Song, F. Hu, Y. Chen, L. Guan, P. Zhang et al., Heterointerface-engineered SiC@SiO2@C nanofibers for simultaneous microwave absorption and corrosion resistance. Adv. Sci. 12(37), e09071 (2025). https://doi.org/10.1002/advs.202509071
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
J. Liu, Y. Du, B. Li, X. Zhou, M. Yuan et al., Engineering structural anisotropy for visualizing and controlling nanomagnetic interactions with high-frequency electromagnetic wave. Adv. Funct. Mater. 35(27), 2425148 (2025). https://doi.org/10.1002/adfm.202425148
B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16(1), 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
X. Yang, Z. Wu, K. Pei, Y. Qian, X. Lv et al., Confining magnetic response by the surface reorganization of buckling permalloy microspheres for boosting microwave absorption. ACS Nano 19(9), 9144–9155 (2025). https://doi.org/10.1021/acsnano.4c18320
F. Wu, F. Hu, P. Hu, P. Zhang, B. Fan et al., Multifunctional carbon fiber@TiO2/C aerogels derived from MXene for pressure tunable microwave absorption. Carbon 230, 119644 (2024). https://doi.org/10.1016/j.carbon.2024.119644
Y. Zhang, S.-H. Yang, Y. Xin, B. Cai, P.-F. Hu et al., Designing symmetric gradient honeycomb structures with carbon-coated iron-based composites for high-efficiency microwave absorption. Nano-Micro Lett. 16(1), 234 (2024). https://doi.org/10.1007/s40820-024-01435-z
C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17(1), 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9(35), 2204165 (2022). https://doi.org/10.1002/advs.202204165